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 A B S T R A C T

Social recommender systems help address data sparsity in user–product interactions by leveraging social 
relationships to infer user preferences. However, existing models often overlook the role of social capital that 
influence decision-making in social commerce. Social capital consists of structural, relational, and cognitive 
dimensions, all of which shape user preferences. To better understand these influences, we propose a multi-
task learning framework named DeepSC that integrates social capital theory into preference modeling. Its 
user preference learning module extracts structural features through graph-based pre-training, learns relational 
features from dynamic user embeddings, and models cognitive features using a hypergraph attention network. 
Additionally, the dual graph-based product feature learning module enhances cognitive feature extraction 
by incorporating product co-interactions. DeepSC is optimized through a joint learning objective, combining 
point-wise and pair-wise learning with an auxiliary social link prediction task to refine user representations. 
Experiments on three e-commerce datasets demonstrate that DeepSC significantly outperforms the state-of-the-
art recommendation models, highlighting the effectiveness of integrating social capital into social preference 
learning. Our research advances social recommendation by providing a social capital theory-driven approach 
to modeling user behavior in digital commerce.
1. Introduction

Over the past decade, recommender systems have played an es-
sential role in social commerce platforms by leveraging user–product 
interactions and social relationships to alleviate data sparsity and en-
hance consumer decision-making [1]. TikTok, one of the most popular 
social commerce platforms, has surpassed 2.6 billion downloads world-
wide and 100 million users in the US [2], with a valuation of over $100 
billion as reported by Wedbush analyst Dan Ives.2 The phenomenal 
growth of TikTok is largely driven by its recommender system, valued 
at over $50 billion, which tailors content to each user’s specific inter-
ests and influences their media consumption behaviors.2 As another 
successful social platforms, Pinterest’s recommender systems account 
for more than 80% of total user engagement [3] and result in a 25% 
increase in impressions for the platform’s ‘Shop the Look’ product.3

Social recommender systems have also attracted considerable inter-
est within the academic community [4]. As a foundational work, Arazy 
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et al. [5] explore the factors that affect the willingness to accept rec-
ommendations, such as homophily, tie strength, and trustworthiness. 
Further research [6] shows that latent homophily and social influence 
promote the similar purchase decisions among the users and their social 
friends. Building on these empirical research findings, considerable 
efforts have been directed toward capturing homophily and social 
influence to derive social preferences using matrix factorization [7] 
and graph learning [8]. Particularly, recent social recommenders focus 
on enhancing the quality of user representations by filtering out noise 
from excessive redundant social connections [9,10]. Despite some ad-
vantages, most works fail to extract multiple user preferences before 
social preference learning, leading to a biased intention inference, as 
shown in Fig.  1. Intuitively, users have multiple motivations to ask for 
some advices from different friends. For example, a girl may seek advice 
on dressing from her best friend, who happens to be a fashionista. We 
suggest that capturing multiple user preferences has the potential to 
enhance the social preference learning.
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Fig. 1. The comparison of social preference learning process of various solutions.
In response to the identified research gap, this study aims to answer 
the following two key research questions. First, which aspects of user 
preferences are most valuable for social preference learning? Existing 
approaches employ disentangled learning [11,12] and clustering meth-
ods [13] to extract various user preferences. However, these works 
focus on technical modeling and analyzing, overlook the crucial role of 
theory in model design. While performance-driven models are valuable, 
aligning recommendation models with user intentions enhances both 
understanding and acceptance [14]. Second, how to capture these 
different user preferences and integrate them into a unified user rep-
resentation? Since various aspects of user preferences exhibit unique 
characteristics, applying a uniform approach across all aspects can 
lead to suboptimal performance [11,12]. Thus, it is essential to design 
tailored methodologies for different facets of user preferences.

To tackle these research questions, we propose a deep learning-
based social recommender system named DeepSC, which incorporates 
the impact of social capital in online decision-making. Social capital 
theory suggests that social network provides actual or potential re-
sources to users [15], highlighting how interpersonal influences shape 
preferences [16]. This theory provides a promising guideline to model 
user features from three specific dimensions [17]: structural (user’s 
position within the social network), relational (nature and quality of 
relationships), and cognitive (shared understandings) [15]. It is sug-
gested that these multiple preferences have their potential to improve 
the social preference learning by integrating information about user’s 
relationships. Accordingly, we design a social capital-driven feature 
extractor to learn user representations grounded in these dimensions. 
Specifically, the structural dimension focuses on positional informa-
tion within an ego network, the relational dimension emphasizes sta-
ble interpersonal characteristics represented as continuously updated 
user embedding, and the cognitive dimension targets higher-order fea-
tures [18] associated with product consensus. The three-dimensional 
user features reveal the preference learning process behind recommen-
dations, improving the belief and acceptance to recommender systems. 
In the subsequent social preference learning process, the gated atten-
tion network [19] is adopted to capture the influence of each social 
friend, taking advantage of the MLP-based and dot-product attention 
mechanisms. Furthermore, an auxiliary social link prediction task is 
introduced to refine influence assignments from the gated attention 
network, enhancing the representation capacity of user features.

Beyond user feature modeling, product feature learning plays a crit-
ical role in user–product matching. Since cognitive dimension features 
depend on user–product interactions, we propose a dual graph-based 
approach to learn product representations. Specifically, we construct a 
product-oriented interaction hypergraph, where hyper-nodes represent 
products and hyper-edges denote groups of products engaged by the 
same user. A hyper-attention network [20] is then adopted to learn 
high-order product features. Inspired by [21], we also introduce a co-
interacted product network, derived from user–product interactions, 
to illustrate co-occurrence relationships between products engaged by 
the same users. Subsequently, we adopt the light graph convolution 
network (LightGCN) [22] to efficiently capture the complex latent 
dependencies between products. Notably, the product feature learning 
module of DeepSC does not rely on external side information, such 
as product categories or brands, enhancing its efficiency. Moreover, 
2 
we combine point-wise [23,24] and pair-wise [18,25] learning objec-
tives to train our model, which simultaneously enhances calibration 
and ranking capabilities. This joint learning task ensures that the 
recommendations align with actual user click-through behavior while 
optimizing product rankings [26,27].

This research makes four key contributions to decision support 
systems and social recommendation. First, we highlight the essential 
role of social capital in guiding user feature learning for better social 
preference modeling. Second, we propose a method for parameterizing 
the three dimensions of social capital to align this theory with model 
design, potentially providing a solid foundation for future studies on 
the impact of social capital in different contexts. Third, we develop 
a dual graph-based product feature learning module that leverages 
hypergraph structures and co-interacted product networks to enhance 
the feature learning of the cognitive dimension. Finally, we introduce a 
novel multi-task learning objective to enhance the representativeness of 
social capital-aware features, which consists of an auxiliary social link 
prediction task and a main joint learning task. The social link prediction 
task is designed to refine social preference modeling, while the joint 
learning task balances calibration and ranking to provide robust and 
effective decision support. Extensive experiments on three real-world 
datasets, i.e., Ciao, Epinions, and Yelp, validate the superiority of 
DeepSC over 19 baseline models, with ablation studies confirming the 
importance of its core components.

The rest of the paper is structured as follows. Section 2 reviews re-
lated literature. Section 3 defines the social recommendation problem, 
outlines the DeepSC architecture, and details its technical components. 
Section 4 describes the experimental setup, results, and analysis. Fi-
nally, Section 5 discusses research contributions, practical implications, 
and future directions.

2. Related work

This section demonstrates the effectiveness of representation learn-
ing and examines key studies on social recommender systems, high-
lighting research trends and our study’s motivation. Finally, we intro-
duce relevant theoretical frameworks, particularly social capital theory, 
and explain their role in guiding our model design.

2.1. Social recommender systems based on representation learning

Research in recommender systems has made impressive advances 
in supporting users’ online decision-making by alleviating information 
overload [14,18]. Early efforts rely on feature engineering to capture 
the features of users and products from rich external side information, 
such as user profiles and product attributes [28]. However, these 
approaches face an effectiveness-efficiency trade-off: while simplis-
tic feature engineering often yields poor performance, more sophisti-
cated techniques tend to introduce substantial computational overhead. 
Additionally, obtaining rich side information can be challenging in 
practice—particularly for privacy-conscious users or dynamic products 
with frequently changing attributes [29].

To address these challenges, the representation learning [30] has 
been widely adopted by recommender systems for end-to-end feature 
extraction. This approach represents a user or a product with a latent 
vector to capture its characteristics. As an effective tool widely utilized 



W. Li et al. Decision Support Systems 198 (2025) 114527 
in deep learning, the key idea behind representation learning is to 
seek a low-dimensional embedding of the data while preserving various 
discriminative factors of variation inherent in the data. Therefore, we 
can effectively and efficiently learn the features of users and products 
without relying on any explicit attributes, using only their IDs.

As a promising subfield of recommender systems, social recom-
mendation leverages the social relationships to improve recommen-
dation performance, which assumes that the opinions from the social 
friends impact the focal user’s decision-making. Technically, most early 
works [31,32] capture user preferences from social domain by adopting 
joint matrix factorization (MF) and adding social-aware regularization 
terms to the objective function. Specifically, SocialMF [31] incorpo-
rated social influences from friends into the MF-based model for rating 
prediction. Moreover, SoReg [32] considered social factors as regular-
ization terms to constrain the MF, which is conducive to improving the 
precision of recommendations. These methods often fail to distinguish 
the varying influence of individual friends and are limited in their abil-
ity to capture signals from higher-order social connections, which leads 
to suboptimal performance. Additionally, few efforts [8,33] transform 
user–product interactions and social relationships into user–product 
bipartite graph and social network and adopt random walk-based ap-
proaches to capture user preference. For example, CUNE [33] learned 
implicit interests and identifies semantic friends by biased random 
walk and skip-gram, which is used to complement sparse explicit social 
relations. Yet, such methods tend to capture unreliable or noisy implicit 
social connections, often resulting in biased user preference learning.

Recently, graph neural networks (GNNs) have been widely adopted 
to explicitly model the users’ latent preferences with information diffu-
sion process in the social network. Specifically, GCN-based methods, 
such as DiffNet [34] and SocialLGN [35], efficiently capture user 
preferences from interaction domain and social domain. Moreover, 
GAT-based methods, such as GraphRec [36] and DANSER [37], adopt 
soft denoisng approaches based on attention networks to mitigate the 
impact of noisy data by adaptively assigning lower weights to uninter-
ested products and unreliable social friends. Furthermore, GDMSR [9] 
and MADM [10] adopt hard denoisng approaches to filter out noisy 
interactions and social relationships. However, these hard denoising 
approaches lead to sparser data, which hinders the ability to effec-
tively learn user preferences. To address data sparsity, GSFR [38] 
and DICER [23] generate pseudo social relationships based on similar 
interactions, then capturing opinions from high-order social friends. 
Despite these advances, many of these approaches emphasize homoge-
neous preferences and overlook the role of heterogeneous opinions in 
user decision-making. In addition, the prevalent use of stacking-based 
GNN architectures often leads to over-smoothing, where node features 
converge to indistinguishable values across layers, thereby degrading 
model expressiveness [39].

A further challenge arises from the representation of user–product 
interactions. Most social recommender systems model these interac-
tions using a heterogeneous bipartite graph. However, such representa-
tions are inherently limited to pairwise relations, which restricts their 
capacity to capture group-level relationships directly [40]. Hypergraph 
learning has emerged as a promising paradigm to address this lim-
itation. By leveraging flexible hyperedges, it facilitates information 
propagation beyond pairwise interactions. For instance, in an item-
oriented hypergraph, a hyperedge can connect all users who interact 
with a particular item, thereby defining the item’s precise audience 
group. Recent studies, such as [18,41], have demonstrated the superi-
ority of hypergraph-based approaches over bipartite graphs in learning 
user and product representations for recommendation. Moreover, we 
employ a hypergraph attention network to replace conventional hyper-
graph convolutional networks. This model learns a dynamic incidence 
matrix that adaptively captures nuanced relationships between users 
and products based on feature affinities.
3 
2.2. Empirical and theoretical underpinnings of DeepSC

The traditional theoretical foundations of social recommender sys-
tems are social influence theory and homophily theory. The two the-
ories are introduced to support the calculation and propagation of 
user-pair similarity. Specifically, social influence theory suggests that 
users in social networks are influenced by the attitudes or behaviors of 
their social friends, leading them to make decisions similar to those 
friends. Some studies [42,43] showed that social influence is often 
more effective than the similarity of historical interactions in inferring 
users’ intentions. Moreover, homophily theory suggests that users are 
more likely to form social relationships with those who share similar 
characteristics, such as demographics or common interests [44]. How-
ever, existing social recommender systems disregard the influence of 
heterogeneous friends who provide diverse opinions. Furthermore, it 
remains unclear which factors specifically influence the calculation of 
user-pair similarity.

Despite existing works acknowledging the importance of social in-
fluence and homophily in social recommendations, they often overlook 
the influence of social capital, which has demonstrated its relevance 
in knowledge sharing and decision-making [45]. Therefore, we argue 
that social capital plays a significant role in social recommendations 
and introduce it to guide the design of our DeepSC. Social capital 
refers to the value of all the resources and benefits that an individual 
can obtain and control through their social relationships [46]. It not 
only establishes close relationships between users, but also encourages 
communication, identification, and trust [47]. In this paper, we follow 
the widely adopted measurement of social capital from three partic-
ular dimensions [17]. Specifically, structural dimension concerns the 
position in the social network, while the relational dimension refer 
to those assets created and leveraged through long-term relationships. 
Moreover, the cognitive dimension comprises shared values developed 
when users have common opinions on various products. To sum up, 
the social capital theory offers a valuable theoretical foundation for 
capturing fine-grained user preferences [17]. In this paper, with the 
social capital-aware diffusion of social influence and homophily, our 
DeepSC extends existing methods to capture more precise opinions 
from social friends.

Moreover, we extend the concept of user homophily to introduce 
the concept of product homophily, assuming that products interacted 
by the same users have similar attractiveness when exposed to other 
users. In this paper, we extract the co-interacted product network from 
user–product interactions, where the edges represents the co-interacted 
relations and the weights represents the normalized co-interacted fre-
quencies. Product homophily analysis is expected to provide appropri-
ate recommendations by finding what most customers prefer to [21]. It 
can also enhance the feature learning for niche products by analyzing 
co-interacted popular products.

3. DeepSC

Traditionally, rating prediction has been the primary task in social 
recommendation. However, recent research [48] suggest that top-K rec-
ommendation provides greater business value by enhancing customer 
engagement and advertising revenue. Formally, let 𝑈 =

{

𝑢1,… , 𝑢
|𝑈 |

}

be the set of users and 𝑉 =
{

𝑣1,… , 𝑣
|𝑉 |

} be the set of products. 
The interaction matrix 𝑅 ∈ R|𝑈 |×|𝑉 | ecords user–product interactions, 
where 𝑟𝑖𝑗 = 1 indicates that user 𝑖 interacts with product 𝑗, otherwise 
𝑟𝑖𝑗 = 0. Similarly, the social link matrix 𝑆 ∈ R|𝑈 |×|𝑈 | represents 
social relationships, where 𝑠𝑖𝑗 = 1 if user 𝑢𝑖 follows user 𝑣𝑗 , and 
𝑠𝑖𝑗 = 0 otherwise. Given 𝑅 and 𝑆, our goal is to predict the interaction 
probability 𝑟̂𝑖𝑗 between a user 𝑢𝑖 and a candidate product 𝑣𝑗 , ranking 
products based on their likelihood of interaction.

As illustrated in Fig.  2, our proposed framework, DeepSC, consists 
of three key components. The user feature learning module, inspired by 



W. Li et al. Decision Support Systems 198 (2025) 114527 
Fig. 2. Graphical overview of our proposed modeling framework.
social capital theory, extracts structural, relational, and cognitive fea-
tures from user interactions and social relationships. The product fea-
ture learning module captures product engagement patterns using user–
product interactions and product-product co-interaction networks, en-
hancing feature representation. The prediction and optimization mod-
ule refines user–product matching through a multi-task learning ob-
jective, incorporating both ranking-based optimization and an auxil-
iary learning task. By integrating social capital dimensions, DeepSC 
effectively enhances user preference modeling, leading to improved 
recommendation performance in social commerce environments.

3.1. User feature learning module

The user feature learning module aims to capture the comprehen-
sive user representations. Specifically, the social capital-driven feature 
extractor learns the three dimensional user features according to the 
social capital theory. Subsequently, the homophily and social influence 
extractor updates the user features by capturing the opinions from 
their social friends with the diffusion of social influence. After that, 
the user feature fusion layer integrates various user features derived 
from the two user feature extractors to obtain comprehensive user 
representations.
4 
3.1.1. Social capital-driven feature extractor
According to the social capital theory, it is rational to model user 

preferences from structural dimension, relational dimension, and cogni-
tive dimension. Specifically, considering that social network structures 
significantly impact the recommendations provided by agents [16], we 
propose the random walk-based structural pre-training on ego-networks 
to parameterize the structural dimensional features. Formally, on the 
focal user’s ego-network 𝑆𝑢 ⊂ 𝑆, the transition probability from the 
focal user node 𝑛𝑢 to her social friend 𝑛𝑗 during a random walk is 
given by 𝑃𝑛𝑖→𝑛𝑢 (𝑛𝑗 |𝑛𝑢) = 𝛼𝑝𝑞(𝑛𝑖, 𝑛𝑗 ), where 𝛼𝑝𝑞(𝑛𝑖, 𝑛𝑗 ) is a normalization 
factor that depends on the previous user node 𝑛𝑖 and the next candidate 
node 𝑛𝑗 . Moreover, a larger 𝑝 encourages to visit the user nodes 
that are semantically related but structurally distant, while a larger 𝑞
encourages to visit the user nodes that are directly connected to the 
focal user node. After generating the user node sequences, the structural 
features 𝑆𝑡𝑢 ∈ R𝑑 of 𝑛𝑢 can be learned by Skip-gram [49].

Inspired by DGRec [50], the free user embedding 𝑒𝑖𝑛𝑖𝑡𝑢 ∈ R𝑑 is 
adopted to represent the relational dimensional features 𝑅𝑒𝑢 of the focal 
user 𝑢, focusing on long-term user characteristics, where 𝑑 denotes the 
embedding size.

Moreover, we capture the consensus from user–product interactions 
to parameterize the features of the cognitive social capital. Specifically, 
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we introduce a hypergraph-based method to extract the complex hid-
den relations among users and their interacted products [18]. Formally, 
the user-oriented interaction hypergraph is denoted as 𝐻𝐺𝑢 =

(

𝑢, 𝑣
)

with |𝑈 | hyper-nodes and |𝑉 | hyper-edges, where the hyper-node ℎ𝑛𝑖 ∈
𝑢 represents the user 𝑢𝑖 and the hyper-edge ℎ𝑒𝑗 ∈ 𝑣 represents 
the product 𝑣𝑗 . Different from traditional user–product bipartite graph 
merely focuses on pair-wise interactive relationships, the hyper-edge 
of our user-oriented interaction hypergraph simultaneously connects 
multiple hyper-nodes to learn the complex hidden interactive fea-
tures. After that, the multi-head hypergraph attention network [20] 
is adopted to capture users’ multi-aspect dynamic consensus on the 
interacted products. Formally, the one-aspect features of the cognitive 
social capital are learned as follows:
𝑋(𝑙+1)
𝑢 = 𝐷−1

𝑢 𝐻𝑢𝑊𝑢𝐵
−1
𝑣 𝐻𝑇

𝑢 𝑋
(𝑙)
𝑢 𝑃𝑢, (1)

𝐻 𝑖𝑗
𝑢 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝜙
(

𝑞𝑇𝑢
[

𝑥𝑢𝑖 𝑃𝑢
|

|

|

|

|

|

𝑥𝑣𝑗𝑃𝑢
]))

, (2)

where 𝐷𝑢 ∈ R|𝑈 |×|𝑈 | and 𝐵𝑣 ∈ R|𝑉 |×|𝑉 | denote the diagonal degree 
matrices of the user hyper-nodes and product hyper-edges, indicat-
ing the user engagement and the product popularity, respectively. 
The incidence matrix 𝐻𝑢 ∈ R|𝑈 |×|𝑉 | represents the user–product in-
teractive relationships. The weight matrix 𝑃𝑢 ∈ R𝑑×𝑑 captures the 
degree-normalized weights of user–product interactions, mitigating the 
excessive influence of highly active users. 𝑥𝑢𝑖 ∈ R𝑑 and 𝑥𝑣𝑗 ∈ R𝑑 denote 
the features of user hyper-node and product hyper-edge, respectively. 
We follow the design in [51], employing Gaussian Error Linear Units 
(GeLU) as the non-linear activation function, denoted by 𝜙(⋅). 𝑊𝑢 ∈
R|𝑉 |×|𝑉 | and 𝑞𝑢 ∈ R2𝑑 are learnable parameters. 

[

⋅||
|

|

|

|

⋅
]

 denotes the 
concatenating operation. For briefly, the above mentioned process is 
denoted as 𝑋(𝑙+1)

𝑢 = 𝐻𝐴𝑁 (𝑙)(𝑋(𝑙)
𝑢 , 𝜃𝑙𝑢), where 𝜃𝑙𝑢 is the parameter set of 

𝑙th layer. Furthermore, the multi-head mechanism is adopted to capture 
the diverse intentions of users when interacting with products. Just as 
we consider brand, style, and price when buying clothes. Formally, 
𝑋(𝑙+1)
𝑢 =𝑀𝐿𝑃 𝑢𝑚ℎ

([

𝐻𝐴𝑁 (𝑙)
1
(

𝑋(𝑙)
𝑢 , 𝜃

𝑙
𝑢
)

|

|

|

|

|

|

… |

|

|

|

|

|

𝐻𝐴𝑁 (𝑙)
𝑓
(

𝑋(𝑙)
𝑢 , 𝜃

𝑙
𝑢
)

])

, (3)

where 𝑓 denotes the number of attention heads. 𝑀𝐿𝑃 𝑢𝑚ℎ(⋅) denotes the 
3-layer MLP of the form R𝑓𝑑 → R𝑑 . Finally, we summary the learned 
features from each layer to capture the features of the cognitive social 
capital 𝐶𝑜𝑢 ∈ R𝑑 : 𝐶𝑜𝑢 = 1

𝐿
∑𝐿
𝑙=1𝑋

(𝑙)
𝑢 , where 𝐿 denotes the number 

of stacking layers. After learning the three dimensional features, it is 
necessary to fuse them for capturing the comprehensive social capital 
features. Here we adopt the simple sum operation to improve the 
training efficiency: 𝑆𝑐𝑢 = 𝑆𝑡𝑢 + 𝑅𝑒𝑢 + 𝐶𝑜𝑢.

It is noted that while most previous studies [52–54] relied on ques-
tionnaires to measure social capital dimensions, they faced the chal-
lenges of self-report bias, low response rates, and temporal constraints. 
By contrast, our end-to-end parameterized approach automatically ex-
tracts complex patterns from large datasets and adaptively optimizes 
learned features, providing a dynamic and efficient alternative for 
feature scaling and modeling.

3.1.2. Homophily and social influence extractor
After capturing the social capital features, the homophily and so-

cial influence extractor aims to gather the opinions from users’ social 
friends for learning the social-aware user preferences. Specifically, the 
social network is defined as 𝐺𝑠 =

(

𝑢, 𝑠
)

, where the 𝑢 is the user node 
set and the 𝑠 is the link set of the social relationships. Subsequently, 
the gated attention network is introduced to learn the representations of 
the social preferences by gathering the opinions from the social friends. 
Formally,

ℎ̂𝑢𝑖 = 𝑊1𝛼𝑖,𝑖ℎ
𝑢
𝑖 +

∑

𝑗∈𝑁𝑆 (𝑖)
𝑊2𝛼𝑖,𝑗ℎ

𝑢
𝑗 , (4)

𝛼𝑖,𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(

𝜔
(

𝑞𝑇𝑠
[

𝑊3ℎ
𝑢
𝑖 ||𝑊4ℎ

𝑢
𝑗

]

⋅ 𝜎
(

(

𝑊3ℎ
𝑢
𝑖
)𝑇 𝑊4ℎ

𝑢
𝑗

)))

, (5)

where ℎ𝑢𝑖  denotes the features of the user 𝑢𝑖 initialized to 𝑆𝑐𝑢. 𝑁𝑆 (𝑖)
denotes the neighborhood social friend set of the user 𝑢 . 𝜔(⋅) denotes 
𝑖

5 
the non-linear activation function named LeakyReLU with 0.2 slope. 
𝜎(⋅) denotes the sigmoid activation function. 𝑊1, 𝑊2, 𝑊3, 𝑊4 ∈ R𝑑 , 
and 𝑞𝑠 ∈ R2𝑑 denote the learnable parameters. The gated attention 
network benefits from both the MLP-based attention mechanism and 
the dot-product attention mechanism [55], improving the capacity to 
gather unbiased opinions from different social friends.

To further enhance the denoising capacity, we introduce an auxil-
iary social link prediction task aimed to calibrate the learned attention 
weight for each social friend. Formally,
(𝑙)
𝑎𝑢𝑥 = − 1

𝑠 ∪ −
𝑠

×
∑

(𝑖,𝑗)∈𝑠∪−𝑠

[

I
(

𝑦𝑖𝑗 = 1
)

⋅ log
(

𝑦̂(𝑙)𝑖𝑗
)

+ I
(

𝑦𝑖𝑗 = 0
)

⋅ log
(

1 − 𝑦̂(𝑙)𝑖𝑗
)]

,

(6)

𝑦̂𝑖𝑗 = 𝜎
(

(

𝑊3ℎ
𝑢
𝑖
)𝑇 𝑊4ℎ

𝑢
𝑗

)

, (7)

where −
𝑠  is the negative social link set sampling from the complemen-

tary set of 𝑠. I(⋅) denotes the indicator function, where I = 1 if there 
is a social link between 𝑢𝑖 and 𝑢𝑗 , otherwise I = 0.

Similar to Eq.  (3), the multi-head attention mechanism is adopted to 
capture the multi-aspect opinions from her social friend. For example, 
we may choose to follow our fashion-savvy friends’ preferences for 
brands and styles when purchasing clothing. After capturing the diverse 
social opinions, we stack the gated attention layer to stimulate the 
propagation process of social influence. Subsequently, the social-aware 
user feature is captured by aggregating the user features at each layer 
as follows: 𝑆𝑝𝑖 = 1

𝐿
∑𝐿
𝑙=1 ℎ

𝑢,(𝑙)
𝑖 . Similarly, the total loss of the auxiliary 

task is computed by summing the loss at each layer as follows: 𝑎𝑢𝑥 =
1
𝐿
∑𝐿
𝑙=1 

(𝑙)
𝑎𝑢𝑥.

3.1.3. User feature fusion layer
To learn better user representations, the comprehensive user rep-

resentations are learned by fusing the social capital features and the 
social-aware user features. Considering that the pre-trained features are 
frozen for efficiency, we disregard the structural dimensional features 
of social capital when learning the dynamic user representations. For-
mally, 𝑒𝑢𝑖 = 𝑀𝐿𝑃𝑢[𝑅𝑒𝑖‖𝐶𝑜𝑖‖𝑆𝑝𝑖], where 𝑀𝐿𝑃𝑢(⋅) denotes the 3-layer 
MLP of the form R3𝑑 → R𝑑 .

3.2. Product feature learning module

The product feature learning module aims to capture the compre-
hensive product representations. Specifically, the collaborative feature 
extractor captures the collaborative signals to learn the product features 
from the product-oriented interaction hypergraph. Subsequently, the 
co-interacted feature extractor captures the co-occurrence signals to 
learn the product features from the co-interacted product network. 
After that, the product feature fusion layer integrates various product 
representations derived from the two product feature extractors to 
obtain comprehensive product representations.

3.2.1. Collaborative feature extractor
The collaborative feature extractor first constructs the product-

oriented interaction hypergraph based on the product-user interactions 
to represent the group-level interacted relations. Formally, the product-
oriented interaction hypergraph is denoted as 𝐻𝐺𝑣 =

(

𝑣, 𝑢
) with 

|𝑉 | hyper-nodes and |𝑈 | hyper-edges, where the hyper-node ℎ𝑛𝑖 ∈ 𝑣
represents the product 𝑣𝑖 and the hyper-edge ℎ𝑒𝑗 ∈ 𝑢 represents the 
user 𝑢𝑗 . Subsequently, the multi-head hypergraph attention network is 
adopted to capture product’s multi-aspect characteristics by gathering 
the collaborative opinions from the users interacted with the focal 
product. Similar to Eq.  (3), 
𝑋(𝑙+1)
𝑣 =𝑀𝐿𝑃 𝑣𝑚ℎ

([

𝐻𝐴𝑁 (𝑙)
1
(

𝑋(𝑙)
𝑣 , 𝜃

𝑙
𝑣
)

|

|

|

|

|

|

… |

|

|

|

|

|

𝐻𝐴𝑁 (𝑙)
𝑓
(

𝑋(𝑙)
𝑣 , 𝜃

𝑙
𝑣
)

])

, (8)

where 𝜃𝑙𝑣 is the parameter set of 𝑙th layer. 𝑀𝐿𝑃 𝑣𝑚ℎ(⋅) denotes the 3-layer 
MLP of the form R𝑓𝑑 → R𝑑 . Furthermore, we integrate the product 
features from different layers to learn the final collaborative product 
features as follows: 𝑐𝑓 = 1 ∑𝐿 𝑋(𝑙).
𝑣 𝐿 𝑙=1 𝑣
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3.2.2. Co-interacted feature extractor
Inspired by market basket analysis, the co-interacted feature ex-

tractor focuses on discovering user behavioral patterns by capturing 
the co-occurrence relationships among products, which improves the 
quality of the product features. Formally, the co-interacted product 
network is denoted as 𝐺𝑣 =

(

𝑣, 𝑐𝑜
)

, where the edge 𝑒𝑖𝑗 indicates 
that the product 𝑣𝑖 and 𝑣𝑗 have been interacted with together by 
the same users. With a large number of connections per product, the 
original co-interacted product network are quite dense. However, lots 
of co-occurrence relationships are meaningless, representing spurious 
associations generated by chance [56]. For example, it is irrational to 
assert a strong relationship between bread and a memory card based 
on occasional views from just a few users. Therefore, we propose a 
noise filtering method to remove unreliable relationships. Formally, we 
compute the co-occurrence similarity between 𝑣𝑖 and 𝑣𝑗 as follows: 

𝑠𝑖𝑚𝑖𝑗 =
|

|

|

𝑆𝑒𝑡
(

𝑣𝑖
)

∩ 𝑆𝑒𝑡
(

𝑣𝑗
)

|

|

|

𝑑𝑒𝑔
(

𝑣𝑖
)

⋅
√

|

|

|

𝑆𝑒𝑡
(

𝑣𝑖
)

|

|

|

⋅ ||
|

𝑆𝑒𝑡
(

𝑣𝑗
)

|

|

|

, (9)

where 𝑆𝑒𝑡 (𝑣𝑖
) denotes the set of the users interacted with the product 

𝑣𝑖. 𝑑𝑒𝑔
(

𝑣𝑖
) denotes the degree of the product node. 𝑣𝑖 and 𝑣𝑗 are 

considered homogeneous if 𝑠𝑖𝑚𝑖𝑗 < 𝜂, where 𝜂 is the predefined 
minimum threshold.

Furthermore, the LightGCN [22] is introduced to simulate the prop-
agation of product homophily for learning the co-interacted product 
features. Formally,

𝑧(𝑙+1)𝑖 =
∑

𝑗∈𝑁𝑐𝑜(𝑖)

1
√

|

|

𝑁𝑐𝑜(𝑖)|| ⋅ ||𝑁𝑐𝑜(𝑗)||
𝑧(𝑙)𝑖 , (10)

𝑐𝑖𝑣 =
1
𝐿

𝐿
∑

𝑙=1
𝑧(𝑙)𝑖 , (11)

where 𝑁𝑐𝑜(𝑖) denotes the neighborhood product set of the product 𝑣𝑖.

3.2.3. Product feature fusion layer
The product feature fusion layer combines the collaborative prod-

uct features 𝑐𝑓 𝑣𝑡ℎ𝑒 with the co-interacted product features 𝑐𝑖𝑣 for 
learning the comprehensive product representations as follows: 𝑒𝑣𝑖 =
𝑀𝐿𝑃𝑣[𝑐𝑓 𝑣 ∥ 𝑐𝑖𝑣], where 𝑀𝐿𝑃𝑣(⋅) denotes the 3-layer MLP of the form 
R2𝑑 → R𝑑 .

3.3. Prediction and optimization module

After learning the comprehensive features of users and products, the 
relevance score is calculated to illustrate the extent of the user’s interest 
in the product by the dot-product similarity of their representations. 
Formally, 𝑟̂𝑖𝑗 = (𝑒𝑢𝑖 ⋅ 𝑒

𝑣
𝑗 )∕𝜏, where the temperature hyper-parameter 𝜏

is introduced to learn better feature distributions. Moreover, we adopt 
the joint learning objective function to optimize our DeepSC, benefiting 
from both the point-wise loss and the pair-wise loss. Formally,
𝑟𝑒𝑐 = 𝜆 ⋅ 𝑝𝑜𝑖𝑛𝑡 + (1 − 𝜆)𝑝𝑎𝑖𝑟, (12)

𝑝𝑜𝑖𝑛𝑡 = −
||
∑

𝑗=1
𝑟𝑖𝑗 log

(

𝑟̂𝑖𝑗
)

+
(

1 − 𝑟𝑖𝑗
)

𝑙𝑜𝑔
(

1 − 𝑟̂𝑖𝑗
)

, (13)

𝑝𝑎𝑖𝑟 =
∑

(𝑖,𝑗+ ,𝑗−)∈
𝜎
(

𝑟̂+𝑖𝑗 − 𝑟̂
−
𝑖𝑗

)

, (14)

where 𝜆 is a hyper-parameter to balance the weights of different losses, 
𝑟𝑖𝑗 denotes the one-hot encoding vector of the ground truth product, 
and  denotes the training dataset. The positive and negative samples 
denote the observed and unobserved user–product interactions, respec-
tively. The point-wise loss focuses on learning a user’s absolute interest 
in a single product, while the pair-wise loss emphasizes learning her 
relative preference between pairs of products [27]. The proposed joint 
learning objective function integrates the fitting traits of different losses 
to achieve precise rating and ranking simultaneously. Additionally, the 
multi-task learning objective is denoted as follows: 𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑒𝑐+𝜉 ⋅𝑎𝑢𝑥, 
where 𝜉 is the hyper-parameter to scale the weight of the auxiliary task.
6 
3.4. Analysis of time complexity

The time complexity of the proposed DeepSC framework stems 
from five key components. First, the time complexity of the random 
walk-based structural pre-training is 𝑂(|𝑈 |𝜔𝜌(𝑑 + 1)), where 𝜔 and 𝜌
denote the number of random walks per node and the length of each 
random walk path, respectively. Second, the time complexity of the 
two hypergraph attention networks is 𝑂(6|𝑈 ||𝑉 | + |𝑈 |

2
|𝑉 | + |𝑈 ||𝑉 |

2 +
2𝑓 |𝑈 |

2
|𝑉 |

2𝑑2)𝐿, where 𝑓 denotes the number of attention heads in 
the hypergraph attention networks. Third, the time complexity of the 
gated attention network is 𝑂((|𝑈 |𝑑2 + |𝑠|𝑑))𝜓𝐿, where 𝜓 and |𝑠|
denote the number of attention heads in the gated attention network 
and the number of social relationships, respectively. Fourth, the time 
complexity of the LightGCN in the co-interacted feature extractor is 
|𝑐𝑜|𝐿𝑑. Lastly, the time complexity of the prediction and optimization 
module is 𝑂(|𝑉 |𝑑). Therefore, the overall time complexity of DeepSC is 
𝑂((𝜔𝜌(𝑑+1)+𝜓𝐿𝑑2)|𝑈 |+|𝑉 |𝑑+𝜓𝐿𝑑|𝑠|+𝐿𝑑|𝑐𝑜|+6𝐿|𝑈 ||𝑉 |+𝐿|𝑈 |

2
|𝑉 |+

𝐿|𝑈 ||𝑉 |

2+2𝑓𝐿𝑑2|𝑈 |

2
|𝑉 |

2), where |𝑈 |, |𝑉 |, |𝑠|, and |𝑐𝑜| are typically 
larger than other variables. In practical scenarios, models are usually 
trained offline using ample computational resources, enabling efficient 
and timely training. During deployment, inference is optimized for 
real-time performance. Modern hardware like GPUs further accelerates 
training, making complex models feasible in real-world applications. 
Therefore, DeepSC has an acceptable time complexity.

4. Experiments

In this section, we conduct thorough experiments to demonstrate 
the effectiveness of the proposed DeepSC model by addressing the 
following questions: (Q1) How does DeepSC compare to 19 competitive 
baseline models across 3 real-world datasets in social recommendation 
tasks? (Q2) How does DeepSC perform compared to various repre-
sentative baselines under different degrees of sparse data? (Q3) What 
impact do social network and each dimension of the social capital 
have on enhancing social recommendation performance? (Q4) How 
does co-interacted product network, hypergraphs, and graph learning 
methods contribute to improving social recommendation performance? 
(Q5) How does each part of the objective function influence the model 
optimization? (Q6) What is the performance variability of DeepSC 
under different hyperparameter settings?

These six questions are intended to address the two research ques-
tions mentioned above from various perspectives. Specifically, Q1 pro-
vides insights into the model’s overall effectiveness and its advantages 
over existing methods. Q2 assesses how DeepSC responds to data spar-
sity to ensure its robustness in practical applications. Q3 explores the 
role of social capital dimensions — structural, relational, and cognitive 
— in refining social recommendations. Q4 evaluates the contributions 
of the key components in improving recommendation accuracy. Q5 
examines the impact of different loss terms on model convergence 
and optimization. Lastly, Q6 investigates the model’s sensitivity to 
hyperparameter choices, offering guidance for optimizing performance 
across various scenarios.

4.1. Datasets and evaluation metrics

Three popular datasets are used in our experiments: Ciao, Epinions, 
and Yelp. Specifically, the Ciao dataset is obtained from a popular 
online shopping websites,4 while the Epinions dataset is created by a 
who-trust-whom online social network of a general consumer review 
site.5 Moreover, the Yelp dataset is sourced from the largest review 
website for businesses in the United States.6 The social networking 

4 www.ciao.co.uk.
5 www.epinions.com.
6 www.yelp.com.

http://www.ciao.co.uk
http://www.epinions.com
http://www.yelp.com
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Table 1
Statistics of the three datasets.
 Dataset # Users # Products # Interactions # Followers # Followees # Social links 
 Ciao 1925 15053 33175 1925 1925 65084  
 Epinions 18 081 251722 746148 18081 18081 572784  
 Yelp 99262 105142 960732 99262 99262 1298522  
Table 2
Summary of the baseline models and our DeepSC. S, R, C denotes the structural, relational, and cognitive social capital feature. Pair, Point, and Aux. denotes the 
pair-wise loss function, the point-wise loss function, and the auxiliary task, respectively.
 Model Social relationships Social capital User–product interaction Product network w/o side info Denoising method Loss function  
 SAMN [58] R Matrix Soft Pair  
 EATNN [59] None Knowledge graph Soft Point  
 DiffNet [34] R Vanilla bipartite graph None Pair  
 GraphRec [36] C Vanilla bipartite graph Soft Point  
 NGCF [60] None Vanilla bipartite graph None Point  
 GCCF [61] None Vanilla bipartite graph None Pair  
 DGRec [50] R/C Interaction sequence Soft Point  
 KGAT [62] None Knowledge graph Soft Point/Aux.  
 DGCF [12] None Vanilla bipartite graph Soft Pair/Aux.  
 DisenHAN [63] None Vanilla bipartite graph Soft Pair/Aux.  
 HAN [64] R Heterogeneous graph Soft Point  
 HGT [24] R Heterogeneous graph Soft Point  
 HERec [65] R Heterogeneous graph None Point  
 MHCN [66] R Hypergraph Soft Pair/Aux.  
 DGNN [11] R Heterogeneous graph Soft Pair  
 DSL [67] R Vanilla bipartite graph Soft Pair/Aux.  
 GDMSR [9] R Vanilla bipartite graph Hard Pair/Aux.  
 RecDiff [68] R Vanilla bipartite graph Soft Pair/Aux.  
 SGSR [69] R Vanilla bipartite graph Soft Pair/Aux.  
 DeepSC S/R/C Hypergraph Soft Point/Pair/Aux. 
service on the three online platforms allow users to review and rate 
businesses, as well as make friends with others. For all the datasets, 
we follow the practice of [11] and map the rating score to 0 or 1, 
where the score 1 means the user appreciate the product. Table  1 shows 
the statistics for the three datasets. Additionally, we select 80% as a 
training set to learn the parameters, and the rest are divided into a 
validation set and a testing set on average. 

To evaluate the performance of the models, we introduce the widely 
adopted two metrics, i.e., Hit Rate (HR@K) and Normalized Discounted 
Cumulative Gain (NDCG@K), where the length of recommendation 
list K is set as 5, 10, and 20. Specifically, HR@K is the metric that 
assesses the proportion of test cases in which the correct products are 
recommended within the top-K list. For each user in the test set, we 
follow the widely adopted evaluation setting [9,11,57], i.e., randomly 
sample 100 products that the user has not interacted with and rank 
them with the positive samples in the test set.

4.2. Baseline models and implementation settings

To demonstrate the superiority of our DeepSC, we compare it with 
four groups of 19 representative baseline models as shown in Table 
2. Our DeepSC is implemented based on the popular recommendation 
framework RecBole7 and its extension RecBole-GNN8 for easy develop-
ment and reproduction. The embedding dimension is searched from {8, 
16, 32, 64, 128}. The batch size is searched from {64, 128, 256, 512, 
1024}. The stacking layer of graph neural networks is searched from 
{1, 2, 3, 4}. The number of attention heads is searched from {1, 2, 4, 
8}. The negative sampling ratio and the dropout ratio are set to 0.2. 
The temperature parameter is set to 0.07. The AdamW optimizer [70] 
is used to train parameters with the learning rate of 0.001. Early 
stopping strategy is adopted to alleviate over-fitting, i.e., the training 
is stopped when NDCG@10 on the validation set is not promoted for 5 
consecutive epochs. The implementation of our model can be found at 
https://github.com/usernameAI/Deep-SC.

7 https://github.com/RUCAIBox/RecBole.
8 https://github.com/RUCAIBox/RecBole-GNN.
7 
4.3. Overall performance

Tables  3 and 4 show the HR@K and NDCG@K results on the three 
datasets. To address Q1, we have the following findings.

(1) Our DeepSC achieves better performance than the baseline mod-
els disregarding the effect of social relationships [12,60–63], demon-
strating that user preferences tend to be influenced by their social 
friends. It is attributed that people frequently seek advice from friends 
in their social networks before purchasing a product or using a service. 
Therefore, extracting hidden social preferences is crucial for enhancing 
the performance of recommender systems.

(2) Compared to the baseline models considering just one or two 
aspects of social capital [34,36,50], our DeepSC shows significant 
improvements in recommendation performance. This observation sug-
gests that integrating multiple dimensions of social capital enhance the 
assessment of social relationship robustness, which helps in learning 
better representations of user preferences from social networks.

(3) Our DeepSC outperforms the baseline models disregarding the 
product network [67–69], showing that products do not exist in iso-
lation but rather influence each other. Especially, our co-interacted 
network, as a unique form of product network, demonstrates how 
products influence interactions with other products. It is noted that 
some baseline models [9,11,65] introduce external side information to 
improve the feature learning of products. Despite some advantages, the 
selection of appropriate side information depends on extensive domain 
knowledge, struggling to generalize to other scenarios. Moreover, these 
excessive side information reduced the efficiency of models, hindering 
the large-scale deployment in real scenarios.

(4) Compared to the baseline model merely based on point-wise or 
pair-wise objective function [65,66], our DeepSC combine both of them 
to improve the calibration ability and ranking ability simultaneously. 
Although widely adopted the pair-wise objective functions emphasize 

https://github.com/usernameAI/Deep-SC
https://github.com/RUCAIBox/RecBole
https://github.com/RUCAIBox/RecBole-GNN
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Table 3
Top-K performance comparison on HR metric.
 Model Ciao Epinions Yelp

 @5 @10 @20 @5 @10 @20 @5 @10 @20  
 SAMN 0.3468 0.4677 0.6251 0.5176 0.6390 0.7491 0.6359 0.7971 0.9009  
 EATNN 0.2969 0.4130 0.5222 0.5283 0.6422 0.7501 0.6425 0.7273 0.8066  
 DiffNet 0.3941 0.5202 0.6647 0.5106 0.6323 0.7367 0.6701 0.8222 0.9053  
 GraphRec 0.3058 0.4594 0.5976 0.5683 0.6865 0.8001 0.6631 0.8019 0.8944  
 NGCF 0.3570 0.4843 0.5937 0.5612 0.6944 0.8010 0.6748 0.8204 0.9011  
 GCCF 0.3685 0.4926 0.6289 0.5538 0.6779 0.7906 0.6703 0.8130 0.9011  
 DGRec 0.3724 0.5086 0.6219 0.5053 0.6268 0.7308 0.6511 0.7830 0.8824  
 KGAT 0.3391 0.4907 0.6052 0.5483 0.6756 0.7880 0.6503 0.7737 0.8795  
 DGCF 0.3871 0.5189 0.6775 0.5479 0.6635 0.7770 0.6565 0.7956 0.9010  
 DisenHAN 0.3493 0.4856 0.6161 0.5609 0.6825 0.7890 0.6511 0.8159 0.9040  
 HAN 0.2937 0.4856 0.6513 0.5403 0.6673 0.7761 0.6635 0.8169 0.8977  
 HGT 0.3415 0.4933 0.6128 0.5757 0.7001 0.8053 0.6888 0.8185 0.9060  
 HERec 0.3832 0.5298 0.6846 0.5519 0.6767 0.7792 0.5833 0.7047 0.8125  
 MHCN 0.3864 0.5080 0.6321 0.5199 0.6411 0.7496 0.6607 0.8019 0.8958  
 DGNN 0.4120 0.5515 0.6942 0.6142 0.7335 0.8281 0.7052 0.8373 0.9293  
 DSL 0.1280 0.1919 0.2559 0.0675 0.1289 0.2271 0.0536 0.1205 0.2153  
 GDMSR 0.1959 0.2678 0.3504 0.3450 0.4120 0.5091 0.5306 0.6839 0.8304  
 RecDiff 0.0781 0.0938 0.2184 0.0563 0.1077 0.2034 0.0582 0.1034 0.2023  
 SGSR 0.1122 0.1869 0.2960 0.0931 0.1585 0.2474 0.2288 0.3347 0.4473  
 DeepSC 0.5074 0.6675 0.8240 0.7692 0.8613 0.9317 0.7342 0.8438 0.9252  
 Improve. 23.16%*** 21.03%*** 18.70%*** 25.24%*** 17.42%** 12.51%*** 4.11%** 0.78%** −0.44%* 
1 For each dataset, the bold-faced number is the best score and the second performer is underlined.
* Denote the level of marginal significance at the 0.05 level.
** Denote the level of marginal significance at the 0.01 level.
*** Denote the level of marginal significance at the 0.001 level.
Table 4
Top-K performance comparison on NDCG metric.
 Model Ciao Epinions Yelp

 @5 @10 @20 @5 @10 @20 @5 @10 @20  
 SAMN 0.2460 0.2838 0.3223 0.3860 0.4259 0.4553 0.4662 0.5293 0.5407  
 EATNN 0.2124 0.2520 0.2819 0.3924 0.4483 0.4557 0.4866 0.5289 0.5468  
 DiffNet 0.2816 0.3201 0.3573 0.3820 0.4160 0.4476 0.5127 0.5524 0.5701  
 GraphRec 0.2235 0.2670 0.3042 0.4325 0.4786 0.5011 0.4903 0.5372 0.5650  
 NGCF 0.2360 0.3088 0.3188 0.4316 0.4763 0.5006 0.5192 0.5651 0.5684  
 GCCF 0.2668 0.3070 0.3414 0.4161 0.4783 0.4852 0.5130 0.5585 0.5503  
 DGRec 0.2647 0.3113 0.3277 0.3775 0.4127 0.4429 0.4897 0.5386 0.5611  
 KGAT 0.2422 0.2977 0.3326 0.4139 0.4708 0.4837 0.4901 0.5386 0.5521  
 DGCF 0.2782 0.3166 0.3604 0.4144 0.4594 0.4811 0.4958 0.5410 0.5678  
 DisenHAN 0.2482 0.2894 0.3248 0.4247 0.4627 0.4911 0.4944 0.5403 0.5650  
 HAN 0.1897 0.2608 0.2821 0.4106 0.4371 0.4802 0.5080 0.5511 0.5529  
 HGT 0.2372 0.3062 0.3229 0.4360 0.4812 0.5029 0.5136 0.5547 0.5802  
 HERec 0.2679 0.3104 0.3641 0.4179 0.4572 0.4839 0.4501 0.4990 0.5034  
 MHCN 0.2799 0.3118 0.3453 0.3883 0.4261 0.4551 0.4911 0.5348 0.5670  
 DGNN 0.2890 0.3338 0.3726 0.4794 0.5215 0.5387 0.5378 0.5873 0.6043  
 DSL 0.1043 0.1271 0.1417 0.0406 0.0594 0.0829 0.0346 0.0562 0.0800  
 GDMSR 0.2876 0.3206 0.3487 0.5328 0.5687 0.5939 0.5460 0.5949 0.6170  
 RecDiff 0.0412 0.0421 0.0763 0.0332 0.0433 0.0724 0.0333 0.0429 0.0720  
 SGSR 0.2431 0.2465 0.2729 0.3538 0.3000 0.3318 0.2957 0.3232 0.3587  
 DeepSC 0.3220 0.3773 0.4246 0.5374 0.5754 0.6069 0.5572 0.5968 0.6218  
 Improve. 11.42%** 13.03%*** 13.96%*** 0.86%*** 1.18%** 2.19%*** 2.05%*** 0.32%* 0.78%** 
1 For each dataset, the bold-faced number is the best score and the second performer is underlined.
* Denote the level of marginal significance at the 0.05 level.
** Denote the level of marginal significance at the 0.01 level.
*** Denote the level of marginal significance at the 0.001 level.
the relative preference on a pair of products, they fail to estimate 
the click probability on the specific product, leading to sub-optimal 
performance. Moreover, our social link prediction task is introduced 
to align the preferences between the focal user and her social friend, 
which helps in better assigning attention weights to each social friend.

(5) Our DeepSC achieves better performance than the baseline mod-
els without denoising method or adopting hard denoising method [9,
65], suggesting that the soft denoising methods are more suitable to 
capture social influence. Instead of simply filtering out social friends 
with low similarity, the soft denoising methods adaptively diminish the 
impact of heterogeneous social friends while retaining more valuable 
social opinions. Moreover, our gated attention network combines two 
8 
attention mechanism to gather unbiased social opinions, achieving 
better denoising capability compared to existing methods.

(6) The hypergraph-based models [66] generally achieve promising 
performance, indicating that hypergraphs better represent the user–
product interactions. Except the vanilla bipartite graph, recent works 
adopt various knowledge graphs and heterogeneous graphs to represent 
the relations among users, products, and various contextual features. 
However, the sparse node types and edge types present in these graphs 
make it challenging to learn effective representations. Furthermore, we 
introduce the attention mechanism to enhance the traditional hyper-
graph convolution [66] by learning a dynamic transition matrix that 
enables an adaptive information propagation between product nodes.
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Table 5
Statistics of the five grouping datasets.
 Dataset # Users # Products # Interactions Avg. inter. per user Sparsity  
 (0, 20] 90049 83499 538632 5.98 99.9928% 
 (20, 40] 5675 51140 160698 28.32 99.9446% 
 (40, 80] 2628 47935 145295 55.29 99.8847% 
 (80, 160] 763 36556 80956 106.10 99.7097% 
 (160, ) 147 22661 35151 239.12 98.9448% 
Fig. 3. Performance comparison for different user groups.
4.4. User group study

To address Q2, we evaluate the recommendation performance
across various interaction sparsity levels to verify the advantages of 
DeepSC in tackling the data sparsity problem. Following [71], we 
categorize users in the Yelp dataset into five groups based on their 
number of interactions. For example, the interval (0,20] represents the 
users who have at least one interaction and less than 21 interactions. 
The statistics of the five sub-datasets is shown in Table  5. Subsequently, 
we compare DeepSC with five representative baseline models and 
present the results in Fig.  3. It is observed that as the number of 
interactions continues to increase, the performance on the HR metric 
first rises and then falls, while the NDCG metric consistently declines. 
Despite the increasing density of interaction data, the total number of 
users in each sub-dataset is decreasing. The reduction in user count 
results in fewer training samples for the model, limiting its ability to 
learn representative interaction patterns effectively. Moreover, we find 
that our DeepSC consistently outperforms all the baseline models, no 
matter for cold-start or active user groups. On one hand, when the 
interaction data is too sparse to effectively capture a user’s preferences, 
DeepSC leverages opinions from their social friends to infer potential 
preferences. On the other hand, even when there are many interac-
tions, DeepSC captures the primary intentions by aligning the user’s 
preferences with those of their social friends.

4.5. Ablation study

To address Q3 and Q4, we compare DeepSC with five variant models 
to demonstrate the effectiveness of our design. Each variant model is in-
troduced as follows: (1) w/o social network, which views the cognitive 
social capital feature as user preference and retains the whole product 
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feature learning module; (2) w/o structural feature, which removes 
the structural social capital feature to capture user’s social preference; 
(3) w/o relational feature, which removes the relational social capital 
feature to capture user’s social preference; (4) w/o cognitive feature, 
which removes the relational social capital feature to capture user’s 
social preference; (5) w/o co-interacted network, which disregards the 
product features hidden in the co-interacted network; (6) w/o user-side 
hypergraph, which replaces the hypergraph with the bipartite inter-
action graph for cognitive feature learning; (7) w/o all hypergraphs, 
which replaces the user-side and product-side hypergraphs with the 
bipartite interaction graph; (8) Unified heterogeneous graph, which 
adopts a unified heterogeneous graph incorporates interaction relation-
ships, social relationships, and co-occurrence relationships to facilitate 
user and product feature learning; (9) Variant of attention, which re-
places the attention weight calculation in Eq.  (5) with the following for-
mulation: 𝛼𝑖,𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝜔
(

𝑞𝑇𝑠
[

𝑊3ℎ𝑢𝑖 ||𝑊3ℎ𝑢𝑗
]

⋅
(

(

𝑊4ℎ𝑢𝑖
)𝑇 𝑊4ℎ𝑢𝑗

)))

; 
(10) w/o hypergraph attention, which replaces attention network with 
convolutional network in hypergraphs.

Based on the experimental results as shown in Table  6, our DeepSC 
consistently outperforms all the variant models, achieving a perfor-
mance gain of up to 13.96%, which highlights the effectiveness of 
our model design. Specifically, compared to the variant w/o social 
network, it is evident that the homophily and social influence extractor 
contributes most significantly to performance improvement, especially 
when the social network is denser. This observation confirms the 
roles of homophily and social influence in recommendations, where 
users tend to seek advice from friends who are similar to themselves. 
Furthermore, DeepSC outperforms its variant that ignores any dimen-
sional feature of social capital, demonstrating that each social capital 
dimension contributes uniquely to social preference learning. These 
observations confirm our research motivation that capturing multiple 
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Table 6
Ablation study results.
 Dataset Model HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20 
 

Ciao

w/o social network 0.4006 0.2535 0.5143 0.2895 0.6533 0.3264  
 w/o structural feature 0.4033 0.2577 0.5164 0.2951 0.6432 0.3297  
 w/o relational feature 0.4979 0.3113 0.6385 0.3579 0.7770 0.3999  
 w/o cognitive feature 0.4937 0.3020 0.6432 0.3516 0.7865 0.3938  
 w/o co-interacted network 0.3377 0.2163 0.4212 0.2439 0.5259 0.2716  
 w/o user-side hypergraph 0.4630 0.2911 0.6073 0.3379 0.7553 0.3808  
 w/o all hypergraphs 0.4678 0.2869 0.6165 0.3353 0.7719 0.3809  
 Unified heterogeneous graph 0.3097 0.1953 0.4043 0.2248 0.5259 0.2556  
 Variant of gated attention 0.4535 0.2895 0.5904 0.3362 0.7563 0.3828  
 w/o hypergraph attention 0.3922 0.2440 0.5053 0.2800 0.6295 0.3133  
 Deep-SC 0.5074 0.3220 0.6675 0.3773 0.8240 0.4246  
 

Epinions

w/o social network 0.7034 0.4963 0.7752 0.5226 0.8354 0.5444  
 w/o structural feature 0.7200 0.5116 0.7965 0.5387 0.8537 0.5611  
 w/o relational feature 0.7515 0.5365 0.8301 0.5658 0.8863 0.5889  
 w/o cognitive feature 0.7492 0.5337 0.8269 0.5624 0.8864 0.5858  
 w/o co-interacted network 0.7241 0.5180 0.7938 0.5432 0.8482 0.5644  
 w/o user-side hypergraph 0.7239 0.5180 0.8004 0.5468 0.8624 0.5694  
 w/o all hypergraphs 0.7200 0.5113 0.7883 0.5365 0.8432 0.5574  
 Unified heterogeneous graph 0.6956 0.4935 0.7677 0.5188 0.8261 0.5399  
 Variant of gated attention 0.7409 0.5224 0.8163 0.5512 0.8761 0.5753  
 w/o hypergraph attention 0.7135 0.5109 0.7859 0.5365 0.8450 0.5587  
 Deep-SC 0.7692 0.5374 0.8613 0.5754 0.9317 0.6069  
 

Yelp

w/o social network 0.7120 0.5410 0.8170 0.5789 0.8945 0.6024  
 w/o structural feature 0.7307 0.5510 0.8428 0.5912 0.9234 0.6161  
 w/o relational feature 0.7139 0.5406 0.8245 0.5800 0.9047 0.6045  
 w/o cognitive feature 0.7337 0.5551 0.8430 0.5943 0.9220 0.6186  
 w/o co-interacted network 0.7012 0.5246 0.8125 0.5641 0.8956 0.5893  
 w/o user-side hypergraph 0.7275 0.5548 0.8352 0.5937 0.9179 0.6188  
 w/o all hypergraphs 0.7158 0.5327 0.8365 0.5757 0.9307 0.6042  
 Unified heterogeneous graph 0.7030 0.5342 0.8094 0.5719 0.8917 0.5967  
 Variant of gated attention 0.7273 0.5528 0.8385 0.5927 0.9206 0.6178  
 w/o hypergraph attention 0.7264 0.5569 0.8303 0.5941 0.9064 0.6175  
 Deep-SC 0.7342 0.5572 0.8438 0.5968 0.9252 0.6218  
1 For each dataset, the bold-faced number is the best score.
user preferences facilitates more accurate recommendations. Notably, 
structural social capital is most critical on denser datasets like Ciao and 
Epinions, while relational features are most influential on the sparser 
dataset, Yelp. One reason is that a sparser social network provides in-
sufficient information for effective structural feature learning, causing 
the model to rely more on the relational feature for recommendations.

In the following four ablations, we investigate the effectiveness 
of the co-interacted network and the two hypergraphs. Specifically, 
removing the co-interacted network leads to lower performance. This 
aligns with empirical findings [72] that products do not exist in isola-
tion but influence each other’s sales. The co-interacted network offers 
richer internal relations for improved product feature learning, main-
taining high efficiency compared to incorporating external information 
like category and price. Moreover, adopting the traditional bipartite 
interaction graph for user-side cognitive feature learning and product-
side collaborative feature learning fails to gain more performance 
improvement, demonstrating the superiority of hypergraphs. This can 
be attributed to hypergraphs being more effective for representing 
group-level relations, such as the focal product viewed by a group of 
users and a user’s market basket. Furthermore, we introduce a unified 
heterogeneous graph for user and product feature learning. However, 
this variant fails to achieve promising performance, indicating that 
the model struggles to learn representative features from the complex 
relationships in naive heterogeneous graph. It is more rational to tailor 
appropriate graphs that effectively reflect the relations among entities 
to enhance performance.

In the last two ablations, we investigate the effectiveness of the 
feature learning methods. Specifically, the gated attention network 
outperforms its variant, showing its effectiveness on social preference 
learning. It can be attributed to the dot-product attention with the 
sigmoid function represents the reliability of social relations, allowing 
it to softly filter out unreliable friends, while implicitly highlighting 
the remaining reliable friends. Moreover, compared to the variant 
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w/o hypergraph attention, our DeepSC achieves better performance, 
suggesting the effectiveness of the attention mechanism adopted in hy-
pergraph learning. Hypergraph attention network effectively captures 
the interaction relationships between users and products by learning a 
dynamic incidence matrix.

4.6. Effect of the multi-task learning objective function

To address Q5, we adjust the loss weights 𝜆 and 𝜉 within {1, 0.1, 0.3,
0.5, 0.7, 1} and {0, 0.0001, 0.001, 0.01, 0.1}, respectively. Specially, the 
joint learning objective function degrades into the pair-wise objective 
function when 𝜆 = 0, while degrading into the point-wise objective 
function when 𝜆 = 1. Moreover, we remove the social link prediction 
auxiliary task when sets 𝜉 = 0. The experimental results are shown in 
Fig.  4. We have the following observations.

First, our DeepSC consistently achieve the sub-optimal performance 
when sets 𝜆 = 0 or 1, demonstrating the effectiveness of combining 
the point-wise objective function with the pair-wise objective function. 
Specifically, the point-wise objective function facilitates the specific 
preference learning on each product, while the pair-wise objective 
function focuses on learning the relative preference on each pair of 
products. By contrast, our joint learning objective function benefits 
from both point-wise and pair-wise objective function, improving the 
ability of click-through-rate estimation and ranking simultaneously.

Second, our DeepSC is not comparable when sets 𝜉 = 0, suggesting 
that the social link prediction auxiliary task effectively enhances the 
social preference learning by aligning the preference representations 
between the focal user and each social friend. Moreover, DeepSC 
achieves the best performance on Epinions and Yelp with 𝜉 = 0.1, 
while the optimal performance is observed at 𝜉 = 0.01 for the Ciao 
dataset. Therefore, it is necessary to select an appropriate 𝜉 value when 
introducing the auxiliary task to train DeepSC.
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Fig. 4. DeepSC performance with varying loss weights on the three datasets.
Fig. 5. DeepSC performance with varying embedding dimensions on the three datasets.
4.7. Parameter sensitivity analysis

To address Q6, we investigate the impact of the main hyper-
parameter settings, including embedding dimension, the number of 
stacking layers, and the number of attention heads. Specifically, we 
report the experiment results of different embedding dimension ranging 
in {8, 16, 32, 64, 128}. As shown in Fig.  5, it is observed that the 
embedding dimension of 32 or 64 is sufficient to achieve promising per-
formance on the three datasets. The dimension of embedding controls 
the representation learning capacity of the model. A smaller embedding 
dimension struggles to provide the sufficient large feature space for 
representation learning, while a larger embedding dimension increases 
the risk of over-fitting. Compared to the Ciao dataset, the Epinions 
and Yelp datasets contains much more users, products, interactions, 
and social relationships. Therefore, DeepSC benefits more from larger 
embedding dimension on the two datasets.

As shown in Fig.  6, we tune the number of stacking layers in 
{1, 2, 3, 4}. It is found that our model experiences performance 
degradation with an increase in the number of stacking layers. One 
reason is that the well-designed hyper-graphs and co-interacted net-
work significantly reduce the difficulty of DeepSC in learning promising 
user and product features. Specifically, the hyper-graphs represents the 
relations involved multiple users and products, while the co-interacted 
network explicitly contains the high-order relations among products. 
Moreover, the social link prediction auxiliary task effectively enhances 
the capacity of social preference learning. Generally speaking, setting 
one layer is sufficient for DeepSC to learn satisfactory features, which 
also helps reduce the training cost.
11 
The similar trends can be observed in Fig.  7, where the number 
of attention head is adjusted at {1, 2, 4, 8} on the three datasets. 
In the denser datasets, i.e. Ciao and Epinions, configuring our model 
with just one attention head yields promising performance, while more 
attention heads lead to a decreasing tendency. By contrast, in the 
sparser Yelp dataset, using four to eight attention heads can lead to 
improved performance on Recall@20. One reason is that the single 
attention mechanism struggles to capture robust user preferences in 
sparse user–product interactions and social network, while multiple 
attention heads allow more comprehensive preference learning from 
different representation subspaces.

4.8. In-depth analysis with visualization

In this section, we conduct two case studies to demonstrate how our 
DeepSC works. Specifically, in the first case study, based on the results 
from Section 4.7, we implement our DeepSC model with four hyper-
graph attention heads on the Yelp dataset, as shown in Fig.  8. After 
that, we visualize the attention map of each head and the correlations of 
each pair of attention heads, as shown in Fig.  9. We observe that these 
attention maps differ from each other, and the pairwise correlation 
values are low. This suggests that, although all attention heads receive 
the same input features, they tend to specialize in different aspects of 
user preferences during training. Such specialization enables a more 
fine-grained modeling of user intent. This analysis not only validates 
the effectiveness of the multi-head attention mechanism in capturing 
the complexity of user behavior but also improves the explainability of 
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Fig. 6. DeepSC performance with varying stacking layers on the three datasets.
Fig. 7. DeepSC performance with varying attention heads on the three datasets.
the model. It provides intuitive insights into how users make decisions 
under social influence from multiple perspectives.

In the second case study, our goal is to examine how the three social 
capital dimensional features affect the recommendation list. We first 
implement our DeepSC model and three variants, each with one of the 
features removed, respectively, on the Ciao dataset. Then, we randomly 
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select a user and compare the top-5 recommendation lists generated 
by the four models, along with the predicted interaction probabilities 
for each recommended product. As shown in Fig.  9, removing each 
dimensional feature leads to noticeable changes in recommendation 
list, highlighting the unique roles that these features play in shap-
ing personalized recommendations. Specifically, when the structural 
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Fig. 8. Visualized attention maps and the correlation matrix.
 

Fig. 9. Top-5 recommendation lists and predicted interaction probabilities of 
our DeepSC and three variants.

feature is removed, the model tends to overlook products preferred 
by social friends, such as the digital products. Additionally, removing 
the relational feature results in poor inference of latent preferences, 
such as food choices, demonstrating its importance in understanding 
underlying user tastes. Furthermore, although the recommendation list 
of the variant without the cognitive feature is most similar to that of 
the full DeepSC model, the predicted interaction probabilities differ 
significantly between the two models, such as digital watch and televi-
sion. This highlights the importance of reinforcing hidden preferences 
derived from historical interactions for more accurate predictions.

5. Discussion

In this paper, we design a social capital theory-driven social recom-
mender system. Our DeepSC framework incorporates multi-dimensional
social capital features to capture diverse social preferences. Addition-
ally, we introduce a co-interacted network to represent the potential 
relations among products. Furthermore, we propose a multi-task learn-
ing approach to optimize model training, including the joint learning 
task and the auxiliary task. The experimental results suggest that 
DeepSC outperforms the representative baseline models. Moreover, the 
in-depth analyses verifies the effectiveness of each component and the 
robustness of our model. The findings of the study have several research 
contributions and practical implications that are worthy of discussion.

5.1. Research contributions

This research makes four-fold contributions. First, our DeepSC ex-
tracts multiple user preferences guided by the social capital theory. 
Previous social recommender systems merely capture a single user 
preference, while few attempts adopt disentangled learning and cluster-
based methods to capture potential various preferences, leading to sub-
optimal performance and lower explainability. By contrast, our DeepSC 
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parametrizes all the three dimensions of the social capital to represent 
multiple user preferences, providing insights for future theory-driven 
model design. The experimental results demonstrate that our theory-
driven design achieves better performance than other intuition-driven 
designs.

Second, this research expands the theoretical foundation of social 
recommender systems by introducing social capital theory. Most works 
are based on the theories of homogeneity and social influence to 
seek suggestions from social friends [1,73], disregarding the essential 
role of social capital in explainable and effective social preference 
learning [74,75]. Our DeepSC provides a solid foundation for the future 
development of social recommender systems that aim to capture more 
comprehensive user preferences.

Third, we tailor some components to enhance the social capital-
aware feature learning, such as the hypergraph attention networks on 
interaction hyper-graphs and the LightGCN on co-interacted network. 
Compared to the vanilla bipartite graph-based methods [9,68,69], the 
hyper-graphs provides advantages in capturing the set-level interaction 
relationships. Furthermore, we adopt attention mechanism to better 
reveal the intrinsic relationship between hyper-nodes by learning a 
dynamic incidence matrix. Compared to the traditional hyper-graph 
convolution network [18,66], the hypergraph attention network has 
stronger feature learning ability. In addition, compared to the meth-
ods [11,65] introduce various external side information and adopt 
heterogeneous graph to manage multiple entities, our approach sim-
plifies access to information while maintaining a lower memory cost. 
Subsequently, we adopt the parameter-efficient LightGCN to capture 
the product features based on homogeneous relationships, comple-
menting the heterogeneous product features derived from user–product 
interactions.

Finally, we propose the multi-task objective learning task to better 
optimize our model training, consisting of the joint-learning task and 
the auxiliary task. For the joint-learning task, existing social recom-
mender systems employ cross-entropy-based point-wise loss function 
and Bayesian personalized ranking-based pair-wise loss function [18,
76], disregarding the benefits of fusing both loss functions. Our DeepSC 
takes the linear approach to combine point-wise with pair-wise loss 
function, performing well on click-through-rate estimation and ranking 
simultaneously. To the best of our knowledge, this research is the 
first to explore the effectiveness of combining point-wise and pair-wise 
loss functions for social recommendation. It provides both technical 
and empirical insights into ways to enhance social recommendation 
systems.

5.2. Practical implications

In practice, our DeepSC has the potential to benefit multiple stake-
holders, including users, product providers, and online platform own-
ers, resulting in advantages for all parties involved. The superior per-
formance of our method demonstrates its ability to accurately capture 
users’ multiple preferences and support online decision-making, saving 
users considerable time in finding products of interest. For product 
providers, DeepSC effectively facilitates sales by uncovering hidden 
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relationships among products. This insight allows providers to adjust 
stock levels based on the recommendations generated by DeepSC. For 
online platform owners, DeepSC aids in identifying products that users 
are more likely to engage with, allowing for targeted promotions that 
enhance user satisfaction and retention. Moreover, deploying more ef-
fective recommendation methods can significantly help platform own-
ers increase profits by driving higher conversion rates. Finally, our 
DeepSC is not limited to deployment in online shopping platforms. It 
can also serve as a foundational model for various other scenarios due 
to its broad applicability, such as location-based social recommendation 
and social-aware music recommendation.

5.3. Limitations and future work

Despite the promising results achieved by our model, several limi-
tations suggest directions for future research. Specifically, DeepSC does 
not incorporate any side information, which could potentially provide 
a more comprehensive understanding of user preferences to enhance 
recommendation precision. In future work, we aim to extend the frame-
work by integrating various types of side information, such as product 
attributes, product photos, and textual reviews. By leveraging these 
additional side information, the feature learning capacity is expected to 
be improved. Moreover, we observe that social networks often exhibit 
community structures, which are not explicitly utilized in DeepSC. As 
a promising future research direction, we plan to incorporate social 
community detection techniques [77] into our framework. This exten-
sion has its potential to open new avenues for exploring the interplay 
between community dynamics and recommendation systems.
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