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Social recommender systems help address data sparsity in user-product interactions by leveraging social
relationships to infer user preferences. However, existing models often overlook the role of social capital that
influence decision-making in social commerce. Social capital consists of structural, relational, and cognitive
dimensions, all of which shape user preferences. To better understand these influences, we propose a multi-
task learning framework named DeepSC that integrates social capital theory into preference modeling. Its
user preference learning module extracts structural features through graph-based pre-training, learns relational
features from dynamic user embeddings, and models cognitive features using a hypergraph attention network.
Additionally, the dual graph-based product feature learning module enhances cognitive feature extraction
by incorporating product co-interactions. DeepSC is optimized through a joint learning objective, combining
point-wise and pair-wise learning with an auxiliary social link prediction task to refine user representations.
Experiments on three e-commerce datasets demonstrate that DeepSC significantly outperforms the state-of-the-
art recommendation models, highlighting the effectiveness of integrating social capital into social preference
learning. Our research advances social recommendation by providing a social capital theory-driven approach
to modeling user behavior in digital commerce.

1. Introduction et al. [5] explore the factors that affect the willingness to accept rec-

ommendations, such as homophily, tie strength, and trustworthiness.

Over the past decade, recommender systems have played an es-
sential role in social commerce platforms by leveraging user—product
interactions and social relationships to alleviate data sparsity and en-
hance consumer decision-making [1]. TikTok, one of the most popular
social commerce platforms, has surpassed 2.6 billion downloads world-
wide and 100 million users in the US [2], with a valuation of over $100
billion as reported by Wedbush analyst Dan Ives.> The phenomenal
growth of TikTok is largely driven by its recommender system, valued
at over $50 billion, which tailors content to each user’s specific inter-
ests and influences their media consumption behaviors.? As another
successful social platforms, Pinterest’s recommender systems account
for more than 80% of total user engagement [3] and result in a 25%
increase in impressions for the platform’s ‘Shop the Look’ product.®

Social recommender systems have also attracted considerable inter-
est within the academic community [4]. As a foundational work, Arazy

Further research [6] shows that latent homophily and social influence
promote the similar purchase decisions among the users and their social
friends. Building on these empirical research findings, considerable
efforts have been directed toward capturing homophily and social
influence to derive social preferences using matrix factorization [7]
and graph learning [8]. Particularly, recent social recommenders focus
on enhancing the quality of user representations by filtering out noise
from excessive redundant social connections [9,10]. Despite some ad-
vantages, most works fail to extract multiple user preferences before
social preference learning, leading to a biased intention inference, as
shown in Fig. 1. Intuitively, users have multiple motivations to ask for
some advices from different friends. For example, a girl may seek advice
on dressing from her best friend, who happens to be a fashionista. We
suggest that capturing multiple user preferences has the potential to
enhance the social preference learning.
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Fig. 1. The comparison of social preference learning process of various solutions.

In response to the identified research gap, this study aims to answer
the following two key research questions. First, which aspects of user
preferences are most valuable for social preference learning? Existing
approaches employ disentangled learning [11,12] and clustering meth-
ods [13] to extract various user preferences. However, these works
focus on technical modeling and analyzing, overlook the crucial role of
theory in model design. While performance-driven models are valuable,
aligning recommendation models with user intentions enhances both
understanding and acceptance [14]. Second, how to capture these
different user preferences and integrate them into a unified user rep-
resentation? Since various aspects of user preferences exhibit unique
characteristics, applying a uniform approach across all aspects can
lead to suboptimal performance [11,12]. Thus, it is essential to design
tailored methodologies for different facets of user preferences.

To tackle these research questions, we propose a deep learning-
based social recommender system named DeepSC, which incorporates
the impact of social capital in online decision-making. Social capital
theory suggests that social network provides actual or potential re-
sources to users [15], highlighting how interpersonal influences shape
preferences [16]. This theory provides a promising guideline to model
user features from three specific dimensions [17]: structural (user’s
position within the social network), relational (nature and quality of
relationships), and cognitive (shared understandings) [15]. It is sug-
gested that these multiple preferences have their potential to improve
the social preference learning by integrating information about user’s
relationships. Accordingly, we design a social capital-driven feature
extractor to learn user representations grounded in these dimensions.
Specifically, the structural dimension focuses on positional informa-
tion within an ego network, the relational dimension emphasizes sta-
ble interpersonal characteristics represented as continuously updated
user embedding, and the cognitive dimension targets higher-order fea-
tures [18] associated with product consensus. The three-dimensional
user features reveal the preference learning process behind recommen-
dations, improving the belief and acceptance to recommender systems.
In the subsequent social preference learning process, the gated atten-
tion network [19] is adopted to capture the influence of each social
friend, taking advantage of the MLP-based and dot-product attention
mechanisms. Furthermore, an auxiliary social link prediction task is
introduced to refine influence assignments from the gated attention
network, enhancing the representation capacity of user features.

Beyond user feature modeling, product feature learning plays a crit-
ical role in user—product matching. Since cognitive dimension features
depend on user—product interactions, we propose a dual graph-based
approach to learn product representations. Specifically, we construct a
product-oriented interaction hypergraph, where hyper-nodes represent
products and hyper-edges denote groups of products engaged by the
same user. A hyper-attention network [20] is then adopted to learn
high-order product features. Inspired by [21], we also introduce a co-
interacted product network, derived from user—product interactions,
to illustrate co-occurrence relationships between products engaged by
the same users. Subsequently, we adopt the light graph convolution
network (LightGCN) [22] to efficiently capture the complex latent
dependencies between products. Notably, the product feature learning
module of DeepSC does not rely on external side information, such
as product categories or brands, enhancing its efficiency. Moreover,

we combine point-wise [23,24] and pair-wise [18,25] learning objec-
tives to train our model, which simultaneously enhances calibration
and ranking capabilities. This joint learning task ensures that the
recommendations align with actual user click-through behavior while
optimizing product rankings [26,27].

This research makes four key contributions to decision support
systems and social recommendation. First, we highlight the essential
role of social capital in guiding user feature learning for better social
preference modeling. Second, we propose a method for parameterizing
the three dimensions of social capital to align this theory with model
design, potentially providing a solid foundation for future studies on
the impact of social capital in different contexts. Third, we develop
a dual graph-based product feature learning module that leverages
hypergraph structures and co-interacted product networks to enhance
the feature learning of the cognitive dimension. Finally, we introduce a
novel multi-task learning objective to enhance the representativeness of
social capital-aware features, which consists of an auxiliary social link
prediction task and a main joint learning task. The social link prediction
task is designed to refine social preference modeling, while the joint
learning task balances calibration and ranking to provide robust and
effective decision support. Extensive experiments on three real-world
datasets, i.e., Ciao, Epinions, and Yelp, validate the superiority of
DeepSC over 19 baseline models, with ablation studies confirming the
importance of its core components.

The rest of the paper is structured as follows. Section 2 reviews re-
lated literature. Section 3 defines the social recommendation problem,
outlines the DeepSC architecture, and details its technical components.
Section 4 describes the experimental setup, results, and analysis. Fi-
nally, Section 5 discusses research contributions, practical implications,
and future directions.

2. Related work

This section demonstrates the effectiveness of representation learn-
ing and examines key studies on social recommender systems, high-
lighting research trends and our study’s motivation. Finally, we intro-
duce relevant theoretical frameworks, particularly social capital theory,
and explain their role in guiding our model design.

2.1. Social recommender systems based on representation learning

Research in recommender systems has made impressive advances
in supporting users’ online decision-making by alleviating information
overload [14,18]. Early efforts rely on feature engineering to capture
the features of users and products from rich external side information,
such as user profiles and product attributes [28]. However, these
approaches face an effectiveness-efficiency trade-off: while simplis-
tic feature engineering often yields poor performance, more sophisti-
cated techniques tend to introduce substantial computational overhead.
Additionally, obtaining rich side information can be challenging in
practice—particularly for privacy-conscious users or dynamic products
with frequently changing attributes [29].

To address these challenges, the representation learning [30] has
been widely adopted by recommender systems for end-to-end feature
extraction. This approach represents a user or a product with a latent
vector to capture its characteristics. As an effective tool widely utilized
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in deep learning, the key idea behind representation learning is to
seek a low-dimensional embedding of the data while preserving various
discriminative factors of variation inherent in the data. Therefore, we
can effectively and efficiently learn the features of users and products
without relying on any explicit attributes, using only their IDs.

As a promising subfield of recommender systems, social recom-
mendation leverages the social relationships to improve recommen-
dation performance, which assumes that the opinions from the social
friends impact the focal user’s decision-making. Technically, most early
works [31,32] capture user preferences from social domain by adopting
joint matrix factorization (MF) and adding social-aware regularization
terms to the objective function. Specifically, SocialMF [31] incorpo-
rated social influences from friends into the MF-based model for rating
prediction. Moreover, SoReg [32] considered social factors as regular-
ization terms to constrain the MF, which is conducive to improving the
precision of recommendations. These methods often fail to distinguish
the varying influence of individual friends and are limited in their abil-
ity to capture signals from higher-order social connections, which leads
to suboptimal performance. Additionally, few efforts [8,33] transform
user—product interactions and social relationships into user—product
bipartite graph and social network and adopt random walk-based ap-
proaches to capture user preference. For example, CUNE [33] learned
implicit interests and identifies semantic friends by biased random
walk and skip-gram, which is used to complement sparse explicit social
relations. Yet, such methods tend to capture unreliable or noisy implicit
social connections, often resulting in biased user preference learning.

Recently, graph neural networks (GNNs) have been widely adopted
to explicitly model the users’ latent preferences with information diffu-
sion process in the social network. Specifically, GCN-based methods,
such as DiffNet [34] and SocialLGN [35], efficiently capture user
preferences from interaction domain and social domain. Moreover,
GAT-based methods, such as GraphRec [36] and DANSER [37], adopt
soft denoisng approaches based on attention networks to mitigate the
impact of noisy data by adaptively assigning lower weights to uninter-
ested products and unreliable social friends. Furthermore, GDMSR [9]
and MADM [10] adopt hard denoisng approaches to filter out noisy
interactions and social relationships. However, these hard denoising
approaches lead to sparser data, which hinders the ability to effec-
tively learn user preferences. To address data sparsity, GSFR [38]
and DICER [23] generate pseudo social relationships based on similar
interactions, then capturing opinions from high-order social friends.
Despite these advances, many of these approaches emphasize homoge-
neous preferences and overlook the role of heterogeneous opinions in
user decision-making. In addition, the prevalent use of stacking-based
GNN architectures often leads to over-smoothing, where node features
converge to indistinguishable values across layers, thereby degrading
model expressiveness [39].

A further challenge arises from the representation of user—product
interactions. Most social recommender systems model these interac-
tions using a heterogeneous bipartite graph. However, such representa-
tions are inherently limited to pairwise relations, which restricts their
capacity to capture group-level relationships directly [40]. Hypergraph
learning has emerged as a promising paradigm to address this lim-
itation. By leveraging flexible hyperedges, it facilitates information
propagation beyond pairwise interactions. For instance, in an item-
oriented hypergraph, a hyperedge can connect all users who interact
with a particular item, thereby defining the item’s precise audience
group. Recent studies, such as [18,41], have demonstrated the superi-
ority of hypergraph-based approaches over bipartite graphs in learning
user and product representations for recommendation. Moreover, we
employ a hypergraph attention network to replace conventional hyper-
graph convolutional networks. This model learns a dynamic incidence
matrix that adaptively captures nuanced relationships between users
and products based on feature affinities.
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2.2. Empirical and theoretical underpinnings of DeepSC

The traditional theoretical foundations of social recommender sys-
tems are social influence theory and homophily theory. The two the-
ories are introduced to support the calculation and propagation of
user-pair similarity. Specifically, social influence theory suggests that
users in social networks are influenced by the attitudes or behaviors of
their social friends, leading them to make decisions similar to those
friends. Some studies [42,43] showed that social influence is often
more effective than the similarity of historical interactions in inferring
users’ intentions. Moreover, homophily theory suggests that users are
more likely to form social relationships with those who share similar
characteristics, such as demographics or common interests [44]. How-
ever, existing social recommender systems disregard the influence of
heterogeneous friends who provide diverse opinions. Furthermore, it
remains unclear which factors specifically influence the calculation of
user-pair similarity.

Despite existing works acknowledging the importance of social in-
fluence and homophily in social recommendations, they often overlook
the influence of social capital, which has demonstrated its relevance
in knowledge sharing and decision-making [45]. Therefore, we argue
that social capital plays a significant role in social recommendations
and introduce it to guide the design of our DeepSC. Social capital
refers to the value of all the resources and benefits that an individual
can obtain and control through their social relationships [46]. It not
only establishes close relationships between users, but also encourages
communication, identification, and trust [47]. In this paper, we follow
the widely adopted measurement of social capital from three partic-
ular dimensions [17]. Specifically, structural dimension concerns the
position in the social network, while the relational dimension refer
to those assets created and leveraged through long-term relationships.
Moreover, the cognitive dimension comprises shared values developed
when users have common opinions on various products. To sum up,
the social capital theory offers a valuable theoretical foundation for
capturing fine-grained user preferences [17]. In this paper, with the
social capital-aware diffusion of social influence and homophily, our
DeepSC extends existing methods to capture more precise opinions
from social friends.

Moreover, we extend the concept of user homophily to introduce
the concept of product homophily, assuming that products interacted
by the same users have similar attractiveness when exposed to other
users. In this paper, we extract the co-interacted product network from
user—product interactions, where the edges represents the co-interacted
relations and the weights represents the normalized co-interacted fre-
quencies. Product homophily analysis is expected to provide appropri-
ate recommendations by finding what most customers prefer to [21]. It
can also enhance the feature learning for niche products by analyzing
co-interacted popular products.

3. DeepSC

Traditionally, rating prediction has been the primary task in social
recommendation. However, recent research [48] suggest that top-K rec-
ommendation provides greater business value by enhancing customer
engagement and advertising revenue. Formally, let U = {u, ... ’“IU\}
be the set of users and V = {v, ...,U|V|} be the set of products.
The interaction matrix R € RIVIXIVI ecords user—product interactions,
where r;; = | indicates that user i interacts with product j, otherwise
r; = 0. Similarly, the social link matrix § € RIYXIUI represents
social relationships, where s5;; = 1 if user u; follows user v;, and
s;; = 0 otherwise. Given R and S, our goal is to predict the interaction
probability #;; between a user #; and a candidate product v;, ranking
products based on their likelihood of interaction.

As illustrated in Fig. 2, our proposed framework, DeepSC, consists
of three key components. The user feature learning module, inspired by
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Social capital-driven feature extractor

| I
! g I
} } } Social-aware 5 Mean D I:‘ I
| Structural | | E> ! \ Deep walk Pooling & |
| dimension | |71 [E8 !
} | | ese—— ) Structural
| } L Social network > feature }
I
I
I | I < i
T R w
| | | \ | -
| | | Data ;/ ! Hypergraph S ! N[
I ol } I Transform Y D , attentionnetwork  EREANN | - E[ I
| dimension | D! — @ W ——— g [ OEe
| | dimension | ! | N >Z . [ ; -
| \ | ) S——— Cognitive | | Social capital
| } | — > feature } feature
[ | I I
| | | User-product User-oriented !
I } | Interactions Interaction hypergraph }
e et punpuns £ - U
I
I | P T o= 1
I ! S I
I [ Relational | | ! CINCT Feature B peawre Feature [N \
! . . I |:‘,> } BEEm refine [] refine refine B }
} dimension } | l:‘ @ E D E E »> »> @ |:| E |
} | } Initial user : Relational }
! } | encoding Back propagation by training feature !
__________ J e
! . | r Prediction and
I I } optimization module
I =) Homophily and social Preference | !i
I ——>e ] g . h : -
| \ influence extractor fusion layer | | Joint learning
! / “ main task
| I
I
} Link prediction I }
} Social auxiliary task Refined [ ][ ] } }
} network preference [ [ |1
] User feature learning module encoding [ |1 ! }
_____________________________________________________ ——__h
—______________/___:_____:_____:: ___________________________ ____H
| X v
I

User-product
interactions

_co-interacted graph/’

Product feature learning module

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ User-product |
interaction prediction ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

I
I
I
I
} "
| "
! 2 ' |
‘ | Product-oriented | \ 4 "
} a— | Interaction hypergraph : E % L] Product feature O B E } }
! | | fusion layer "
‘ — e T i |
| roduct Refine Top-K List
| . %
| | 1/2 1 : encoding product h Y
I ’ | =t 1 A(L?B Co-interacted encoding } } oao
} : Product-product | feature extractor x
I
| "
"

Fig. 2. Graphical overview of our proposed modeling framework.

social capital theory, extracts structural, relational, and cognitive fea-
tures from user interactions and social relationships. The product fea-
ture learning module captures product engagement patterns using user—
product interactions and product-product co-interaction networks, en-
hancing feature representation. The prediction and optimization mod-
ule refines user—product matching through a multi-task learning ob-
jective, incorporating both ranking-based optimization and an auxil-
iary learning task. By integrating social capital dimensions, DeepSC
effectively enhances user preference modeling, leading to improved
recommendation performance in social commerce environments.

3.1. User feature learning module

The user feature learning module aims to capture the comprehen-
sive user representations. Specifically, the social capital-driven feature
extractor learns the three dimensional user features according to the
social capital theory. Subsequently, the homophily and social influence
extractor updates the user features by capturing the opinions from
their social friends with the diffusion of social influence. After that,
the user feature fusion layer integrates various user features derived
from the two user feature extractors to obtain comprehensive user
representations.

3.1.1. Social capital-driven feature extractor

According to the social capital theory, it is rational to model user
preferences from structural dimension, relational dimension, and cogni-
tive dimension. Specifically, considering that social network structures
significantly impact the recommendations provided by agents [16], we
propose the random walk-based structural pre-training on ego-networks
to parameterize the structural dimensional features. Formally, on the
focal user’s ego-network S, C S, the transition probability from the
focal user node n, to her social friend n; during a random walk is
given by P,,’__},,u(nj|nu) = a,,(n;,n;), where a,,(n;,n;) is a normalization
factor that depends on the previous user node »; and the next candidate
node n;. Moreover, a larger p encourages to visit the user nodes
that are semantically related but structurally distant, while a larger ¢
encourages to visit the user nodes that are directly connected to the
focal user node. After generating the user node sequences, the structural
features St, € R of n, can be learned by Skip-gram [49].

Inspired by DGRec [50], the free user embedding "' € R is
adopted to represent the relational dimensional features Re, of the focal
user u, focusing on long-term user characteristics, where d denotes the
embedding size.

Moreover, we capture the consensus from user-product interactions
to parameterize the features of the cognitive social capital. Specifically,
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we introduce a hypergraph-based method to extract the complex hid-
den relations among users and their interacted products [18]. Formally,
the user-oriented interaction hypergraph is denoted as HG, = (V,.&,)
with |U| hyper-nodes and |V'| hyper-edges, where the hyper-node in; €
V, represents the user u; and the hyper-edge he; € &, represents
the product v;. Different from traditional user-product bipartite graph
merely focuses on pair-wise interactive relationships, the hyper-edge
of our user-oriented interaction hypergraph simultaneously connects
multiple hyper-nodes to learn the complex hidden interactive fea-
tures. After that, the multi-head hypergraph attention network [20]
is adopted to capture users’ multi-aspect dynamic consensus on the
interacted products. Formally, the one-aspect features of the cognitive
social capital are learned as follows:

I+1) _ p-1 JUHI Xx¢
X;(¢+ ) — D, HW,B H, X;)P"’ (@H)
Y = Sofmax (¢ (qf [x/P,||xP] ). ”

where D, € RIUXIUI and B, € RIVIXIVI denote the diagonal degree
matrices of the user hyper-nodes and product hyper-edges, indicat-
ing the user engagement and the product popularity, respectively.
The incidence matrix H, € RIVXVI represents the user—product in-
teractive relationships. The weight matrix P, € R?? captures the
degree-normalized weights of user—product interactions, mitigating the
excessive influence of highly active users. x{ € R? and x! € R? denote
the features of user hyper-node and product hyper-edge, respectively.
We follow the design in [51], employing Gaussian Error Linear Units
(GeLU) as the non-linear activation function, denoted by ¢(-). W, €
RVIXIVl and g, € R* are learnable parameters. HH denotes the
concatenating operation. For briefly, the above mentioned process is
denoted as XUV = HAN(”(X,(‘”,GI"), where 6! is the parameter set of
Ith layer. Furthermore, the multi-head mechanism is adopted to capture
the diverse intentions of users when interacting with products. Just as
we consider brand, style, and price when buying clothes. Formally,

X0 = ppp ([HAN(II) (X0 0! H HHAN? (Xf‘/),ef,)])a 3

where f denotes the number of attention heads. M LpP:() denotes the
3-layer MLP of the form R/¢ — R?. Finally, we summary the learned
features from each layer to capture the features of the cognitive social
capital Co, € R?: Co, = %Zle X, where L denotes the number
of stacking layers. After learning the three dimensional features, it is
necessary to fuse them for capturing the comprehensive social capital
features. Here we adopt the simple sum operation to improve the
training efficiency: Sc, = St, + Re, + Co,.

It is noted that while most previous studies [52-54] relied on ques-
tionnaires to measure social capital dimensions, they faced the chal-
lenges of self-report bias, low response rates, and temporal constraints.
By contrast, our end-to-end parameterized approach automatically ex-
tracts complex patterns from large datasets and adaptively optimizes
learned features, providing a dynamic and efficient alternative for
feature scaling and modeling.

3.1.2. Homophily and social influence extractor

After capturing the social capital features, the homophily and so-
cial influence extractor aims to gather the opinions from users’ social
friends for learning the social-aware user preferences. Specifically, the
social network is defined as G, = (V,, £, ), where the V), is the user node
set and the & is the link set of the social relationships. Subsequently,
the gated attention network is introduced to learn the representations of
the social preferences by gathering the opinions from the social friends.
Formally,

he=Wia hi+ Y Waa Y, &)
JEN (i)
a,; = Sofmax (o (o [WantWats] - o (want)" wint) ), )

where h! denotes the features of the user u; initialized to Sc,. Ng(i)
denotes the neighborhood social friend set of the user u;. w(-) denotes
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the non-linear activation function named LeakyReLU with 0.2 slope.
o(-) denotes the sigmoid activation function. W, W,, W3, W, € R,
and ¢, € R* denote the learnable parameters. The gated attention
network benefits from both the MLP-based attention mechanism and
the dot-product attention mechanism [55], improving the capacity to
gather unbiased opinions from different social friends.

To further enhance the denoising capacity, we introduce an auxil-
iary social link prediction task aimed to calibrate the learned attention
weight for each social friend. Formally,

o - __ 1
Faus = EVES
x X [Hy=1)10g(50) +1 (5, =0) -1og (1-57)]
(i.))EE,UES
©
5y =0 ((Waht) wint). @)

where £ is the negative social link set sampling from the complemen-
tary set of &;. I(-) denotes the indicator function, where I = 1 if there
is a social link between u; and u;, otherwise I = 0.

Similar to Eq. (3), the multi-head attention mechanism is adopted to
capture the multi-aspect opinions from her social friend. For example,
we may choose to follow our fashion-savvy friends’ preferences for
brands and styles when purchasing clothing. After capturing the diverse
social opinions, we stack the gated attention layer to stimulate the
propagation process of social influence. Subsequently, the social-aware
user feature is captured by aggregating the user features at each layer
as follows: Sp; = %Z,i | h:."(’ ). Similarly, the total loss of the auxiliary
task is computed by summing the loss at each layer as follows: £, =
LEE el

3.1.3. User feature fusion layer

To learn better user representations, the comprehensive user rep-
resentations are learned by fusing the social capital features and the
social-aware user features. Considering that the pre-trained features are
frozen for efficiency, we disregard the structural dimensional features
of social capital when learning the dynamic user representations. For-
mally, e = MLP,[Re;||Co,||Sp;], where MLP,(-) denotes the 3-layer
MLP of the form R3¢ — R4,

3.2. Product feature learning module

The product feature learning module aims to capture the compre-
hensive product representations. Specifically, the collaborative feature
extractor captures the collaborative signals to learn the product features
from the product-oriented interaction hypergraph. Subsequently, the
co-interacted feature extractor captures the co-occurrence signals to
learn the product features from the co-interacted product network.
After that, the product feature fusion layer integrates various product
representations derived from the two product feature extractors to
obtain comprehensive product representations.

3.2.1. Collaborative feature extractor

The collaborative feature extractor first constructs the product-
oriented interaction hypergraph based on the product-user interactions
to represent the group-level interacted relations. Formally, the product-
oriented interaction hypergraph is denoted as HG, = (V,,&,) with
|V | hyper-nodes and |U| hyper-edges, where the hyper-node in; € V,
represents the product v; and the hyper-edge he; € &, represents the
user u;. Subsequently, the multi-head hypergraph attention network is
adopted to capture product’s multi-aspect characteristics by gathering
the collaborative opinions from the users interacted with the focal
product. Similar to Eq. (3),

X = MLPY, ([HAN(I’) (x,6") H HHAN? (Xg“,ei,)] ) . ®

where ¢/ is the parameter set of /th layer. M LP?, (-) denotes the 3-layer
MLP of the form R/¢ — R?. Furthermore, we integrate the product
features from different layers to learn the final collaborative product
features as follows: ¢ f, = %Zf: . x0.
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3.2.2. Co-interacted feature extractor

Inspired by market basket analysis, the co-interacted feature ex-
tractor focuses on discovering user behavioral patterns by capturing
the co-occurrence relationships among products, which improves the
quality of the product features. Formally, the co-interacted product
network is denoted as G, = (V,.&,,), where the edge ¢;; indicates
that the product v; and v; have been interacted with together by
the same users. With a large number of connections per product, the
original co-interacted product network are quite dense. However, lots
of co-occurrence relationships are meaningless, representing spurious
associations generated by chance [56]. For example, it is irrational to
assert a strong relationship between bread and a memory card based
on occasional views from just a few users. Therefore, we propose a
noise filtering method to remove unreliable relationships. Formally, we
compute the co-occurrence similarity between v; and v; as follows:

Set (v;) N Set (v;
o [Set (v) 0 Set (1)) ©

" deg (vy) /[ ser (v0)] - [Ser ()]

where Set (v;) denotes the set of the users interacted with the product
v;. deg (v;) denotes the degree of the product node. v; and v; are
considered homogeneous if sim;; < #5, where 7 is the predefined
minimum threshold.

Furthermore, the LightGCN [22] is introduced to simulate the prop-
agation of product homophily for learning the co-interacted product
features. Formally,

1
Zf-H—l) — —Z?l)y (10)
JENeo® A[|Neo(@)] + [ Neo (]
L&
ciy= 1 20, 1n

=1
where N_,(i) denotes the neighborhood product set of the product v;.

3.2.3. Product feature fusion layer

The product feature fusion layer combines the collaborative prod-
uct features cf,the with the co-interacted product features ci, for
learning the comprehensive product representations as follows: e =
MLP,cf, | ci,], where M LP,(-) denotes the 3-layer MLP of the form
R —» RY,

3.3. Prediction and optimization module

After learning the comprehensive features of users and products, the
relevance score is calculated to illustrate the extent of the user’s interest
in the product by the dot-product similarity of their representations.
Formally, #; = (¢} - e))/7, where the temperature hyper-parameter =
is introduced to learn better feature distributions. Moreover, we adopt
the joint learning objective function to optimize our DeepSC, benefiting
from both the point-wise loss and the pair-wise loss. Formally,

ﬁrec =4 ‘Cpoint +(1- A)[’pair’ 12)
10|
L it = —Z rilog (7;) + (1=r;;) log (1= 7). 13)
=1
£pair= 2 G(f;; _f,‘_j)’ 14)
(i,j*.j7)EO

where 1 is a hyper-parameter to balance the weights of different losses,
r;; denotes the one-hot encoding vector of the ground truth product,
and O denotes the training dataset. The positive and negative samples
denote the observed and unobserved user-product interactions, respec-
tively. The point-wise loss focuses on learning a user’s absolute interest
in a single product, while the pair-wise loss emphasizes learning her
relative preference between pairs of products [27]. The proposed joint
learning objective function integrates the fitting traits of different losses
to achieve precise rating and ranking simultaneously. Additionally, the
multi-task learning objective is denoted as follows: £, ,;;; = L0 +&-L x5
where ¢ is the hyper-parameter to scale the weight of the auxiliary task.
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3.4. Analysis of time complexity

The time complexity of the proposed DeepSC framework stems
from five key components. First, the time complexity of the random
walk-based structural pre-training is O(|U|wp(d + 1)), where w and p
denote the number of random walks per node and the length of each
random walk path, respectively. Second, the time complexity of the
two hypergraph attention networks is O(6|U||V| + [UPIVI+|UVI>+
2f|UP|V|>d?)L, where f denotes the number of attention heads in
the hypergraph attention networks. Third, the time complexity of the
gated attention network is O((|U|d? + |&|d))y L, where w and |&]|
denote the number of attention heads in the gated attention network
and the number of social relationships, respectively. Fourth, the time
complexity of the LightGCN in the co-interacted feature extractor is
|€.,|Ld. Lastly, the time complexity of the prediction and optimization
module is O(|V |d). Therefore, the overall time complexity of DeepSC is
O((wp(d+1)+y Ld®)|U |+|V |d+w Ld|E,|+ Ld|E,,|+6 LIU ||V |+ L|U ||V |+
LIU||V|?+2fLd*|U|*|V|?), where |U|, |V, |&,, and |E,,| are typically
larger than other variables. In practical scenarios, models are usually
trained offline using ample computational resources, enabling efficient
and timely training. During deployment, inference is optimized for
real-time performance. Modern hardware like GPUs further accelerates
training, making complex models feasible in real-world applications.
Therefore, DeepSC has an acceptable time complexity.

4. Experiments

In this section, we conduct thorough experiments to demonstrate
the effectiveness of the proposed DeepSC model by addressing the
following questions: (Q1) How does DeepSC compare to 19 competitive
baseline models across 3 real-world datasets in social recommendation
tasks? (Q2) How does DeepSC perform compared to various repre-
sentative baselines under different degrees of sparse data? (Q3) What
impact do social network and each dimension of the social capital
have on enhancing social recommendation performance? (Q4) How
does co-interacted product network, hypergraphs, and graph learning
methods contribute to improving social recommendation performance?
(Q5) How does each part of the objective function influence the model
optimization? (Q6) What is the performance variability of DeepSC
under different hyperparameter settings?

These six questions are intended to address the two research ques-
tions mentioned above from various perspectives. Specifically, Q1 pro-
vides insights into the model’s overall effectiveness and its advantages
over existing methods. Q2 assesses how DeepSC responds to data spar-
sity to ensure its robustness in practical applications. Q3 explores the
role of social capital dimensions — structural, relational, and cognitive
— in refining social recommendations. Q4 evaluates the contributions
of the key components in improving recommendation accuracy. Q5
examines the impact of different loss terms on model convergence
and optimization. Lastly, Q6 investigates the model’s sensitivity to
hyperparameter choices, offering guidance for optimizing performance
across various scenarios.

4.1. Datasets and evaluation metrics

Three popular datasets are used in our experiments: Ciao, Epinions,
and Yelp. Specifically, the Ciao dataset is obtained from a popular
online shopping websites,” while the Epinions dataset is created by a
who-trust-whom online social network of a general consumer review
site.> Moreover, the Yelp dataset is sourced from the largest review
website for businesses in the United States.° The social networking

4 www.ciao.co.uk.

5 www.epinions.com.
6 www.yelp.com.


http://www.ciao.co.uk
http://www.epinions.com
http://www.yelp.com
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Table 1

Statistics of the three datasets.
Dataset # Users # Products # Interactions # Followers # Followees # Social links
Ciao 1925 15053 33175 1925 1925 65084
Epinions 18081 251722 746148 18081 18081 572784
Yelp 99262 105142 960732 99262 99262 1298522

Table 2

Summary of the baseline models and our DeepSC. S, R, C denotes the structural, relational, and cognitive social capital feature. Pair, Point, and Aux. denotes the
pair-wise loss function, the point-wise loss function, and the auxiliary task, respectively.

Model Social relationships Social capital User—product interaction Product network w/o side info Denoising method Loss function
SAMN [58] v R Matrix x v Soft Pair
EATNN [59] v None Knowledge graph x v Soft Point
DiffNet [34] v R Vanilla bipartite graph x x None Pair
GraphRec [36] v C Vanilla bipartite graph x v Soft Point
NGCF [60] x None Vanilla bipartite graph x v None Point
GCCF [61] x None Vanilla bipartite graph x v None Pair
DGRec [50] v R/C Interaction sequence % % Soft Point
KGAT [62] x None Knowledge graph x x Soft Point/Aux.
DGCF [12] x None Vanilla bipartite graph x v Soft Pair/Aux.
DisenHAN [63] x None Vanilla bipartite graph x v Soft Pair/Aux.
HAN [64] v R Heterogeneous graph x v Soft Point
HGT [24] v R Heterogeneous graph x v Soft Point
HERec [65] v R Heterogeneous graph x x None Point
MHCN [66] v R Hypergraph x v Soft Pair/Aux.
DGNN [11] v R Heterogeneous graph X X Soft Pair

DSL [67] v R Vanilla bipartite graph x v Soft Pair/Aux.
GDMSR [9] v R Vanilla bipartite graph x x Hard Pair/Aux.
RecDiff [68] v R Vanilla bipartite graph X v Soft Pair/Aux.
SGSR [69] v R Vanilla bipartite graph x v Soft Pair/Aux.
DeepSC v S/R/C Hypergraph v v Soft Point/Pair/Aux.

service on the three online platforms allow users to review and rate
businesses, as well as make friends with others. For all the datasets,
we follow the practice of [11] and map the rating score to O or 1,
where the score 1 means the user appreciate the product. Table 1 shows
the statistics for the three datasets. Additionally, we select 80% as a
training set to learn the parameters, and the rest are divided into a
validation set and a testing set on average.

To evaluate the performance of the models, we introduce the widely
adopted two metrics, i.e., Hit Rate (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@K), where the length of recommendation
list K is set as 5, 10, and 20. Specifically, HR@K is the metric that
assesses the proportion of test cases in which the correct products are
recommended within the top-K list. For each user in the test set, we
follow the widely adopted evaluation setting [9,11,57], i.e., randomly
sample 100 products that the user has not interacted with and rank
them with the positive samples in the test set.

4.2. Baseline models and implementation settings

To demonstrate the superiority of our DeepSC, we compare it with
four groups of 19 representative baseline models as shown in Table
2. Our DeepSC is implemented based on the popular recommendation
framework RecBole” and its extension RecBole-GNN® for easy develop-
ment and reproduction. The embedding dimension is searched from {8,
16, 32, 64, 128}. The batch size is searched from {64, 128, 256, 512,
1024}. The stacking layer of graph neural networks is searched from
{1, 2, 3, 4}. The number of attention heads is searched from {1, 2, 4,
8}. The negative sampling ratio and the dropout ratio are set to 0.2.
The temperature parameter is set to 0.07. The AdamW optimizer [70]
is used to train parameters with the learning rate of 0.001. Early
stopping strategy is adopted to alleviate over-fitting, i.e., the training
is stopped when NDCG@10 on the validation set is not promoted for 5
consecutive epochs. The implementation of our model can be found at
https://github.com/usernameAl/Deep-SC.

7 https://github.com/RUCAIBox/RecBole.
8 https://github.com/RUCAIBox/RecBole-GNN.

4.3. Overall performance

Tables 3 and 4 show the HR@K and NDCG@K results on the three
datasets. To address Q1, we have the following findings.

(1) Our DeepSC achieves better performance than the baseline mod-
els disregarding the effect of social relationships [12,60-63], demon-
strating that user preferences tend to be influenced by their social
friends. It is attributed that people frequently seek advice from friends
in their social networks before purchasing a product or using a service.
Therefore, extracting hidden social preferences is crucial for enhancing
the performance of recommender systems.

(2) Compared to the baseline models considering just one or two
aspects of social capital [34,36,50], our DeepSC shows significant
improvements in recommendation performance. This observation sug-
gests that integrating multiple dimensions of social capital enhance the
assessment of social relationship robustness, which helps in learning
better representations of user preferences from social networks.

(3) Our DeepSC outperforms the baseline models disregarding the
product network [67-69], showing that products do not exist in iso-
lation but rather influence each other. Especially, our co-interacted
network, as a unique form of product network, demonstrates how
products influence interactions with other products. It is noted that
some baseline models [9,11,65] introduce external side information to
improve the feature learning of products. Despite some advantages, the
selection of appropriate side information depends on extensive domain
knowledge, struggling to generalize to other scenarios. Moreover, these
excessive side information reduced the efficiency of models, hindering
the large-scale deployment in real scenarios.

(4) Compared to the baseline model merely based on point-wise or
pair-wise objective function [65,66], our DeepSC combine both of them
to improve the calibration ability and ranking ability simultaneously.
Although widely adopted the pair-wise objective functions emphasize


https://github.com/usernameAI/Deep-SC
https://github.com/RUCAIBox/RecBole
https://github.com/RUCAIBox/RecBole-GNN
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Table 3

Top-K performance comparison on HR metric.
Model Ciao Epinions Yelp

@5 @10 @20 @5 @10 @20 @5 @10 @20

SAMN 0.3468 0.4677 0.6251 0.5176 0.6390 0.7491 0.6359 0.7971 0.9009
EATNN 0.2969 0.4130 0.5222 0.5283 0.6422 0.7501 0.6425 0.7273 0.8066
DiffNet 0.3941 0.5202 0.6647 0.5106 0.6323 0.7367 0.6701 0.8222 0.9053
GraphRec 0.3058 0.4594 0.5976 0.5683 0.6865 0.8001 0.6631 0.8019 0.8944
NGCF 0.3570 0.4843 0.5937 0.5612 0.6944 0.8010 0.6748 0.8204 0.9011
GCCF 0.3685 0.4926 0.6289 0.5538 0.6779 0.7906 0.6703 0.8130 0.9011
DGRec 0.3724 0.5086 0.6219 0.5053 0.6268 0.7308 0.6511 0.7830 0.8824
KGAT 0.3391 0.4907 0.6052 0.5483 0.6756 0.7880 0.6503 0.7737 0.8795
DGCF 0.3871 0.5189 0.6775 0.5479 0.6635 0.7770 0.6565 0.7956 0.9010
DisenHAN 0.3493 0.4856 0.6161 0.5609 0.6825 0.7890 0.6511 0.8159 0.9040
HAN 0.2937 0.4856 0.6513 0.5403 0.6673 0.7761 0.6635 0.8169 0.8977
HGT 0.3415 0.4933 0.6128 0.5757 0.7001 0.8053 0.6888 0.8185 0.9060
HERec 0.3832 0.5298 0.6846 0.5519 0.6767 0.7792 0.5833 0.7047 0.8125
MHCN 0.3864 0.5080 0.6321 0.5199 0.6411 0.7496 0.6607 0.8019 0.8958
DGNN 0.4120 0.5515 0.6942 0.6142 0.7335 0.8281 0.7052 0.8373 0.9293
DSL 0.1280 0.1919 0.2559 0.0675 0.1289 0.2271 0.0536 0.1205 0.2153
GDMSR 0.1959 0.2678 0.3504 0.3450 0.4120 0.5091 0.5306 0.6839 0.8304
RecDiff 0.0781 0.0938 0.2184 0.0563 0.1077 0.2034 0.0582 0.1034 0.2023
SGSR 0.1122 0.1869 0.2960 0.0931 0.1585 0.2474 0.2288 0.3347 0.4473
DeepSC 0.5074 0.6675 0.8240 0.7692 0.8613 0.9317 0.7342 0.8438 0.9252
Improve. 23.16%** 21.03%"** 18.70%** 25.24%** 17.42%** 12.51%"** 4.11%** 0.78%** —0.44%*

1 For each dataset, the bold-faced number is the best score and the second performer is underlined.

* Denote the level of marginal significance at the 0.05 level.

** Denote the level of marginal significance at the 0.01 level.

“ Denote the level of marginal significance at the 0.001 level.

Table 4

Top-K performance comparison on NDCG metric.
Model Ciao Epinions Yelp

@5 @10 @20 @5 @10 @20 @5 @10 @20

SAMN 0.2460 0.2838 0.3223 0.3860 0.4259 0.4553 0.4662 0.5293 0.5407
EATNN 0.2124 0.2520 0.2819 0.3924 0.4483 0.4557 0.4866 0.5289 0.5468
DiffNet 0.2816 0.3201 0.3573 0.3820 0.4160 0.4476 0.5127 0.5524 0.5701
GraphRec 0.2235 0.2670 0.3042 0.4325 0.4786 0.5011 0.4903 0.5372 0.5650
NGCF 0.2360 0.3088 0.3188 0.4316 0.4763 0.5006 0.5192 0.5651 0.5684
GCCF 0.2668 0.3070 0.3414 0.4161 0.4783 0.4852 0.5130 0.5585 0.5503
DGRec 0.2647 0.3113 0.3277 0.3775 0.4127 0.4429 0.4897 0.5386 0.5611
KGAT 0.2422 0.2977 0.3326 0.4139 0.4708 0.4837 0.4901 0.5386 0.5521
DGCF 0.2782 0.3166 0.3604 0.4144 0.4594 0.4811 0.4958 0.5410 0.5678
DisenHAN 0.2482 0.2894 0.3248 0.4247 0.4627 0.4911 0.4944 0.5403 0.5650
HAN 0.1897 0.2608 0.2821 0.4106 0.4371 0.4802 0.5080 0.5511 0.5529
HGT 0.2372 0.3062 0.3229 0.4360 0.4812 0.5029 0.5136 0.5547 0.5802
HERec 0.2679 0.3104 0.3641 0.4179 0.4572 0.4839 0.4501 0.4990 0.5034
MHCN 0.2799 0.3118 0.3453 0.3883 0.4261 0.4551 0.4911 0.5348 0.5670
DGNN 0.2890 0.3338 0.3726 0.4794 0.5215 0.5387 0.5378 0.5873 0.6043
DSL 0.1043 0.1271 0.1417 0.0406 0.0594 0.0829 0.0346 0.0562 0.0800
GDMSR 0.2876 0.3206 0.3487 0.5328 0.5687 0.5939 0.5460 0.5949 0.6170
RecDiff 0.0412 0.0421 0.0763 0.0332 0.0433 0.0724 0.0333 0.0429 0.0720
SGSR 0.2431 0.2465 0.2729 0.3538 0.3000 0.3318 0.2957 0.3232 0.3587
DeepSC 0.3220 0.3773 0.4246 0.5374 0.5754 0.6069 0.5572 0.5968 0.6218
Improve. 11.42%** 13.03%*** 13.96%*** 0.86%*** 1.18%** 2.19%*** 2.05%*** 0.32%* 0.78%**

1 For each dataset, the bold-faced number is the best score and the second performer is underlined.

* Denote the level of marginal significance at the 0.05 level.
** Denote the level of marginal significance at the 0.01 level.
*** Denote the level of marginal significance at the 0.001 level.

the relative preference on a pair of products, they fail to estimate
the click probability on the specific product, leading to sub-optimal
performance. Moreover, our social link prediction task is introduced
to align the preferences between the focal user and her social friend,
which helps in better assigning attention weights to each social friend.

(5) Our DeepSC achieves better performance than the baseline mod-
els without denoising method or adopting hard denoising method [9,
65], suggesting that the soft denoising methods are more suitable to
capture social influence. Instead of simply filtering out social friends
with low similarity, the soft denoising methods adaptively diminish the
impact of heterogeneous social friends while retaining more valuable
social opinions. Moreover, our gated attention network combines two

attention mechanism to gather unbiased social opinions, achieving
better denoising capability compared to existing methods.

(6) The hypergraph-based models [66] generally achieve promising
performance, indicating that hypergraphs better represent the user—
product interactions. Except the vanilla bipartite graph, recent works
adopt various knowledge graphs and heterogeneous graphs to represent
the relations among users, products, and various contextual features.
However, the sparse node types and edge types present in these graphs
make it challenging to learn effective representations. Furthermore, we
introduce the attention mechanism to enhance the traditional hyper-
graph convolution [66] by learning a dynamic transition matrix that
enables an adaptive information propagation between product nodes.
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Table 5
Statistics of the five grouping datasets.
Dataset # Users # Products # Interactions Avg. inter. per user Sparsity
(0, 20] 90049 83499 538632 5.98 99.9928%
(20, 40] 5675 51140 160698 28.32 99.9446%
(40, 80] 2628 47935 145295 55.29 99.8847%
(80, 160] 763 36556 80956 106.10 99.7097%
(160, ) 147 22661 35151 239.12 98.9448%
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Fig. 3. Performance comparison for different user groups.

4.4. User group study

To address Q2, we evaluate the recommendation performance
across various interaction sparsity levels to verify the advantages of
DeepSC in tackling the data sparsity problem. Following [71], we
categorize users in the Yelp dataset into five groups based on their
number of interactions. For example, the interval (0,20] represents the
users who have at least one interaction and less than 21 interactions.
The statistics of the five sub-datasets is shown in Table 5. Subsequently,
we compare DeepSC with five representative baseline models and
present the results in Fig. 3. It is observed that as the number of
interactions continues to increase, the performance on the HR metric
first rises and then falls, while the NDCG metric consistently declines.
Despite the increasing density of interaction data, the total number of
users in each sub-dataset is decreasing. The reduction in user count
results in fewer training samples for the model, limiting its ability to
learn representative interaction patterns effectively. Moreover, we find
that our DeepSC consistently outperforms all the baseline models, no
matter for cold-start or active user groups. On one hand, when the
interaction data is too sparse to effectively capture a user’s preferences,
DeepSC leverages opinions from their social friends to infer potential
preferences. On the other hand, even when there are many interac-
tions, DeepSC captures the primary intentions by aligning the user’s
preferences with those of their social friends.

4.5. Ablation study

To address Q3 and Q4, we compare DeepSC with five variant models
to demonstrate the effectiveness of our design. Each variant model is in-
troduced as follows: (1) w/o social network, which views the cognitive
social capital feature as user preference and retains the whole product

feature learning module; (2) w/o structural feature, which removes
the structural social capital feature to capture user’s social preference;
(3) w/o relational feature, which removes the relational social capital
feature to capture user’s social preference; (4) w/o cognitive feature,
which removes the relational social capital feature to capture user’s
social preference; (5) w/o co-interacted network, which disregards the
product features hidden in the co-interacted network; (6) w/o user-side
hypergraph, which replaces the hypergraph with the bipartite inter-
action graph for cognitive feature learning; (7) w/o all hypergraphs,
which replaces the user-side and product-side hypergraphs with the
bipartite interaction graph; (8) Unified heterogeneous graph, which
adopts a unified heterogeneous graph incorporates interaction relation-
ships, social relationships, and co-occurrence relationships to facilitate
user and product feature learning; (9) Variant of attention, which re-
places the attention weight calculation in Eq. (5) with the following for-
Softmax (o (! [I/I@h’fll%hﬂ ((wan)" want)) );

mulation: «;; =

(10) w/o hypergraph attention, which replaces attention network with
convolutional network in hypergraphs.

Based on the experimental results as shown in Table 6, our DeepSC
consistently outperforms all the variant models, achieving a perfor-
mance gain of up to 13.96%, which highlights the effectiveness of
our model design. Specifically, compared to the variant w/o social
network, it is evident that the homophily and social influence extractor
contributes most significantly to performance improvement, especially
when the social network is denser. This observation confirms the
roles of homophily and social influence in recommendations, where
users tend to seek advice from friends who are similar to themselves.
Furthermore, DeepSC outperforms its variant that ignores any dimen-
sional feature of social capital, demonstrating that each social capital
dimension contributes uniquely to social preference learning. These
observations confirm our research motivation that capturing multiple
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Table 6
Ablation study results.

Dataset Model HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
w/o social network 0.4006 0.2535 0.5143 0.2895 0.6533 0.3264
w/o structural feature 0.4033 0.2577 0.5164 0.2951 0.6432 0.3297
w/o relational feature 0.4979 0.3113 0.6385 0.3579 0.7770 0.3999
w/o cognitive feature 0.4937 0.3020 0.6432 0.3516 0.7865 0.3938
w/o co-interacted network 0.3377 0.2163 0.4212 0.2439 0.5259 0.2716

Ciao w/o user-side hypergraph 0.4630 0.2911 0.6073 0.3379 0.7553 0.3808
wy/o all hypergraphs 0.4678 0.2869 0.6165 0.3353 0.7719 0.3809
Unified heterogeneous graph 0.3097 0.1953 0.4043 0.2248 0.5259 0.2556
Variant of gated attention 0.4535 0.2895 0.5904 0.3362 0.7563 0.3828
w/o hypergraph attention 0.3922 0.2440 0.5053 0.2800 0.6295 0.3133
Deep-SC 0.5074 0.3220 0.6675 0.3773 0.8240 0.4246
w/o social network 0.7034 0.4963 0.7752 0.5226 0.8354 0.5444
wy/o structural feature 0.7200 0.5116 0.7965 0.5387 0.8537 0.5611
w/o relational feature 0.7515 0.5365 0.8301 0.5658 0.8863 0.5889
w/0 cognitive feature 0.7492 0.5337 0.8269 0.5624 0.8864 0.5858
w/o co-interacted network 0.7241 0.5180 0.7938 0.5432 0.8482 0.5644

Epinions w/o user-side hypergraph 0.7239 0.5180 0.8004 0.5468 0.8624 0.5694
w/o all hypergraphs 0.7200 0.5113 0.7883 0.5365 0.8432 0.5574
Unified heterogeneous graph 0.6956 0.4935 0.7677 0.5188 0.8261 0.5399
Variant of gated attention 0.7409 0.5224 0.8163 0.5512 0.8761 0.5753
w/o hypergraph attention 0.7135 0.5109 0.7859 0.5365 0.8450 0.5587
Deep-SC 0.7692 0.5374 0.8613 0.5754 0.9317 0.6069
w/o social network 0.7120 0.5410 0.8170 0.5789 0.8945 0.6024
w/o structural feature 0.7307 0.5510 0.8428 0.5912 0.9234 0.6161
w/o relational feature 0.7139 0.5406 0.8245 0.5800 0.9047 0.6045
w/o cognitive feature 0.7337 0.5551 0.8430 0.5943 0.9220 0.6186
w/o co-interacted network 0.7012 0.5246 0.8125 0.5641 0.8956 0.5893

Yelp w/o user-side hypergraph 0.7275 0.5548 0.8352 0.5937 0.9179 0.6188
wy/o all hypergraphs 0.7158 0.5327 0.8365 0.5757 0.9307 0.6042
Unified heterogeneous graph 0.7030 0.5342 0.8094 0.5719 0.8917 0.5967
Variant of gated attention 0.7273 0.5528 0.8385 0.5927 0.9206 0.6178
w/o hypergraph attention 0.7264 0.5569 0.8303 0.5941 0.9064 0.6175
Deep-SC 0.7342 0.5572 0.8438 0.5968 0.9252 0.6218

1 For each dataset, the bold-faced number is the best score.

user preferences facilitates more accurate recommendations. Notably,
structural social capital is most critical on denser datasets like Ciao and
Epinions, while relational features are most influential on the sparser
dataset, Yelp. One reason is that a sparser social network provides in-
sufficient information for effective structural feature learning, causing
the model to rely more on the relational feature for recommendations.

In the following four ablations, we investigate the effectiveness
of the co-interacted network and the two hypergraphs. Specifically,
removing the co-interacted network leads to lower performance. This
aligns with empirical findings [72] that products do not exist in isola-
tion but influence each other’s sales. The co-interacted network offers
richer internal relations for improved product feature learning, main-
taining high efficiency compared to incorporating external information
like category and price. Moreover, adopting the traditional bipartite
interaction graph for user-side cognitive feature learning and product-
side collaborative feature learning fails to gain more performance
improvement, demonstrating the superiority of hypergraphs. This can
be attributed to hypergraphs being more effective for representing
group-level relations, such as the focal product viewed by a group of
users and a user’s market basket. Furthermore, we introduce a unified
heterogeneous graph for user and product feature learning. However,
this variant fails to achieve promising performance, indicating that
the model struggles to learn representative features from the complex
relationships in naive heterogeneous graph. It is more rational to tailor
appropriate graphs that effectively reflect the relations among entities
to enhance performance.

In the last two ablations, we investigate the effectiveness of the
feature learning methods. Specifically, the gated attention network
outperforms its variant, showing its effectiveness on social preference
learning. It can be attributed to the dot-product attention with the
sigmoid function represents the reliability of social relations, allowing
it to softly filter out unreliable friends, while implicitly highlighting
the remaining reliable friends. Moreover, compared to the variant
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w/o hypergraph attention, our DeepSC achieves better performance,
suggesting the effectiveness of the attention mechanism adopted in hy-
pergraph learning. Hypergraph attention network effectively captures
the interaction relationships between users and products by learning a
dynamic incidence matrix.

4.6. Effect of the multi-task learning objective function

To address Q5, we adjust the loss weights 4 and ¢ within {1,0.1,0.3,
0.5,0.7,1} and {0,0.0001,0.001,0.01,0.1}, respectively. Specially, the
joint learning objective function degrades into the pair-wise objective
function when 4 = 0, while degrading into the point-wise objective
function when A = 1. Moreover, we remove the social link prediction
auxiliary task when sets & = 0. The experimental results are shown in
Fig. 4. We have the following observations.

First, our DeepSC consistently achieve the sub-optimal performance
when sets 4 = 0 or 1, demonstrating the effectiveness of combining
the point-wise objective function with the pair-wise objective function.
Specifically, the point-wise objective function facilitates the specific
preference learning on each product, while the pair-wise objective
function focuses on learning the relative preference on each pair of
products. By contrast, our joint learning objective function benefits
from both point-wise and pair-wise objective function, improving the
ability of click-through-rate estimation and ranking simultaneously.

Second, our DeepSC is not comparable when sets & = 0, suggesting
that the social link prediction auxiliary task effectively enhances the
social preference learning by aligning the preference representations
between the focal user and each social friend. Moreover, DeepSC
achieves the best performance on Epinions and Yelp with & = 0.1,
while the optimal performance is observed at ¢ = 0.01 for the Ciao
dataset. Therefore, it is necessary to select an appropriate ¢ value when
introducing the auxiliary task to train DeepSC.
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Fig. 4. DeepSC performance with varying loss weights on the three datasets.
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Fig. 5. DeepSC performance with varying embedding dimensions on the three datasets.

4.7. Parameter sensitivity analysis

To address Q6, we investigate the impact of the main hyper-
parameter settings, including embedding dimension, the number of
stacking layers, and the number of attention heads. Specifically, we
report the experiment results of different embedding dimension ranging
in {8, 16, 32, 64, 128}. As shown in Fig. 5, it is observed that the
embedding dimension of 32 or 64 is sufficient to achieve promising per-
formance on the three datasets. The dimension of embedding controls
the representation learning capacity of the model. A smaller embedding
dimension struggles to provide the sufficient large feature space for
representation learning, while a larger embedding dimension increases
the risk of over-fitting. Compared to the Ciao dataset, the Epinions
and Yelp datasets contains much more users, products, interactions,
and social relationships. Therefore, DeepSC benefits more from larger
embedding dimension on the two datasets.

As shown in Fig. 6, we tune the number of stacking layers in
{1, 2, 3, 4}. It is found that our model experiences performance
degradation with an increase in the number of stacking layers. One
reason is that the well-designed hyper-graphs and co-interacted net-
work significantly reduce the difficulty of DeepSC in learning promising
user and product features. Specifically, the hyper-graphs represents the
relations involved multiple users and products, while the co-interacted
network explicitly contains the high-order relations among products.
Moreover, the social link prediction auxiliary task effectively enhances
the capacity of social preference learning. Generally speaking, setting
one layer is sufficient for DeepSC to learn satisfactory features, which
also helps reduce the training cost.
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The similar trends can be observed in Fig. 7, where the number
of attention head is adjusted at {1, 2, 4, 8} on the three datasets.
In the denser datasets, i.e. Ciao and Epinions, configuring our model
with just one attention head yields promising performance, while more
attention heads lead to a decreasing tendency. By contrast, in the
sparser Yelp dataset, using four to eight attention heads can lead to
improved performance on Recall@20. One reason is that the single
attention mechanism struggles to capture robust user preferences in
sparse user—-product interactions and social network, while multiple
attention heads allow more comprehensive preference learning from
different representation subspaces.

4.8. In-depth analysis with visualization

In this section, we conduct two case studies to demonstrate how our
DeepSC works. Specifically, in the first case study, based on the results
from Section 4.7, we implement our DeepSC model with four hyper-
graph attention heads on the Yelp dataset, as shown in Fig. 8. After
that, we visualize the attention map of each head and the correlations of
each pair of attention heads, as shown in Fig. 9. We observe that these
attention maps differ from each other, and the pairwise correlation
values are low. This suggests that, although all attention heads receive
the same input features, they tend to specialize in different aspects of
user preferences during training. Such specialization enables a more
fine-grained modeling of user intent. This analysis not only validates
the effectiveness of the multi-head attention mechanism in capturing
the complexity of user behavior but also improves the explainability of
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Fig. 7. DeepSC performance with varying attention heads on the three datasets.

the model. It provides intuitive insights into how users make decisions
under social influence from multiple perspectives.

In the second case study, our goal is to examine how the three social
capital dimensional features affect the recommendation list. We first
implement our DeepSC model and three variants, each with one of the
features removed, respectively, on the Ciao dataset. Then, we randomly
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select a user and compare the top-5 recommendation lists generated
by the four models, along with the predicted interaction probabilities
for each recommended product. As shown in Fig. 9, removing each
dimensional feature leads to noticeable changes in recommendation
list, highlighting the unique roles that these features play in shap-
ing personalized recommendations. Specifically, when the structural
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Fig. 9. Top-5 recommendation lists and predicted interaction probabilities of
our DeepSC and three variants.

feature is removed, the model tends to overlook products preferred
by social friends, such as the digital products. Additionally, removing
the relational feature results in poor inference of latent preferences,
such as food choices, demonstrating its importance in understanding
underlying user tastes. Furthermore, although the recommendation list
of the variant without the cognitive feature is most similar to that of
the full DeepSC model, the predicted interaction probabilities differ
significantly between the two models, such as digital watch and televi-
sion. This highlights the importance of reinforcing hidden preferences
derived from historical interactions for more accurate predictions.

5. Discussion

In this paper, we design a social capital theory-driven social recom-
mender system. Our DeepSC framework incorporates multi-dimensional
social capital features to capture diverse social preferences. Addition-
ally, we introduce a co-interacted network to represent the potential
relations among products. Furthermore, we propose a multi-task learn-
ing approach to optimize model training, including the joint learning
task and the auxiliary task. The experimental results suggest that
DeepSC outperforms the representative baseline models. Moreover, the
in-depth analyses verifies the effectiveness of each component and the
robustness of our model. The findings of the study have several research
contributions and practical implications that are worthy of discussion.

5.1. Research contributions

This research makes four-fold contributions. First, our DeepSC ex-
tracts multiple user preferences guided by the social capital theory.
Previous social recommender systems merely capture a single user
preference, while few attempts adopt disentangled learning and cluster-
based methods to capture potential various preferences, leading to sub-
optimal performance and lower explainability. By contrast, our DeepSC
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parametrizes all the three dimensions of the social capital to represent
multiple user preferences, providing insights for future theory-driven
model design. The experimental results demonstrate that our theory-
driven design achieves better performance than other intuition-driven
designs.

Second, this research expands the theoretical foundation of social
recommender systems by introducing social capital theory. Most works
are based on the theories of homogeneity and social influence to
seek suggestions from social friends [1,73], disregarding the essential
role of social capital in explainable and effective social preference
learning [74,75]. Our DeepSC provides a solid foundation for the future
development of social recommender systems that aim to capture more
comprehensive user preferences.

Third, we tailor some components to enhance the social capital-
aware feature learning, such as the hypergraph attention networks on
interaction hyper-graphs and the LightGCN on co-interacted network.
Compared to the vanilla bipartite graph-based methods [9,68,69], the
hyper-graphs provides advantages in capturing the set-level interaction
relationships. Furthermore, we adopt attention mechanism to better
reveal the intrinsic relationship between hyper-nodes by learning a
dynamic incidence matrix. Compared to the traditional hyper-graph
convolution network [18,66], the hypergraph attention network has
stronger feature learning ability. In addition, compared to the meth-
ods [11,65] introduce various external side information and adopt
heterogeneous graph to manage multiple entities, our approach sim-
plifies access to information while maintaining a lower memory cost.
Subsequently, we adopt the parameter-efficient LightGCN to capture
the product features based on homogeneous relationships, comple-
menting the heterogeneous product features derived from user—product
interactions.

Finally, we propose the multi-task objective learning task to better
optimize our model training, consisting of the joint-learning task and
the auxiliary task. For the joint-learning task, existing social recom-
mender systems employ cross-entropy-based point-wise loss function
and Bayesian personalized ranking-based pair-wise loss function [18,
76], disregarding the benefits of fusing both loss functions. Our DeepSC
takes the linear approach to combine point-wise with pair-wise loss
function, performing well on click-through-rate estimation and ranking
simultaneously. To the best of our knowledge, this research is the
first to explore the effectiveness of combining point-wise and pair-wise
loss functions for social recommendation. It provides both technical
and empirical insights into ways to enhance social recommendation
systems.

5.2. Practical implications

In practice, our DeepSC has the potential to benefit multiple stake-
holders, including users, product providers, and online platform own-
ers, resulting in advantages for all parties involved. The superior per-
formance of our method demonstrates its ability to accurately capture
users’ multiple preferences and support online decision-making, saving
users considerable time in finding products of interest. For product
providers, DeepSC effectively facilitates sales by uncovering hidden
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relationships among products. This insight allows providers to adjust
stock levels based on the recommendations generated by DeepSC. For
online platform owners, DeepSC aids in identifying products that users
are more likely to engage with, allowing for targeted promotions that
enhance user satisfaction and retention. Moreover, deploying more ef-
fective recommendation methods can significantly help platform own-
ers increase profits by driving higher conversion rates. Finally, our
DeepSC is not limited to deployment in online shopping platforms. It
can also serve as a foundational model for various other scenarios due
to its broad applicability, such as location-based social recommendation
and social-aware music recommendation.

5.3. Limitations and future work

Despite the promising results achieved by our model, several limi-
tations suggest directions for future research. Specifically, DeepSC does
not incorporate any side information, which could potentially provide
a more comprehensive understanding of user preferences to enhance
recommendation precision. In future work, we aim to extend the frame-
work by integrating various types of side information, such as product
attributes, product photos, and textual reviews. By leveraging these
additional side information, the feature learning capacity is expected to
be improved. Moreover, we observe that social networks often exhibit
community structures, which are not explicitly utilized in DeepSC. As
a promising future research direction, we plan to incorporate social
community detection techniques [77] into our framework. This exten-
sion has its potential to open new avenues for exploring the interplay
between community dynamics and recommendation systems.
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