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Session-based recommendation aims to predict the next item based on the user-item interactions within the
current session. Many existing methods adopt discriminative approaches to learn specific preference repre-
sentations, while few methods introduce generative approaches to learn underlying preference distributions,
failing to handle limited and noisy interactions effectively. Moreover, naive implementations of generative
models face a trade-off between effectiveness and efficiency, limiting their practical utility. To address these
challenges, we propose Dimos, a dual-branch framework comprising an exploring branch and an exploiting
branch, which leverage diffusion models and attention networks to capture implicit and explicit preferences,
respectively. At the core of Dimos is Bi-MaKAN, a novel backbone architecture featuring a pair of parameter-
sharing bidirectional Mamba blocks and a Kolmogorov—-Arnold network-based feature fusion layer, designed to
enhance both performance and efficiency. To further improve generalization and reduce overfitting, we unify
the sequential state spaces of both branches. Additionally, we introduce a linearly weighted fusion mechanism
that integrates preference representations from both branches, enabling flexible adjustment of implicit and
explicit preference contributions during training and inference. Extensive experiments on three real-world
benchmark datasets demonstrate the superiority of Dimos, achieving up to 2.79% improvement in Recall,
3.09% in Mean Reciprocal Rank (MRR), and 3.00% in Normalized Discounted Cumulative Gain (NDCG) over
state-of-the-art baselines. Efficiency evaluations show substantial gains, with reductions of 94.32% in Graphics
Processing Unit (GPU) memory usage, 66.81% in training time, and 98.80% in inference time. In-depth analyses
reveal a collaborative effect between the two branches during both training and inference, with dataset scale
modulating their relative importance.

1. Introduction are typically short, with the median number of interactions per session
being fewer than six in most widely used benchmark datasets (Li et al.,
2025c). Compounding this issue, user behavior during sessions can be
erratic or exploratory, leading to incidental or irrelevant interactions
that introduce noise and undermine recommendation accuracy (Wang
et al., 2022a).

Many SBRSs adopt discriminative approaches to address these chal-

Session-based recommendation (SBR) aims to capture the dynamic
evolution of user preferences within individual sessions and represents
a critical subfield of sequential recommendation research (Wang et al.,
2022a; Li et al.,, 2025c). While session-based recommender systems
(SBRSs) have shown great potential in enhancing user experiences
on online platforms (Feng et al., 2019), their effectiveness is often

hindered by limited contextual information and inherently noisy user
interactions. One major challenge stems from strict privacy policies,
which prevent access to rich user data, such as detailed profiles or
long-term interaction histories, thus complicating the design of accurate
and personalized SBRSs (Li et al., 2025c¢). Additionally, session lengths

lenges. Specifically, some works adopt sequential modeling methods to
capture user behaviors, such as recurrent neural networks (RNNs) (Hi-
dasi et al.,, 2016) and Transformers (Choi et al., 2024). Other ap-
proaches represent session sequences as graphs and apply graph-based
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learning methods to model spatial dependencies among items, includ-
ing graph attention networks (GATs) (Lv et al., 2025) and gated graph
neural networks (GGNNs) (Lin et al., 2025). Despite their success, these
discriminative methods often struggle with limited and noisy session
interactions, as they rely heavily on ground-truth labels to learn explicit
user preferences (Ng and Jordan, 2001; Zheng et al., 2023). This depen-
dency limits their generalizability in real-world scenarios, where user
behavior is uncertain and evolving (Li et al., 2024c), making it difficult
to estimate user intent in real-time. To overcome these limitations,
generative approaches have been explored, modeling preferences as
probabilistic distributions rather than fixed representations. Methods
based on variational autoencoders (VAEs) (Wang et al., 2022b) and
adversarial learning (Chen et al., 2024) aim to capture implicit prefer-
ences by learning latent variables that reflect underlying user interests.
However, such generative methods face notable challenges, including
posterior collapse in VAEs (Zhao et al., 2019) and training instability
in adversarial setups (Becker et al., 2022), which hinder their practical
performance and adoption.

Diffusion models have recently emerged as a powerful generative
framework for recommendation, offering strong probabilistic modeling
capabilities and high-quality representation learning. Originally devel-
oped for tasks such as semantic segmentation (Tian et al., 2024) and
image editing (Tumanyan et al., 2023), they are now gaining traction
in the recommendation domain, including applications in sequential
recommendation (Zhao et al., 2024; Yang et al., 2024a; Wang et al.,
2024d; Li et al., 2024c; Xie et al., 2024; Gupta et al., 2024), where
the goal is to capture users’ evolving preferences over time. How-
ever, existing diffusion-based recommender systems often adopt Trans-
formers (Vaswani et al., 2017) or U-Net architectures (Ronneberger
et al., 2015) as the backbone for the denoising process, both of which
present significant limitations. U-Net, originally designed for image
tasks, struggles with modeling sequential dependencies due to its equiv-
ariance constraints (Lenc and Vedaldi, 2019) and limited receptive
field, which hinders its ability to capture global user preferences (Li
et al., 2024c). Transformers, while effective in sequence modeling,
suffer from quadratic complexity in the self-attention mechanism, mak-
ing them computationally expensive and less scalable in large-scale
recommendation scenarios (Liu et al., 2024). These challenges high-
light the need for alternative backbones that can better balance ef-
fectiveness and efficiency in diffusion-based SBRSs. This motivates
the exploration of lightweight, sequentially expressive, and compu-
tationally scalable architectures tailored to the unique constraints of
session-based recommendation.

Another key challenge in applying diffusion models to SBR lies in
the underutilization of feature encoders during the forward diffusion
process, which limits the model’s ability to learn meaningful under-
lying preference distributions. While prior works have made progress
by optimizing sampling strategies (Song et al., 2021; Zhang et al.,
2023), designing noise schedulers (Nichol and Dhariwal, 2021; Kingma
et al., 2021), and exploring alternative noise types (Bansal et al.,
2023; Qi et al, 2024; Ma et al.,, 2025), these enhancements still
struggle to achieve an effective balance between generation quality
and computational efficiency (Yang et al., 2024c), leaving room for
further innovation. Inspired by the success of latent diffusion models
(LDMs) (Rombach et al., 2022), several recent approaches shift the
diffusion process from the raw entity space to a learned latent feature
space, improving inference efficiency. However, these methods often
depend on large pre-trained models, which are expensive to train and
fine-tune. This issue is further exacerbated in recommendation settings,
where widely used ID features are far less expressive and general than
natural language or visual inputs, thereby limiting the applicability and
reusability of foundation models developed in other domains. To reduce
deployment costs, some studies (Li et al., 2024c; Yang et al., 2023) have
proposed initiating the diffusion process directly from simple initial
features. However, these naive feature encodings lack essential prior
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knowledge, making it more difficult for the model to effectively learn
user preferences, especially in short and noisy session contexts.

To address these challenges, we propose Dimos, a Diffusion Model
with Unified Sequential State Space for SBR. Dimos features a dual-
branch architecture that captures user preferences from both explicit
and implicit perspectives. The exploiting branch employs attention
networks to extract explicit preferences directly from user-item in-
teractions, while the exploring branch leverages a latent diffusion
model to uncover implicit preferences beyond observed behavior. This
dual-view representation learning promotes a more comprehensive
understanding of user intent. At the core of Dimos is a novel backbone
module, Bi-MaKAN, designed to enhance both performance and effi-
ciency. It consists of a pair of parameter-sharing bidirectional Mamba
blocks, coupled with a Kolmogorov—-Arnold network (KAN)-based fea-
ture fusion layer. Compared to standard Mamba, the bidirectional
design enables the model to incorporate both past and future ses-
sion interactions, improving its contextual modeling capabilities. The
parameter-sharing mechanism not only reduces model complexity but
also helps mitigate overfitting. The KAN-based feature fusion layer
integrates features from forward and reverse session contexts, lever-
aging its strong capacity to model complex, nonlinear relationships
in high-dimensional spaces (Hou et al., 2024). Moreover, we share
the Bi-MaKAN parameters across the exploring branch’s forward diffu-
sion process and the exploiting branch’s attention-based encoder. This
design establishes a unified sequential state space, ensuring feature
consistency and enhancing generalization across branches.

Extensive experiments conducted on three benchmark datasets
demonstrate the superior performance of Dimos and confirm the ef-
fectiveness of its core components. The in-depth analyses yield several
key insights. To quantify the contributions of the exploring and ex-
ploiting branches during both training and inference, two weighting
mechanisms (i.e., loss weight and preference weight) are introduced
to linearly combine their outputs based on relative importance. Our
empirical results demonstrate a collaborative effect between the ex-
ploring and exploiting branches during both training and inference.
Furthermore, we find that data scale acts as a key modulator. On
smaller datasets, the exploring branch plays a more substantial role,
while the influence of the exploiting branch becomes increasingly
significant as the dataset grows. These findings highlight the comple-
mentary nature of the two branches and offer practical guidance for
future architectural design in SBRSs. In addition, ablation studies verify
that the proposed Bi-MaKAN backbone not only delivers robust feature
learning but also brings significant efficiency gains. Remarkably, it
reduces the number of diffusion steps from thousands to fewer than ten,
without sacrificing performance. This advancement greatly enhances
the practical applicability of diffusion models and paves the way for
future developments in efficient and scalable recommendation systems.

Our work makes three primary contributions.

« We introduce Dimos, a dual-branch framework for session-based
recommendation that combines an attention-based exploiting
branch for learning explicit preferences and a diffusion-based
exploring branch for modeling implicit preferences. This hybrid
design enables a nuanced understanding of user intent. Empirical
results show that the two branches contribute differently across
training and inference phases, with the exploiting branch gaining
more influence as the dataset scale increases.

We present Bi-MaKAN, a novel state-space backbone composed of
bidirectional, parameter-sharing Mamba blocks and a
Kolmogorov-Arnold network-based fusion layer. This architecture
enhances sequential modeling while offering robust preference
representations. Importantly, Bi-MaKAN accelerates the diffusion
process by reducing the number of required steps from thou-
sands to fewer than ten, without compromising recommendation
performance.
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» The effectiveness and efficiency of Dimos are validated through
extensive experiments on three real-world benchmark datasets,
where it outperforms twenty-four competitive baselines. Detailed
ablation and efficiency analyses further demonstrate the signifi-
cance of each module and the model’s scalability for large-scale
deployment.

2. Preliminaries

Similar to sequential recommendation, SBR aims to predict the next
item a user will interact with, based on their current session interac-
tions. Formally, let the item set be denoted as V' = {vy, ..., v}, where
each v; represents a unique item and |V| is the total number of items.
A session s, for user u is defined as an ordered sequence {v,..., v},
where v, denotes the item interacted with at the rth timestamp. Given
a session s,, the objective of a SBRS is to predict the next interaction
v, at the subsequent timestamp. The proposed model first learns a
preference representation for the user based on their current session
and then computes prediction scores for all candidate items in V. The
top-K items with the highest scores are subsequently recommended.
Next, two core components of the proposed architecture are briefly
introduced: the Mamba selective state space model and the denoising
diffusion probabilistic model (DDPM).

2.1. Mamba

Mamba, an optimized selective state space model (SSM), is widely
used in sequence modeling tasks due to its linear scalability with
sequence length and low computational cost. Instead of relying on
attention mechanisms, Mamba adopts the state space model frame-
work, encoding context through hidden states during recurrent scans.
Its selection mechanism enables control over which parts of the input
are integrated into the hidden states, forming the context that influ-
ences subsequent embedding updates. Formally, given the item feature
sequence E, = {ey, ..., ¢,} € R corresponding to the session sequence
s, = {uv,....v;}, the state equation and observation equation with
zero-order hold (ZOH) discretization and selection mechanism can be
written by:

hy = Ah_; + Be,, 1
hy = Chy, @
A = exp(44), 3)
B = (44) ! (exp(44) — 4B, €))

where h, € R? is the kth hidden state, k is the discrete time step.
Moreover, A is the state transition matrix that describes how states
change over time, B = WRE, is the input matrix that controls how
inputs affect state changes, C = W E, denotes the output matrix
that indicates how outputs are generated based on current states, and
A = Softplus(BroadCast p,(W4E,)) is the context-aware interval for ZOH
discretization. W € R™4 W, € R™4 and W, € R?*! are the selection
weights, and BroadCast,(-) means to broadcast the result to all the
dimensions. ¢, n, and d represent the input length, input feature size,
and hidden channel number, respectively.

The discrete SSM, as a linear system, inherently possesses the asso-
ciated property, allowing it to integrate seamlessly with convolutional
computation. Specifically, it can compute the output at each time step
independently, as follows:

H=E,*K, 5)

where K = (CA°B,...,CA*B) is a set of convolutional kernels, H =
{hg, ..., h,} is the output hidden state sequence. Exactly, Mamba’s
structure combines elements of both RNNs and convolutional neural
networks (CNNs), which helps it enhance efficiency during both train-
ing and inference by leveraging the strengths of sequential modeling
and local pattern extraction. For simplicity, we define this process as
y = Mamba(x).
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2.2. Diffusion model

Diffusion models are a class of probabilistic generative models
that gradually corrupt data by adding noise, and then learn to invert
this process to generate new samples. Compared to VAEs and GANs
diffusion models have greater representation capacity and are more
stable during training (Wei and Fang, 2025; Yang et al., 2024c; Lin
et al.,, 2024). As a prominent framework within diffusion models, the
DDPM has achieved notable success across several tasks, including
traffic prediction (Li et al., 2024b), image reconstruction (Huberman-
Spiegelglas et al., 2024), and sequential recommendation (Li et al.,
2024c). Technically, DDPM adopts a forward first-order Markov chain
that add Gaussian noise to the input, and a reverse first-order Markov
chain that denoise and reconstruct the original input incrementally.
Specifically, given the original representation x, ~ g(x;) and subse-
quent noised representations {x, ..., x; }, the forward diffusion process
can be formalized using the chain rule of probability and the Markov
property as follows:

L

q(xllex()) =Hq(xl|x1—1)v (6)
I=1

q (x1x,_1) = NG V1= Bixp_y, i), @

where ¢(-|-) is the transition kernel, {f,, ..., } represents a variance

schedule that controls the magnitude of noise added at each step in
the Markov chain. Instead of computing the transition L times from x,
to x;, x; can be obtained in a single step by marginalizing the joint
distribution g (x,.|x,) as follows:

q (x/1x0) = Nz Vayxe, (1 = aph), ()

where @, = Hi:o a; and a; = 1 — p;. Given x;, we can obtain a sample
of x; by sampling a Gaussian vector ¢ ~ N'(0,7) and applying the
transformation x; = 1/&,;xy + (1 — &)e.

In the reverse denoising process, DDPM-based models begin by
generating an unstructured noise vector from the prior distribution,
then progressively denoise it by running a learnable Markov chain in
the reverse time direction. Formally,

L
Po (x0:1) = P(XL)Hpe (%=1l » ©)

1=1
P (x1_11x1) = N(xp_ps g (x7.1) , Zg (x1,1)), (10)

where 4 (x;.1) and X, (x;,1) are the mean and variance learned by
the denoising network with parameters 6. With the reverse Markov
chain, we can generate a data sample x, by first sampling a noise vector
x; ~ p(xp), then iteratively sampling from the learnable transition
kernel x;_; ~ pp(x;_;|x;) until = 1.

The success of the sampling process heavily relies on training the
denoising network so that the learned reverse Markov chain accurately
approximates the true time-reversal of the forward diffusion process.
Following the foundational work (Ho et al., 2020), we can optimize
the variational lower bound, simplified as the mean-squared error loss,
to train the denoising network as follows:

Lpprm = Eiev(,0).xpeq(xp).ceNO.1) [||€ - ep(\/axg. \/1- 5‘16’1)”2] , (A1)

where U'(1, L) is a uniform distribution over the integers 1 to L. Here
the denoising network ¢, with parameter 6 shifts to predicting the noise
vector ¢ given x; and /, which has been shown to be equivalent to
predicting the mean and variance.

3. Dimos

This section outlines the architecture of the proposed Dimos frame-
work, illustrated in Fig. 1. The framework consists of three main



W. Li et al.

Shared initial

Engineering Applications of Artificial Intelligence 169 (2026) 114131

Explore branch: Implicit preference learning module

: feature space [~ Forvard Diffoson P ading mose
Dual soﬁ Atwﬂtlon | D 1* ,— g orwart ifTusion Process (adding noise,
: D 7 i— 3 D Dﬁwnm 0O o [ 0 _ {
OO0 OO0=fe=q-BeB i O],
OO | EPOOm =5 S s et =)
. f distribution
! O] el ol 5 o
Feature I | Pl = 12 f) 5
| Projection E Refined hidden BiMaKAN BiMaKAN Sampling g G
: z state space an g XKD,I I;l < §‘ TI(:]?-tK
o is|
I Q) Reverse Denoising Process with Bi-MaKAN g &
I - — /| §zg &
: D gx Exploring Loss +(1-g) x Exploiting Loss g = 2 B
- O
. —s ’ Shorttorm N 28 =
! reference > ran
| 7 B
[Mamba Block| [Mamba Block| | g 1 ;‘T c g
Feature i | S 5 a8
: Projection el CIh 22| Logem EZ ] =
S| lE-Oom—iE P T
LayerNorm | Di IZ Hillly Eg- J g
) | oom—H{E| oo |f¢ 11l=
) | —
| | I: e Refined hidden s a a
»/Kw)“ | E [ | z state space I Contextual =N €
= | 1L L Mean preference
. | Shared initial ~\_ (Pooling J ’ ) )
Bi-MaKAN | feature space

Exploit branch: Explicit preference learning module

Prediction Layer

Fig. 1. Schematic overview of the proposed dual-branch framework Dimos for session-based recommendation. The top part depicts the explore branch, which
employs a latent diffusion model over the Bi-MaKAN backbone to capture implicit user preferences beyond observed interactions. The bottom part illustrates the
exploit branch, which adopts attention networks over the Bi-MaKAN backbone to model explicit preferences directly from user-item interactions. Both branches
share the Bi-MaKAN backbone (left part), which consists of parameter-sharing bidirectional Mamba blocks and a KAN-based fusion layer, establishing a unified

sequential state space for consistent feature learning.

components: the implicit preference learning module, the explicit pref-
erence learning module, and the prediction layer. The implicit prefer-
ence module (explore branch) utilizes Bi-MaKAN in conjunction with
a DDPM to model latent user preferences. In parallel, the explicit
preference module (exploit branch) incorporates Bi-MaKAN and an
Unsqueeze-and-Excitation Network (UE-Net) to capture observable user
intents. To enhance model consistency and reduce overfitting, both
branches operate over a shared sequential state space generated by Bi-
MaKAN. The final prediction layer computes relevance scores for all
candidate items and outputs the top-K recommendations.

3.1. Explore branch: Implicit preference learning module

Although LDM (Rombach et al., 2022) demonstrates that using
diffusion models in the latent feature space from well-pretrained au-
toencoders can enhance performance and efficiency, this approach is
not well-suited for addressing session-based recommendation tasks. On
the one hand, the pretrain-finetune paradigm usually requires signifi-
cant computational resources and time. On the other hand, item IDs,
commonly used by SBRSs, vary across different scenarios, limiting the
effectiveness of pre-trained SBRSs. Therefore, designing an effective
feature encoder is crucial to create a robust latent feature space,
enabling diffusion models to fully leverage their generative potential.

Instead of the widely adopted U-Net and Transformer, we propose
a Mamba-based feature encoder due to its strong sequence modeling
capacity and linear scalability with sequence length. Specifically, a pair
of parameter-sharing Mamba blocks are employed to effectively capture
sequential item dependencies from bidirectional session contexts. Here,
parameter sharing refers to full weight sharing across the two direc-
tional blocks, meaning that the same set of trainable parameters is used
for processing both the forward and backward sequences. Subsequently,
we introduce the Kolmogorov-Arnold network-based feature fusion
component to integrate the bidirectional sequential item dependencies.
Formally,

12)
13

E, = Mamba (E,) + Flip (Mamba (Flip (E,),,)),, -

E! =KAN(E,),
where Flip(-),;, denotes flipping the input sequence along the length

dimension. Here, we present two options for the fusion method KAN(-).
The first is Fourier KAN (Xu et al., 2024). Formally,

g
Fourier-KAN(x) = Z Z (cos (kx)ay, + sin (kx) by ).
k=

(14)

i=1

where a;, and b;, are trainable Fourier coefficients. g refers to the
grid size, which controls the number of terms (frequencies) used in
the Fourier series expansion. Specifically, g determines the number of
sine and cosine terms incorporated into the Fourier coefficients for
each input dimension. Compared to vanilla KAN, Fourier KAN uses
1D Fourier coefficients rather than B-spline coefficients, which simpli-
fies the optimization process and decreases the number of learnable
parameters (Xu et al., 2024).
The second option is group-rational KAN (GR-KAN). Formally,

d d
GR-KAN) = | Y @1 Flija j(x) oo D @igFl1a )| s @s)
i=1 i=1

ay+ayx; + - +a,x;

L+ |byx; + - +b,x"|"

F(xi) =

and i is the index of the input dimension, g denotes the number of
groups. Each group contains d, = d;,/g dimensions, with the group
index determined by |i/d,]. F(-) is the input-wise rational function,
specifically implemented using the Safe Padé Activation Unit (Molina
et al., 2020) with the coefficients a,, and b, to ensure training stability.
Compared to vanilla KAN, GR-KAN replace B-spline functions with
rational functions as the base functions to enhance the model’s expres-
siveness, stability, and computational efficiency (Yang and Wang, 2024;
Zhang et al., 2025). For simplicity, we omit layer normalization and
dropout operations in the equations above. For brevity, we define this
process as E! = Bi-MaKAN(E,; &), where ¢ are the parameters of the Bi-
MaKAN. Our Bi-MaKAN incorporates sequential dependencies into item
representations, allowing it to refine the initial hidden feature space
and capture contextual relationships more effectively.

Subsequently, by treating the user’s historical behavior sequence
as an information diffusion process (Niu et al., 2024), the DDPM is
adopted to learn the underlying distribution for capturing the evolution
of user preferences: ¢ = DDPM(E; ).

In the forward diffusion process, we incrementally add Gaussian
noise to the sequential dependency-aware hidden state of the target
item e/, until the complete transformation into a thoroughly Gaussian
noise x, after T diffusion steps. Then, the current noised hidden state
x, is adopted to modify the hidden state of each historical item in s,,
denoted as Z, = {z,...,z}. Furthermore, the denoising network is
used to refine the reconstructed the hidden state of the target item &
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from Z, , bringing it closer to the original hidden state ¢]. Formally,
the forward diffusion process can be formulated as follows:

x, = q(x,]x0, 5,), (16)
%o = Bi-MaKAN(Z, ;n), 17)
z= e+ 40X, +f) 18)

where © denotes the Hadamard product. f, is the sinusoidal position
encoding (Ho et al., 2020) that represents different diffusion steps,
allowing the model to recognize the current noise level. 4; is sampled
from a Gaussian distribution A, ~ N'(8, 5), where 6 is a hyperparameter
which defines both the mean and variance. 4; modulates the amount
of noise injected, introducing uncertainty into the modeling of user
interest evolution.

In the reverse denoising process, we aim to recover the sequential
dependency-aware hidden state of the target item x, iteratively from
a pure Gaussian noise x;. We firstly sample the noised target item
representation x; from a standard Gaussian distribution N'(0, I). Sub-
sequently, similar to the diffusion process, x; is adopted to adjust the
hidden state of each historical item in s, denoted as Z,,. Furthermore,
the denoised network is used to estimating the original hidden state %.
After that, x,_, is estimated by Eq. (10). We repeat the above process
until we arrive at x,. Formally,

X9 = Bi—MaKAN(Zx, 1), (19)
z=e[+ 400+ 1), (20)
x1-1 = plx;_1 %o, X)), 21

where 4; allows the importance of each latent aspect of a historical item
to be iteratively adjusted in a user-aware manner during the reverse
denoising process. Moreover, the reparameterization trick is adopted
to facilitate better optimization by connecting model parameters with
noise variables. Formally,

xi_1 = fy(xp, %o) + Be’s (22)
Va,_ o (1 —a_y)
fiy (X, %) = ~— lﬂl Xo + Ve ! X;, (23)
1-a l—a
1-g,
p=——h, (24)
1-1

where ¢’ is the vector sampled from Gaussian distribution N'(0, I). So
far, we obtain the refined representation of user preference ef = %,
which considers the sequential interactions and uncertain behaviors.

3.2. Exploit branch: Explicit preference learning module

This module adopts Bi-MaKAN and UE-Net to capture the explicit
preference ¢?. To ensure the consistency of the sequential dependency-
aware hidden state space, we share parameters between the Bi-MaKAN
in this module and the Bi-MaKAN used before the forward diffusion
process: E/ = Bi-MaKAN(E,; ¢). This parameter sharing establishes the
unified sequential state space, a core design principle of Dimos.

Formally, the unified sequential state space 7 is the feature space
induced by the shared Bi-MaKAN with parameter ¢. Formally, for the
input item feature sequence E,, there exists a unique corresponding
item state sequence E!. The unification is ensured by the parameter
sharing of the Bi-MaKAN across the explore and exploit branches. Con-
sequently, for the same input E,, both branches compute the identical
state sequence E!.

The unified sequential state space guarantees that the implicit pref-
erence distribution explored by the diffusion process and the explicit
intents modeled by the attention mechanism are semantically aligned in
the same feature space, enabling their effective fusion. Furthermore, the
unified sequential state space acts as a strong regularizer, allowing the
model to learn robust, general-purpose sequential features from both
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generative and discriminative signals simultaneously, which improves
parameter efficiency and reduces the risk of overfitting in either branch.

Subsequently, we identify various user intents and adaptively fuse
them to generate the robust preference representation. Specifically, in
line with related works (Li et al., 2023a,b), the hidden state of the
last item is considered as the short-term intent, i.e. c¢;, = e]. Compared
to directly capturing long-term intent based on short-term intent, we
additionally introduce contextual intent to alleviate the impact of
the potential noised short-term intent caused by unexpected clicks or
interest drift. Formally, we adopt the additive attention network as
follows:

=Y e (25)
V;ESy,
1= Softmax (Wo ([Wael [Waceo| Wac])). (26)
Ceon = ; z el/" (27)
V;Es,

where ¢ denotes the sigmoid activation function, W, € R3?, and
Wy, W5, W, € R are the learnable parameters. Furthermore, the
UE-Net is adopted to fuse various preference representations as follows:

Cintent = Stack (WSCM’ Wﬁccorn W7Clt) (28)
v = Softmax (Cypyen) 29
eg = Squeeze — sum (yCmm,) N (30)

where Stack(-) denotes the concatenation in the additional prefer-
ence dimension, i.e. unsqueeze operation. y is the adaptive preference
weight for each preference representation, i.e. excitation operation.
Squeeze — sum(-) denotes a dimension reduction operation based on
sum fusion. Ws, Wy, W, € R?? are the learnable parameters. Instead
of a shallow feed-forward network, our UE-Net offers greater flexibility
for preference fusion by assigning dynamic attention weights across
additional preference dimensions.

3.3. Prediction layer and optimization

The prediction layer first calculates the recommendation score for
each candidate item, then selects the top-K items to form the rec-
ommendation list. For clarity in understanding the significance of
explicit and implicit preferences in recommendations, a weighted linear
method is adopted to fuse both types of preferences: e, = p-ef+(1— p)~e;1,
where p € [0,1] is the predefined preference weight. Subsequently,
the recommended score is computed by inner product: score; = e, - ¢;.
Furthermore, the optimization objective is defined as the cross-entropy
of the ground-truth and the prediction scores. Similarly, we predefined
the loss weight ¢ € [0, 1] to indicate the different importance of both
modules during model training. Formally,

§¥ = Softmax(ed - e;), )77 = Softmax(eg -e;), (31)
Vi 4l

Zy==Y ylog(¥),  Ly=- ylogi?, (32)
i=1 i=1

gxolalzg'gg-"(l_g)'gd’ (33)

where y; is the one-hot encoding vector of the ground truth.
3.4. Time complexity analysis

The time complexity of the proposed Dimos framework stems from
four key components. First, the time complexity of the Bi-MaKAN
(Fourier KAN version) shared between implicit preference learning
module and implicit preference learning module is O(2td?(1+g)), where
t is the session length, d is the hidden dimension, and g is the grid size
for the Fourier transform operation. Second, the time complexity of the
DDPM is O(2tTd*(1 + g)), where T is the number of diffusion steps.
Third, the time complexity of the long-term intent computation and
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Fig. 2. Session time span distribution (Time distrib.) and user activity distribution (Act. distrib.) of Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket

(Ret.).

the UE-Net O(4td? + 8td). Finally, the time complexity of the prediction
layer is O(|V'|d), where |V| is the number of candidate items. Therefore,
the overall time complexity of Dimos is (6+2g+2T+2gT)td>+(8t+|V |)d.
With usually a grid size of 1, the overall time complexity depends on
the diffusion steps, session length, and hidden dimensions.

4. Experiments

This section conducts comprehensive experiments to evaluate the
effectiveness and efficiency of our proposed model. They are designed
to address the following key research questions: (RQ1) How does Dimos
perform in SBR tasks compared to twenty-four competitive baseline
models across three real-world datasets? (RQ2) What impact do the
main components of Dimos have on recommendation performance?
(RQ3) What specific roles do the exploit and explore branches play
during the training and inference stages? (RQ4) How does Dimos
perform under varying hyperparameter settings? (RQ5) How well does
Dimos generalize across user groups with different levels of activity?
(RQ6) What is the impact of varying session lengths on the effectiveness
of Dimos? (RQ7) How does the computational efficiency of Dimos com-
pare with that of representative baseline models? (RQ8) Finally, how
can we interpret both explicit and implicit user preferences captured
by Dimos? The implementation code of our proposed model is publicly
available for reference at: https://anonymous.4open.science/r/Dimos-
1374.

4.1. Experimental settings

We begin by introducing the datasets used in the experiments, along
with the preprocessing methods applied to prepare the data. Next, we
outline the evaluation metrics employed to assess the performance of all
models. Finally, we describe the baseline models used for comparison
and provide details on the implementation settings.

4.1.1. Datasets and preprocessing

The overall performance of our Dimos and twenty-four competitive
baseline models are evaluated on three public real-world datasets,
including Yoochoose, Diginetica, and Retailrocket. Specifically, Yoo-
choose, released for the RecSys Challenge 2015, contains anonymized
e-commerce clickstream data collected over six months.? Due to its
large scale, we extracted the most recent 1/64 of the dataset based on
the timestamp, consistent with Pan et al. (2020), Qiu et al. (2022), Qiu
et al. (2020), and Wu et al. (2019). Diginetica, released for the CIKM
Cup 2016, comprises anonymized user clickstream data collected from
an online retail platform.® Retailrocket, sourced from an e-commerce
platform over 4.5 months, includes three anonymized behavioral event
types: view, add-to-cart, and transaction. For our experiments, we
exclusively utilized view interactions from Retailrocket.

To gain deeper insights into the characteristics of the datasets, we
analyze the session time span distributions and user activity distri-
bution across the three benchmark datasets. Fig. 2(a), (b), and (c)
present the session time span distributions for the three benchmark
datasets, revealing distinct temporal engagement patterns across dif-
ferent e-commerce platforms. The Yoochoose 1/64 dataset exhibits
relatively brief user sessions, indicating predominantly short, goal-
oriented browsing behavior. In contrast, both Diginetica and Retail-
rocket demonstrate significantly longer session durations. Fig. 2(d) (e),
and (f) illustrate the user activity distributions across the three datasets.
All datasets exhibit similar long-tailed patterns, i.e., the majority of
sessions consist of very few interactions. In summary, the observed
patterns further validate the selection of these three datasets for com-
prehensive evaluation, as they collectively represent diverse real-world
scenarios in terms of user engagement intensity and temporal dynamics.

Following Hou et al. (2022), Pan et al. (2022b), and Qiu et al.
(2022), the sessions longer than 1 and the items appearing more than
4 times are reserved in all the datasets. Table 1 shows the statistics for
the three datasets. For fair comparison, the data augment method (Tan

2 https://recsys.acm.org/recsys15/challenge
3 http://cikm2016.cs.iupui.edu/cikm-cup
4 https://www.kaggle.com/retailrocket/ecommerce-dataset
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Table 1

Summary of the used datasets.
Dataset # Sessions # Items # Interactions Avg. session length Avg. action per item Sparsity
Yoochoose 1/64 124724 17606 528858 4.24 30.04 99.9759%
Diginetica 204062 42172 989204 4.85 23.46 99.9885%
Retailrocket 328904 58000 1413976 4.30 24.38 99.9926%

et al., 2016) is adopted which generates the sessions and corresponding
labels by splitting the input session. For example, for an input ses-
sion § = {vl, s D) S‘}, the generated sessions and the corresponding
labels are ({v,}.v,).({v1,02}.03) ... ({v1, ...,U|S‘,1},v‘5|). More-
over, leave-one-out strategy is adopted to split datasets. Specifically,
we preserve the last and the second last interactions in each session as
the testing and validation data, while the rest is taken as the training
data.

4.1.2. Evaluation metrics, baseline models and their implementation

We adopt three evaluation metrics for recommendation perfor-
mance: Recall@K, Mean Reciprocal Rank (MRR@K), and Normalized
Discounted Cumulative Gain (NDCG@XK). Specifically, Recall@K mea-
sures the proportion of test cases in which the correct item appears
within the top-K recommended list. MRR@XK is a ranking-based metric
that computes the average reciprocal rank of the first relevant item
across all test cases. NDCG@XK, another ranking metric, considers both
the relevance and the position of recommended items, assigning higher
scores to correctly ranked items that appear earlier in the list. To
enable a more comprehensive comparison, we evaluate each metric at
K =5,10,15, and 20. To mitigate potential biases, the rankings of all
candidate items are considered during evaluation.

Regarding efficiency, we employ five metrics: GPU memory con-
sumption, training time, inference time, the number of parameters, and
floating point operations (FLOPs). GPU memory consumption denotes
the memory consumed during model training and inference. Train-
ing time corresponds to the computational cost per epoch during the
training phase, while inference time corresponds to the cost per epoch
during inference. The number of parameters indicates the total amount
of learnable weights in the model, reflecting its scale, capacity, and
storage requirements. FLOPs measure the total computational workload
required for a single forward pass, commonly used to estimate the
model’s theoretical computational complexity and speed.

Table 2 summarizes the baseline models, which can be broadly
categorized into six groups: (1) non-neural methods, (2) traditional
neural methods, (3) GNN-based methods, (4) Mamba-based methods,
(5) traditional generative methods, and (6) diffusion-based methods.
Our proposed Dimos and all the baseline models are implemented
based on the popular recommendation framework RecBole (Zhao et al.,
2021) for easy development and reproduction. Following Peintner et al.
(2023), Wu et al. (2019), the embedding dimension and batch size is set
to 100. The initial learning rate is set to 0.001 and will decay by 10%
after each 3 epochs. The Adam optimizer is adopted to train parame-
ters. The max length of session is set to 20 for all the baseline models
and our Dimos. The SSM state expansion factor, the local convolution
width, and the block expansion factor is respectively set to 50, 4, and
2 for all models that include Mamba blocks. To alleviate over-fitting
problem, the dropout strategy with 20% ratio has been applied to our
model. The stacking layer number of Bi-MaKAN is searched among {1,
2, 3, 4}. The diffusion step is searched among {2, 5, 10, 20, 40, 80, 160,
320, 640}. The noise strength § ranges from 1le-6 to 1e-2, with a step
size of 10. The noise scheduler is selected from {sqrt, cosine, truncate
cosine, truncate linear }. The preference weight and loss weight range
from O to 1, with a step size of 0.1. The grid-size of Fourier KAN is set
as 1. The group number of GR-KAN is set as 10 and its rational layer is
initialized to behave like an identity function. For all other parameters,
the baseline models follow the optimal configurations reported in their
respective references. To ensure robustness and reduce variance, all
models were evaluated over 5 independent runs with different random

seeds. The best results of all the models are recorded. Additionally, the
statistically significant results (p < 0.05) are confirmed by a paired t-
test against the best baseline model on each dataset, ensuring that the
observed improvement is not attributable to random chance.

4.2. Overall performance

To address RQ1, we conduct an empirical evaluation of overall
performance on the session-based recommendation task across three
real-world e-commerce datasets: Yoochoose 1/64, Diginetica, and Re-
tailrocket. To enhance readability and support consistent cross-dataset
comparisons, we report the average performance of our proposed Dimos
model and all baseline models in terms of Recall, MRR, and NDCG
across varying lengths of the top-K recommendation list, as shown in
Table 3. Additional dataset-specific results and implementation details
are provided in Appendix.

On average, our proposed Dimos model outperforms all baseline
methods across all metrics and datasets, demonstrating its strong gen-
eralization ability. As shown in the last row of Table 3, Dimos achieves
improvements over the best-performing baseline ranging from 1.43% to
2.79% in terms of Recall@K (K =5, 10, 15,20). Similarly, the improve-
ments in MRR@K and NDCG@XK fall within 2.87% to 3.09% and 2.49%
to 3.00%, respectively. These results suggest that Dimos is particularly
effective at ranking the target item higher in the recommendation list,
rather than merely including it. Several design choices contribute to the
superior performance of Dimos.

First, Dimos incorporates explicit and implicit preference learn-
ing modules to balance preference exploitation and exploration. The
exploitation branch learns specific preference representations, while
the exploration branch captures underlying preference distributions.
Serving as the backbone, Bi-MaKAN exhibits strong context modeling
capability for both branches. Specifically, Bi-MaKAN transforms the
latent item embedding space into a sequentially aware hidden state
space, effectively capturing meaningful user behavior patterns. In ad-
dition, the proposed UE-Net adaptively integrates multiple user intents
into a unified preference representation, further enhancing the model’s
capacity for preference learning.

Second, Mamba-based baseline models show competitive perfor-
mance. In particular, RecMamba consistently outperforms RNN-based,
CNN-based, and Transformer-based baselines, achieving the best results
across most metrics. This highlights the potential of Mamba-style struc-
tures in session-based recommendation. Compared to CNN-based mod-
els (Yuan et al., 2019), Mamba benefits from a global receptive field
that enables it to capture the evolution of user preferences throughout
the entire session. In contrast to RNN-based methods (Hidasi et al.,
2016), Mamba employs a selective mechanism that determines which
interactions to retain in memory, enhancing its ability to model long-
range dependencies. Compared to Transformer-based approaches (Kang
and McAuley, 2018), Mamba trains in parallel with superlinear time
complexity and switches to a recurrent mode with linear complexity
during inference, avoiding the quadratic overhead of self-attention
mechanisms.

Third, among generative models, diffusion-based methods (Li et al.,
2024c; Liu et al., 2025a) outperform traditional VAE-based (Wang
et al.,, 2022b), adversarial learning-based (Chen et al., 2024), and
hybrid models (Xie et al., 2021), showcasing their ability to learn com-
pact, high-quality representations in a probabilistic generative manner.
VAE-based models suffer from limited representation capacity and
posterior collapse, while adversarial models face training instability,
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Table 2
Summary of the baseline models.
Category Method Description
Non-neural Pop Pop recommends the most universally popular items to all users, irrespective of
individual preferences. Despite its simplicity and efficiency, POP often serves as a
methods .
fundamental baseline model.

Item-KNN (Sarwar et al., 2001) Item-KNN is a collaborative filtering method that predicts a user’s preference for a
target item by aggregating their interactions with items most similar to it.

CORE-ave (Hou et al., 2022) CORE-ave is a simple yet effective framework for session-based recommendation that
maintains a consistent representation space throughout encoding and decoding,
addressing the issue of inconsistent predictions.

Traditional GRU4Rec (Hidasi et al., 2016) GRU4Rec stacks multiple gated recurrent unit (GRU) layers to encode the session

neural sequence into a final state. It also applies the ranking loss to train the model.

methods NextItNet (Yuan et al., 2019) NextItNet is the CNN-based method that adopts dilated convolutions to increase
receptive fields instead of suboptimal pooling operation.

SASRec (Kang and McAuley, 2018) SASRec introduces causal self-attention network to capture sequential item transition
patterns. It also employs positional encoding and layer normalization to preserve
sequence order and stabilize training,

MSDCCL (Zhu et al., 2024) MSDCCL employs soft and hard denoising strategies to mitigate noise while
preserving informative interactions, coupled with cross-signal contrastive learning to
enhance robustness by contrasting valid signals against noisy counterparts.

GNN-based SRGNN (Wu et al., 2019) SRGNN transforms session sequences into session graphs and applies graph gated
methods neural network to capture pair-wise item transition relations.

CMGNN (Wang et al., 2023a)

CMGNN is a novel contrastive multi-level graph neural network that captures

complex and high-order item transition information.

GSAU (Cao et al., 2025)

GSAU designs a novel objective function to enforce alignment and uniformity

between graph learning module and sequence learning module.

Mamba4Rec (Liu et al., 2024)

Mamba4Rec enhances the basic Mamba block with Transformer techniques for

efficient sequential recommendation.

Mamba-based
methods

RecMamba (Yang et al., 2024b)
EchoMamba4Rec (Wang et al., 2024b)

RecMamba adopts the basic Mamba block to capture long-term user preference.
EchoMamba4Rec enhances Mamba-based models with Fourier transform layer, GLU,

and bi-directional mechanism.

MLSA4Rec (Su and Huang, 2024)

MLSA4Rec combines the basic Mamba block with low-rank decomposition

self-attention to leverage complementary advantages.

SIGMA (Liu et al., 2025b)

SIGMA proposes a partially flipped Mamba with a dense selective gate and a feature

extract GRU, addressing challenges in context modeling and short sequence modeling.

SS4Rec (Xiao et al., 2025)

SS4Rec leverages SSMs to capture the continuous-time dynamics of user interests,

addressing limitations of discrete-time methods in modeling irregularly spaced
interactions.

Traditional ACVAE (Xie et al., 2021)
generative
methods

ContrastVAE (Wang et al., 2022b)

ACVAE incorporates adversarial learning under the AVB framework, contrastive
learning for user personalization, and a convolutional layer to enhance short-term
sequential relationships.

ContrastVAE is a two-branched VAE framework guided by ContrastELBO and

employing model and variational augmentation.

SparseEnNet (Chen et al., 2024)

SparseEnNet is an adversarial method that explores the hidden space to generate

more robust enhanced items in sequence recommendation.

DiffuRec (Li et al., 2024c)

Diffusion-based DiffRec (Wang et al., 2023b)
methods

DiffuRec fuses the target item embedding into the diffusion process to generate
historical interaction representations.
DiffRec corrupts user interaction histories by injecting scheduled Gaussian noise in

the forward process, then iteratively recovers the original interactions using a
parameterized neural network.

L-DiffRec (Wang et al., 2023b)

L-DiffRec compresses high-dimensional user-item interactions into a latent space via

item clustering and variational encoding, then performs the diffusion process in this
compressed space before decoding back to the original interaction dimension for

ranking.
CaDiRec uses conditional generation for augmented views and employs both

CaDiRec (Cui et al., 2024)

preceding and succeeding items for contrastive learning.

PreferDiff (Liu et al., 2025a)

PreferDiff introduces a personalized ranking loss to enhance ranking accuracy and

speed up convergence by focusing on hard negatives in diffusion-based
recommenders.

mode collapse, and convergence issues. Also, their relatively weak
feature extraction capabilities limit them to capture complex behavioral
patterns.

Lastly, consistent with recent findings (Ma et al., 2024a; Qu and
Nobuhara, 2025; Niu et al., 2025; Li et al., 2025b; Benigni et al., 2025),
we observe that not all diffusion-based models achieve competitive
performance. Specifically, models such as DiffRec and L-DiffRec (Wang
et al., 2023b) employ MLP-based denoising networks, which lack se-
quential inductive bias and thus hinder effective distribution learning in
the diffusion process. Furthermore, CaDiRec (Cui et al., 2024) struggles
on datasets with short interaction sequences (Liu et al., 2021), where
contrastive learning based on data-level augmentation (Dang et al.,
2024) is less effective. Based on these insights, our Dimos model omits

contrastive learning and instead adopts Bi-MaKAN as the denoising
network for the diffusion process.

4.3. Ablation studies

To address RQ2, we conduct four groups of ablation experiments de-
signed to evaluate the effectiveness of the overall framework, the struc-
ture of Bi-MaKAN, and the functionality of Bi-MaKAN when serving as
the forward feature encoder and the denoising network. Additionally,
we examine the performance of alternative neural architectures when
used as both the feature encoder and the denoising network. Further-
more, we investigate the effectiveness of our simple linear preference
fusion method. Similarly, to ensure robustness and reduce variance,
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Table 3
Average performance of the examined models across the three datasets.
Models Category @5 @10 @15 @20
Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Pop Non-neural 2.00 1.05 1.28 3.21 1.22 1.67 4.09 1.29 1.91 5.17 1.35 2.16
Item-KNN methods 18.57 11.41 13.09 25.70 12.36 15.39 29.99 12.70 16.53 32.97 12.87 17.23
CORE-ave 43.35 28.45 32.16 53.45 29.81 35.44 59.04 30.25 36.92 62.68 30.46 37.78
GRU4Rec Traditional 42.38 28.22 31.75 52.33 29.56 34.97 57.76 29.99 36.41 61.42 30.19 37.27
NextItNet neural 35.18 22.78 25.86 44.77 24.06 28.96 50.21 24.49 30.40 53.92 24.69 31.27
SASRec methods 43.01 28.99 32.48 53.27 30.37 35.80 58.95 30.82 37.30 62.76 31.03 38.21
MSDCCL 35.61 22.95 26.09 45.41 24.26 29.26 51.11 24.71 30.77 55.07 24.93 31.71
SRGNN GNN-based 42.89 28.42 32.02 52.97 29.77 35.29 58.41 30.20 36.73 62.10 30.41 37.60
CMGNN methods 44.18 29.18 32.91 54.35 30.54 36.21 59.76 30.97 37.64 63.42 31.17 38.50
GSAU 41.25 27.51 30.93 51.37 28.87 34.21 57.01 29.31 35.70 60.88 29.53 36.61
Mamba4Rec 43.56 29.01 32.63 53.49 30.35 35.85 58.91 30.77 37.29 62.51 30.98 38.14
RecMamba 4459 2092 3357 5440 3124 3675 5972 3166 3817 6323 3186  38.99
EchoMamba4Rec Mamba-based 43.48 29.56 33.03 52.76 30.81 36.04 57.75 31.21 37.36 61.16 31.39 38.17
MLSA4Rec methods 43.35 29.31 32.80 52.84 30.58 35.88 58.00 30.99 37.25 61.44 31.18 38.06
SIGMA 42.93 28.67 32.22 52.80 29.99 35.41 58.27 30.42 36.86 61.91 30.63 37.72
SS4Rec 44.17 29.61 33.24 54.02 30.93 36.43 59.39 31.36 37.85 62.99 31.56 38.70
ACVAE Traditional 8.59 3.66 5.07 10.95 4.54 6.12 12.51 5.06 6.66 13.66 5.41 7.05
ContrastVAE generative 1.25 0.74 0.87 1.96 0.82 1.09 2.59 0.87 1.25 3.06 0.90 1.36
SparseEnNet methods 13.44 7.62 9.06 18.95 8.35 10.84 22.72 8.65 11.83 25.59 8.81 12.51
DiffuRec 40.15 27.76 30.85 48.57 28.89 33.58 53.33 29.27 34.84 56.54 29.45 35.60
DiffRec . . 13.18 10.00 10.79 15.68 10.33 11.60 17.14 10.45 11.98 18.19 10.51 12.23
. Diffusion-based
L-DiffRec methods 12.71 8.83 9.79 16.43 9.32 10.98 19.09 9.53 11.69 21.06 9.64 12.15
CaDiRec 12.81 7.25 8.63 18.32 7.98 10.40 22.11 8.28 11.41 24.84 8.44 12.05
PreferDiff 30.20 25.71 26.84 32.60 26.04 27.62 33.88 26.14 27.95 34.75 26.19 28.16
Dimos (Ours) Hybrid method 45.83* 30.85* 34.58* 55.62* 32.16* 37.75* 60.87* 32.58* 39.14* 64.33* 32.77* 39.96*
Improvement 2.79% 3.09% 3.00% 2.24% 2.96% 2.72% 1.86% 2.90% 2.56% 1.43% 2.87% 2.49%
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.
Table 4
Effects of the overall framework.
Dataset Model Explore Exploit Unified @5 @10 @15 @20
branch branch state space
Recall ~ MRR NDCG  Recall ~ MRR NDCG  Recall ~ MRR NDCG  Recall ~ MRR NDCG
w/o explore branch x v X 4408 2739 3154 5556  28.94 3526  60.97 2936 3670 6436 2955  37.50
Yoochoose w/o exploit branch v x X 47.46 2950  33.97  59.53  31.13  37.89 6536  31.60  39.44  68.68 3178  40.22
1/64 w/o unified state space v/ v X 48.08 29.76 34.31 59.90 31.35 38.15 65.62 31.80 39.67 68.95 31.99 40.46
Dimos (Ours) v v v 48.37* 30.07° 34.62* 60.34° 31.69* 38.51° 65.92* 32.13* 39.99* 69.34* 32.32°  40.80"
w/o explore branch x v x 27.33 1597 1879  37.69  17.35 2213 4415  17.86  23.84 4885 1813  24.95
Diginetica w/o exploit branch v X X 3122 1852 2167 4247  20.02 2530 4932 2056 2711 5426 2084  28.28
w/o unified state space v/ v x 2051 1673  19.89 4140 1831 2373 4894 1890 2572 5422 1920  26.97
Dimos (Ours) v v v 31.42° 18.64° 21.81* 42.52° 20.12* 25.39* 49.51* 20.67* 27.24* 54.39"  20.94*  28.39"
w/o explore branch x v X 55.09 4177 4512 6070 4253 4694 6350 4275  47.68 6541 4285 4813
Retailrocket w/0 exploit branch v X X 5677 4286 4635  63.37 4375 4849 = 66.68  44.01  49.37  68.84 4414  49.88
w/o unified state space v/ v x 5558  41.36 4492 6257 4230 4719 6623 4259 4816  68.60 4272 4872
Dimos (Ours) v v v 57.70%  43.83° 47.31" 63.99° 44.68° 49.36* 67.17* 44.93* 50.20° 69.25° 45.05° 50.69"

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.

* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

all models were evaluated over 5 independent runs with different
random seeds. The best results of all the models are recorded. Statistical
significance (p < 0.05) is verified for every ablation study by comparing
against the best ablation model on each dataset.

4.3.1. Effects of the overall framework

The first group of ablation study investigates the impact of key
components in our dual-branch framework. Specifically, we compare
three variants: (1) w/o explore branch, which removes the implicit
preference learning module; (2) w/o exploit branch, which removes the
explicit preference learning module; and (3) w/o unified state space,
which uses separate Bi-MaKAN components to independently model the
sequential state spaces in the two branches.

The results are presented in Table 4. We observe that the perfor-
mance of all variants drops when any component of the full Dimos
framework is removed. The complete model consistently achieves the
best results, demonstrating the effectiveness of its unified architecture.
The performance gains can be attributed to the complementary roles
of the two branches. The explore branch leverages a diffusion-based

generative process to capture implicit user preferences by learning the
underlying distribution of user behavior. In contrast, the exploit branch
focuses on modeling explicit preferences by identifying and integrating
diverse user intents. Moreover, the dual-branch design is a structured
approach to leverage the collaborative strengths of the generative and
discriminative paradigms. Specifically, the explore branch provides a
robust, distributional prior of user preferences, helping to regularize
and generalize the discriminative branch, especially under sparsity.
Conversely, the exploit branch provides strong, instance-specific super-
visory signals, anchoring the generative process to the observed data
and preventing it from diverging into implausible regions. Furthermore,
the shared sequential state space plays a crucial role in maintain-
ing feature consistency across both branches, further contributing to
performance improvements.

Interestingly, the variant without the exploit branch slightly out-
performs the variant without the explore branch. This indicates that
the generative component has a relatively stronger influence on per-
formance. Unlike fixed preference representations, the generative ap-
proach provides a probabilistic view of user behavior, which enhances
robustness and helps mitigate the effects of exposure bias.
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Table 5
Effects of the Bi-MaKAN’s structure.
Dataset Model Shared Fusion Bidirectional @5 @10 @15 @20
Parameter Method Mechanism
Recall MRR NDCG  Recall MRR NDCG  Recall MRR NDCG  Recall MRR NDCG
w/o Bidirectional Mechanism X None X 4.03 1.98 2.49 6.55 2.32 3.31 8.49 2.47 3.82 10.46  2.58 4.28
Yoochoose w/o0 Parameter Sharing X Fourier KAN v 47.83 2972 3423 59.83 31.34 3812 6539 3178 39.60 68.88 31.97 40.42
1/64 MLP fusion v Linear v 47.84 2953 3408 59.97 31.16 38.02 6564 3161 39.52 6899 31.80 40.32
GR-KAN fusion v GR-KAN v 48.27 29.85 3443 60.35° 3148 3836 66.05° 31.93 39.87 69.34 3212  40.64
Fourier KAN fusion v Fourier KAN v 48.37* 30.07* 34.62° 60.34 31.69* 38.51* 6592 32.13* 39.99* 69.34 32.32° 40.80*
w/o Bidirectional Mechanism X None X 29.75 17.56  20.58 40.74 19.02 2413 47.56 19.56 25.93 52.45 19.84  27.09
w/0 Parameter Sharing X Fourier KAN v 31.19 1851 21.65 4219 1998 2521 49.09 20.52 27.04 53.99 20.80 28.19
Diginetica MLP fusion v Linear v 31.20 1862 21.74 4236 20.11 2534 49.29 20.65 27.18 54.33 20.94 28.37
GR-KAN fusion v GR-KAN v 31.59* 18.74* 21.93* 42.79* 20.24* 25.55* 49.72* 20.78* 27.38° 54.64° 21.06" 28.54*
Fourier KAN fusion v Fourier KAN v 3142 18.64 21.81 4252 2012 2539 49.51 20.67 27.24 54.39 20.94 28.39
w/o Bidirectional Mechanism X None X 56.76 43.29 46.68 63.02 44.14 48.71 66.10 44.39 49.53 68.22 44.51 50.03
w/o0 Parameter Sharing X Fourier KAN 4 55.66 41.27 44.88 62.71 42.22 47.17 66.32 42.51 48.12 68.76 42.64 48.70
Retailrocket MLP fusion v Linear 4 57.63 43.55 47.08 63.85 44.39 49.10 67.01 44.64 49.94 69.05 44.75 50.42
GR-KAN fusion v GR-KAN v 57.95* 43.68 47.26 64.27* 44.53 49.32 67.40" 44.78 50.14 69.48* 44.90 50.64
Fourier KAN fusion v Fourier KAN v 57.70  43.83* 47.31% 63.99 44.68" 49.36* 67.17 44.93* 50.20° 69.25 45.05° 50.69*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.

* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

4.3.2. Effects of the Bi-MaKAN’s structure

The second group of ablation study aims to demonstrate the ef-
fectiveness of the Bi-MaKAN’s structure. Specifically, we produce five
variants for comparison, including: (1) w/o Bidirectional Mechanism,
which adopts vanilla Mamba block for feature learning; (2) w/o Pa-
rameter Sharing, which removes the parameter sharing between the
forward Mamba block and the reverse Mamba block; (3) MLP fusion,
which adopts the naive linear projection to fuse the bidirectional con-
textual features; (4) GR-KAN fusion, which adopts the GR-KAN to fuse
the bidirectional contextual features; and (5) Fourier KAN fusion, which
adopts the Fourier KAN to fuse the bidirectional contextual features.

As shown in Table 5, removing parameter sharing and bidirectional
mechanism leads to sub-optimal performance, demonstrating the ef-
fectiveness of both approaches. Specifically, bidirectional mechanism
expands the receptive field to facilitate sequence modeling capacity,
especially for sparser datasets. Additionally, parameter sharing reduces
model complexity and over-fitting risk. Notably, w/o Bidirectional
Mechanism exhibited a pronounced performance collapse on the Yoo-
choose 1/64 dataset, demonstrating the instability of a vanilla Mamba
backbone in Dimos with limited data. This insight motivated the in-
vestigation into the contributions of the denoising network and the
forward feature encoder via subsequent ablation studies.

In terms of three feature fusion methods, MLP-based approach fails
to achieve promising performance, suggesting the superiority of KAN-
based fusion methods. Specifically, KAN adopts the same fully con-
nected architecture as MLPs but differ by placing learnable activation
functions on the edges rather than applying fixed activation functions
at the nodes, as in standard MLPs (Liu et al., 2025c). Therefore,
KAN exhibits less bias toward low-frequency components compared to
MLPs, which are prone to spectral bias and tend to fit low-frequency
features first (Wang et al.,, 2025). However, the recursive computa-
tions in vanilla KAN significantly slows down performance. Moreover,
vanilla KAN requires unique parameters and base functions for each
input-output pair. It leads to exponential growth in parameters and
computation overhead as the network scales (Yang and Wang, 2024).

By adopting 1D Fourier coefficients instead of B-spline coefficients,
Fourier KAN offers easier optimization due to the denser nature of
Fourier coefficients, which operate on a global scale, in contrast to
the local nature of splines. Moreover, the introduced Fourier coeffi-
cients benefits from periodicity, making the functions more numerically
bounded and helping to avoid issues related to going out of the grid.
In terms of GR-KAN, it adopts rational functions instead of B-spline
functions to enhance efficiency. Additionally, by sharing function co-
efficients and base functions across groups of edges, it significantly
reduces computational complexity. Furthermore, its carefully designed
weight initialization strategy maintains consistent activation variance
across layers, improving training stability and performance.
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4.3.3. Effects of the bi-makan as the denoising network

The third group of ablation study is designed to demonstrate the
effectiveness of our Bi-MaKAN as the denoising network. Specifically,
we fix the forward feature encoder as Bi-MaKAN with the Fourier KAN
fusion method and compare the performance of various methods as the
denoising network, including Transformer, GRU, Fourier KAN, MLP,
SU-Net (Liu et al., 2023), Mamba, and our Bi-MaKAN. Notably, these
variants are employed in traditional LDM framework (Rombach et al.,
2022), equivalently removing the implicit preference learning module.
The results are shown in Table 6.

We have the following observations. First, with different neural
networks serving as the denoising network, all variants achieve satis-
factory performance, demonstrating the generalizability of our Dimos
framework with respect to the choice of the denoising network. Second,
the variant with the Bi-MaKAN-based denoising network achieves the
best performance on the Retailrocket dataset, while the variant with the
vanilla Mamba-based denoising network outperforms other methods
on the Yoochoose 1/64 and Diginetica datasets. This highlights the
effectiveness of Mamba-based methods within the Dimos framework.
Third, these variants fail to consistently achieve the best performance
on all the three datasets. One reason is that these generative methods
focus on modeling implicit preferences, while neglecting to capture the
explicit preferences, leading to biased preference learning.

4.3.4. Effects of the Bi-MaKAN as the forward feature encoder

The fourth group of ablation study is designed to demonstrate
the effectiveness of our Bi-MaKAN as the forward feature encoder.
Similarly, we fix the denoising network as Bi-MaKAN with the Fourier
KAN fusion method and compare the performance of various neural
networks used as the forward feature encoder. Notably, following
LDM (Rombach et al., 2022), we further conduct experiments without
using any forward feature encoder as the baseline, denoted as ‘“None”.

From the results as shown in Table 7, we observe that the variant
without forward feature encoder achieves competitive performance
on the Yoochoose 1/64 and Diginetica datasets, demonstrating the
effectiveness of our Bi-MaKAN as the denoising network. Further-
more, the variant with Bi-MaKAN-based forward feature network out-
performs other variants on the Retailrocket dataset, suggesting its
potential to handle the large scaled datasets. Lastly, our Dimos frame-
work outperforms all the variants, indicating that simultaneously learn-
ing both explicit and implicit preferences facilitates more accurate
recommendations.

4.3.5. Evaluation of alternative networks as the backbone

In the fifth group of ablation study, we aim to further investigate the
adaptability between the proposed Bi-MaKAN module and the overall
Dimos framework. Specifically, we simultaneously alter the forward
feature encoder and the denoising network to other neural networks
as mentioned in Section 4.3.3. The results are shown in Table 8.
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Effects of the Bi-MaKAN as the denoising network. For the experimental results on each dataset, the bold-faced number is the best score and the underlined

number is the second best score.

Dataset Denoising @5 @10 @15 @20
Network
Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Transformer 47.69 29.46 34.00 59.68 31.08 37.89 65.48 31.54 39.43 68.77 31.72 40.21
GRU 47.46 29.46 33.94 59.53 31.09 37.85 65.03 31.52 39.31 68.38 31.71 40.11
Fourier KAN 46.34 28.79 33.15 58.16 30.38 36.99 63.67 30.82 38.45 67.11 31.01 39.27
Yoochoose MLP 45.87 28.13 32.54 57.86 29.74 36.43 63.65 30.20 37.96 67.06 30.39 38.77
1/64 SU-Net 48.01 29.61 34.18 60.06 31.24 38.10 65.68 31.68 39.59 69.15 31.88 40.41
Mamba 47.76 29.78 34.25 59.55 31.37 38.08 65.09 31.81 39.55 68.51 32.00 40.36
Bi-MaKAN 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22
Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80*
Transformer 29.54 17.46 20.45 40.66 18.94 24.04 47.73 19.50 25.91 52.70 19.78 27.09
GRU 30.29 17.96 21.01 41.27 19.42 24.56 47.91 19.94 26.32 52.83 20.22 27.48
Fourier KAN 26.67 15.25 18.08 26.67 16.72 21.64 44.68 17.27 23.49 49.74 17.56 24.68
Diginetica MLP 27.02 15.56 18.39 38.06 17.03 21.96 45.18 17.59 23.84 50.40 17.88 25.07
SU-Net 29.87 16.90 20.11 41.54 18.45 23.88 48.98 19.04 25.84 54.14 19.33 27.07
Mamba 30.75 18.26 21.36 41.86 19.74 24.94 48.69 20.28 26.75 53.58 20.55 27.91
Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51
Dimos (Ours) 31.42* 18.64* 21.81* 42.,52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39*
Transformer 56.72 43.10 46.52 63.32 43.99 48.66 66.70 44.26 49.55 68.93 44.38 50.08
GRU 56.71 43.25 46.63 62.76 44.07 48.60 65.67 44.30 49.37 67.56 44.41 49.82
Fourier KAN 55.84 42.35 45.74 62.43 43.24 47.88 65.78 43.51 48.76 68.01 43.63 49.29
Retailrocket MLP 52.16 39.09 42.36 59.19 40.04 44.64 62.89 40.33 45.62 65.36 40.47 46.21
SU-Net 55.62 41.16 44.78 62.63 42.10 47.06 66.16 42.38 48.00 68.59 42.52 48.57
Mamba 57.33 43.21 46.75 63.63 44.06 48.80 66.70 44.30 49.62 68.78 44.42 50.11
Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39
Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68° 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

We have the following observations. First, the variants with Fourier
KAN-based and MLP-based backbones are not as competitive. It is at-
tributed that these non-sequential models struggle to capture dynamic
behavioral patterns, hindering representative underlying distribution
learning. Surprisingly, the variant with vanilla Mamba-based backbone
underperforms other variants due to severe over-fitting, revealing its
potential limitation when applied to small-scale datasets. Moreover, the
variant with widely adopted Transformer-based backbone consistently
fail to achieve promising performance, while the variant with SU-
Net-based backbone gains the best performance on the Yoochoose
1/64 and Diginetica datasets. However, both of them fail to achieve
the improved performance in larger dataset, Yelp. These observations
motivate the design of Bi-MaKAN, which demonstrates competitive
performance across all three datasets. Furthermore, our Dimos consis-
tently outperforms all the variants, highlighting the effectiveness of
integrating explicit and implicit preference learning for session-based
recommendation.

4.3.6. Effects of the preference fusion method

In the sixth group of ablation study, we aim to investigate the effec-
tiveness of the simple linear preference fusion method. Specifically, we
compared our Dimos with two variants adopted MLP and Hadamard
product as preference fusion method, respectively. The results are
shown in Table 9.

We have the following observations. First, the MLP-based fusion
performs remarkably poorly across all datasets. This severe perfor-
mance degradation suggests that a deep, non-linear transformation
of the preference vectors may inadvertently destroy or obfuscate the
distinct, complementary information encoded in each branch, likely
leading to optimization difficulties and loss of critical signals. Second,
the Hadamard product serves as a much stronger baseline, achiev-
ing the second-best performance. However, its consistent suboptimal
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performance compared to our linear method suggests that forcing a
purely multiplicative fusion couples the two signals or amplify noise,
rather than optimally balancing their contributions. Lastly, our simple
linear fusion strategy consistently and significantly outperforms both
non-linear alternatives on every dataset and across all metrics. Its suc-
cess demonstrates that preserving the original structure of the learned
preference representations and allowing for an additive combination is
more effective than enforcing complex and non-linear interactions for
our model.

4.4. Effects of explicit and implicit preference learning modules in training
and inference

To address RQ3, we vary the loss weight ¢ and the preference
weight p from 0 to 1 in increments of 0.1, respectively. Notably, when
setting ¢ = 0 and p = 0, only the implicit preference learning module
works during training and inference. Moreover, when setting { = 1
and p = 1, only the implicit preference learning module works during
training and inference.

From the results as shown in Fig. 3, we observe that setting ¢
as 0 and 1 fails to achieve promising performance, suggesting the
complementary strengths of both preference learning modules during
training. Specifically, the two modules focus on capturing explicit and
implicit user preferences by adopting attention network and DDPM,
respectively. This dual-view preference learning facilitates more robust
preference learning. The sharp performance degradation at extreme ¢
values stems from insufficient gradient signals from one module, lead-
ing to suboptimal feature adaptation in the hidden space. Moreover,
the loss weight ¢ effectively balances the contribution of each module’s
gradients during training. When ¢ varies within the range of 0.5 to
0.7, it achieves a favorable trade-off that prevents either module from
overwhelming the other. We further find that the optimal loss weight is
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Table 7
Effects of the Bi-MaKAN as the forward feature encoder. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.
Dataset Forward @5 @10 @15 @20
Encoder

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG

None 48.11 29.85 34.39 60.03 29.85 38.26 65.60 31.90 39.74 69.09 32.10 40.57
Transformer 47.25 29.13 33.64 59.34 30.77 37.56 65.25 31.23 39.13 68.75 31.43 39.96
GRU 47.26 29.32 33.78 59.10 30.92 37.63 64.79 31.37 39.14 68.07 31.56 39.92
Yoochoose Fourier KAN 46.95 28.95 33.43 58.82 30.55 37.28 64.54 31.00 38.80 68.06 31.20 39.63
1/64 MLP 47.21 28.90 33.45 59.43 30.54 37.42 65.22 31.00 38.95 68.59 31.19 39.75
SU-Net 47.88 29.50 34.07 59.87 31.12 37.96 65.61 31.57 39.49 69.04 31.77 40.30
Mamba 47.75 29.69 34.18 59.71 31.31 38.07 65.36 31.75 39.57 68.73 31.94 40.36
Bi-MaKAN 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22
Dimos (Ours) 48.37* 30.07* 34.62* 60.34° 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80*
None 31.22 18.52 21.67 42.47 20.02 25.30 49.32 20.56 27.11 54.26 20.84 28.28
Transformer 29.80 17.67 20.67 40.84 19.14 24.24 47.82 19.69 26.09 52.84 19.97 27.27
GRU 29.65 17.51 20.52 40.76 18.99 24.10 47.52 19.52 25.89 52.35 19.79 27.04
Fourier KAN 25.06 14.27 16.94 35.77 15.69 20.39 42.64 16.23 22.21 47.63 16.51 23.39
Diginetica MLP 27.78 16.06 18.96 38.98 17.54 22.57 46.17 18.11 24.47 51.30 18.40 25.69
SU-Net 29.56 16.81 19.97 41.04 18.34 23.67 48.29 18.90 25.59 53.43 19.19 26.80
Mamba 31.13 18.49 21.62 42.00 19.94 25.13 48.72 20.47 26.91 53.55 20.74 28.05
Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51
Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39*
None 56.77 42.86 46.35 63.37 43.75 48.49 66.68 44.01 49.37 68.84 44.14 49.88
Transformer 56.56 42.90 46.32 63.03 43.77 48.43 66.30 44.03 49.29 68.44 44.15 49.80
GRU 55.96 42.71 46.04 62.21 43.56 48.07 65.26 43.80 48.88 67.39 43.92 49.38
Fourier KAN 56.07 42.73 46.08 62.65 43.62 48.21 65.96 43.88 49.09 68.21 44.01 49.62
Retailrocket MLP 55.20 41.83 45.18 61.97 42.74 47.38 65.46 43.02 48.30 67.82 43.15 48.86
SU-Net 57.00 42.99 46.51 63.13 43.82 48.50 66.25 44.07 49.33 68.22 44.18 49.80
Mamba 57.21 43.48 46.93 63.39 44.31 48.94 66.46 44.56 49.75 68.56 44.68 50.25
Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39

Dimos (Ours) 57.70* 43.83* 47.31" 63.99* 44.68" 49.36* 67.17* 44.93* 50.20° 69.25°* 45.05* 50.69*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

Table 8
Evaluation of alternative networks as the backbone. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.

Dataset Backbone @5 @10 @15 @20
Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Transformer 46.76 28.84 33.29 58.68 30.44 37.16 64.27 30.88 38.65 67.82 31.08 39.48

GRU 4723 2926 3373 5918  30.87 37.61 6486  31.32 3911 6822 3151  39.91
Fourier KAN  4.34 2.23 2.75 7.08 2.60 3.64 8.74 2.72 4.07 10.85  2.84 4.57

Yoochoose MLP 4.28 2.20 2.71 7.08 2.57 3.62 8.88 2.71 4.09 1071 281 4.52

1/64 SU-Net 4813 2948 3412  60.11  31.09 3801 6570 3154 3949  69.05 31.73  40.28
Mamba 4.03 1.98 2.49 6.55 2.32 3.31 8.49 2.47 3.82 1046 258 4.28
Bi-MaKAN 47.46 2950 3397 5953 3113  37.89 6536  31.60  39.44  68.68  31.78  40.22

Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80*
Transformer 28.34 16.66 19.55 39.08 18.09 23.02 46.03 18.64 24.86 50.98 18.91 26.03

GRU 30.31 17.94 21.00 41.19 19.39 24.52 47.93 19.92 26.30 52.68 20.18 27.42
Fourier KAN 0.33 0.16 0.20 0.64 0.20 0.30 0.83 0.22 0.35 1.00 0.23 0.39
Diginetica MLP 0.35 0.16 0.20 0.60 0.19 0.28 0.85 0.21 0.35 1.05 0.22 0.40
SU-Net 31.39 18.50 21.70 42.10 19.93 25.16 48.76 20.46 26.92 53.53 20.72 28.05
Mamba 29.75 17.56 20.58 40.74 19.02 24.13 47.56 19.56 25.93 52.45 19.84 27.09
Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51
Dimos (Ours)  31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39*
Transformer 54.97 41.73 45.05 61.58 42.62 47.19 64.96 42.89 48.09 67.20 43.01 48.62
GRU 56.52 42.94 46.35 62.75 43.78 48.37 65.82 44.02 49.19 67.89 44.14 49.68
Fourier KAN 1.47 1.11 1.20 1.86 1.16 1.33 2.16 1.19 1.41 2.41 1.20 1.47
Retailrocket MLP 1.44 1.07 1.16 1.89 1.13 1.31 2.16 1.15 1.38 2.41 1.16 1.44
SU-Net 56.41 42.59 46.06 62.47 43.41 48.04 65.59 43.66 48.86 67.65 43.78 49.35
Mamba 56.76 43.29 46.68 63.02 44.14 48.71 66.10 44.39 49.53 68.22 44.51 50.03
Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39

Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20° 69.25° 45.05* 50.69*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.
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Table 9
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Effects of the simple linear preference fusion method. For the experimental results on each dataset, the bold-faced number is the best score and the underlined

number is the second best score.

Dataset

Model

@5 @10 @15 @20
Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Yoochoose MLP-fusion 1.25 0.72 0.85 2.51 0.88 1.25 3.77 0.98 1.58 4.95 1.04 1.86
1/64 Hadamard-fusion  46.58 28.61 33.08 58.23 30.19 36.87 63.90 30.64 38.37 67.48 30.84 39.22
Dimos (Ours) 48.37* 30.07* 34.62* 60.34° 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80*
MLP-fusion 0.03 0.01 0.02 0.10 0.02 0.04 0.21 0.03 0.07 0.29 0.03 0.09
Diginetica Hadamard-fusion 29.16 17.28 20.22 39.63 18.67 23.60 46.25 19.19 25.35 51.00 19.46 26.48
Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39*
MLP-fusion 0.01 0.01 0.01 0.08 0.01 0.03 0.12 0.02 0.04 0.18 0.02 0.05
Retailrocket Hadamard-fusion = 56.40 42.69 46.13 62.42 43.50 48.09 65.43 43.74 48.89 67.44 43.85 49.36
Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69*
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.
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Fig. 3. Performance of Dimos with varying loss weight on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).

0.7 on Yoochoose 1/64, 0.6 on Diginetica, and 0.5 on Retailrocket. In
terms of the preference weight, as shown in Fig. 4, we observe that our
Dimos fails to achieve competitive performance with p = 0, it achieves
the promising performance with p = 1 across all the three datasets.
Specifically, the optimal preference weight is 1 on Yoochoose 1/64, 0.9
on Diginetica, and 0.8 on Retailrocket.

Analysis of the loss weight and the preference weight reveals the
collaborative effect between exploit branch and explore branch. Specif-
ically, we assume that the explore branch expands coverage of implicit
preferences, while the exploit branch captures explicit preferences to
sharpen decision boundaries for critical recommendations (Choi et al.,
2023; Lobashev et al., 2025). Moreover, the dataset scale modulates
the collaboration, aligning with the insights on discriminative and
generative learning paradigms (Ng and Jordan, 2001; Zheng et al.,
2023). The exploit branch, as a discriminative model, directly learns
the decision boundary for next-item prediction from the data. Its per-
formance is highly dependent on data volume: more data provides a
richer and more diverse set of user-item interactions, allowing the
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model to overcome sparsity, refine its attention mechanisms, and cap-
ture more robust explicit patterns. In contrast, the generative explore
branch excels at capturing the underlying data distribution, making it
particularly valuable when observable signals are sparse.

4.5. Hyperparameter sensitivity

To address RQ4, we investigate the impact of the key hyperpa-
rameters on performance, including the Bi-MaKAN stacking layers and
the noise strength. Specifically, the Bi-MaKAN stacking layers and the
noise strength are adjusted within the range of {1, 2, 3, 4} and {1le-
2, le-3, le-4, le-5, le-6}. Furthermore, we investigate the impact of
different noise schedules, including the sqrt noise scheduler, the cosine
noise scheduler, the truncated cosine noise scheduler, and the truncated
linear noise scheduler.
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As shown in Fig. 5, we observe that just one layer can achieve the
best performance on the three datasets, demonstrating the strong rep-
resentation learning capacity of our Bi-MaKAN. Specifically, the bidi-
rectional Mamba blocks facilitate more comprehensive context mod-

performance due to overfitting, while the introduction of excessive
parameters results in lower training efficiency.

Regarding the noise strength parameter 6, Fig. 6 demonstrates
that our proposed Dimos achieves strong performance with a small
5, i.e., le-5. However, performance degrades significantly when &
increases to le-1. Recall that § controls the mean and variance of the
sampling distribution for A, which regulates the discriminative power
of item representations. As § grows, 4 tends to take larger values.

eling, while the parameter sharing ensures consistent feature learn-
ing. Additionally, the KAN-based feature fusion method improves the

learning process for high-frequency features compared to traditional
MLP. Furthermore, stacking more layers can lead to a decrease in
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Fig. 7. Performance of Dimos with varying noise scheduler on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).

Unfortunately, an excessively large 4 introduces substantial noise into
the historical interaction sequences, corrupting the original interactions
and impairing the capacity to precisely infer user preferences.
Regarding the noise scheduler, as shown in Fig. 7, the performance
differences between various noise schedulers are slight, which aligns
with recent empirical findings (Niu et al., 2025; Du et al., 2023).
Specifically, the truncated linear noise scheduler performs well on the
Yoochoose 1/64 and RetailRocket datasets, while the cosine linear

noise scheduler outperforms other noise schedulers on the Diginetica
dataset.
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4.6. User group study

The user group study addresses RQ5, demonstrating that Dimos
can deliver effective recommendations for users with varying levels of
activity. Specifically, we categorize the users in the Diginetica dataset
into three groups based on their activity levels: cold-start users (session
length of 5 or fewer), common users (session length of 5 to 15), and
active users (session length greater than 15). The dataset statistics are
presented in Table 10, which indicate that 71.03% of the users are
classified as cold-start users, 26.94% as common users, and 2.03% as
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Table 10
Statistics of three user groups derived from Diginetica.

Dataset # Sessions # Items # Interactions Avg.session length Avg. action per item Sparsity

Cold-start group 144939 40782 444678 3.07 10.90 99.99%

Common group 54984 41011 462 360 8.41 11.27 99.98%

Active group 4141 23071 82166 19.85 3.56 99.91%

Table 11
Model performance on the three user groups.
Model Cold-start group Common group Active group
@10 @20 @10 @20 @10 @20
Recall ~ MRR NDCG  Recall ~ MRR NDCG  Recall  MRR NDCG  Recall ~ MRR NDCG  Recall ~ MRR NDCG  Recall ~ MRR NDCG

CMGNN 38.10 1893 2347 4717 1956 2576 3562 1561 2030  47.31 16.41 2325 2855  13.12 1676 3650  13.67 1877
GSAU 3408 1527  19.68 4509 1603 2246 3503 1548  20.05 4737 1633 2317 2452 9.9 1335 3418 1062 1578
SS4Rec 3532 17.24 2150 4510  17.92 2397 3480 1589 2032  46.09 1667 2317 2522 1191 1504 3210 1238 1677
DiffuRec 32.61 16.68 2044 4046  17.23 2243 3429 1565 2002 4514 1640 2276 244 2.33 2.36 2.56 2.34 2.39
DiffRec 6.14 4.34 4.77 6.71 4.38 4.92 1417 653 8.32 1887  6.85 9.50 2164 1055 1315 2930  11.07  15.08
PreferDiff 4.48 278 3.18 5.32 2.84 3.39 0.46 0.14 0.21 0.80 0.16 0.30 0.46 0.15 0.22 0.77 0.17 0.29
Bi-MaKAN as denoiser  0.74 0.26 0.37 1.33 0.30 0.52 0.50 0.16 0.24 0.90 0.19 0.34 2592 1266 1578  32.61 1312 17.46
Dual Bi-MaKAN 3665 1854 2282 4514 1913 2497 3664  16.54  21.25 4828  17.35 2419 2418 1157 1455 3130 1207  16.36
Dimos (Ours) 30.30 2020 2449 4820 2075  26.49  37.85 1732 2214 4916  18.11  25.00  29.46 1412  17.50  36.98  14.63  19.38

active users. This distribution reveals that most real-world sessions are
short, making it challenging to capture user behavioral patterns due to
limited contextual information. Subsequently, we explore the perfor-
mance of our Dimos and six representative baseline models, including
three explicit preference modeling methods, i.e., CM-GNN (Wang et al.,
2023a), GSAU (Cao et al., 2025), and SS4Rec (Xiao et al., 2025), and
three implicit preference modeling methods, i.e., DiffuRec (Li et al.,
2024c), DiffRec (Wang et al., 2023b), and PreferDiff (Liu et al., 2025a).
To further valid the effectiveness of our framework, we evaluate two
variants: (1) Bi-MaKAN as denoiser, and (2) Dual Bi-MaKAN. Specifi-
cally, the Bi-MaKAN as denoiser only replaces the denoising network
of DiffuRec with Bi-MaKAN, while the Dual Bi-MaKAN excluding the
implicit preference learning module from Dimos.

Our experimental results across three user groups reveal several
findings regarding recommendation performance under different activ-
ity levels. As shown in Table 11, most baseline models achieve the
best performance on the cold-start group, while performs poorly on
the active group. One reason is that the long session length in the
active group makes it particularly challenging to capture genuine user
preferences.

Among baseline models, three explicit preference modeling meth-
ods consistently outperform three implicit preference modeling meth-
ods across the three user groups. Moreover, two exceptional cases
warrant special discussion. First, DiffRec shows an inverse perfor-
mance trend, where it performs well on the active group and fails
to achieve promising performance on the cold-start group. Second,
DiffuRec demonstrates reasonable performance on cold-start and com-
mon groups, while collapsing dramatically in the active group. These
observations suggest the potential limitations of the MLP-based and
Transformer-based denoising network. Furthermore, the failure of these
generative methods highlights the effectiveness of the forward feature
encoder, which is overlooked by most existing diffusion-based SBRSs, in
capturing accurate user preferences. Notably, Dual Bi-MaKAN demon-
strates its superiority over the three generative baseline models, as
its Bi-MaKAN-based forward feature encoder effectively facilitates the
learning of the representative underlying distribution.

Although Dual Bi-MaKAN outperforms most baseline model in most
cases, it fails to achieve the best performance on the cold-start and
active groups. Our proposed Dimos demonstrates superior performance
across all user groups, achieving the best results in every metric. The
consistent superiority of Dimos highlights the effectiveness of combin-
ing explicit preference modeling with implicit preference modeling.
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4.7. Impact of session length

To address RQ6, we conduct two sets of experiments aimed at
evaluating how session length influences the performance of Dimos.
We first evaluate Dimos and six representative baseline models on the
KuaiRand-Pure dataset, which features a significantly longer average
session length (44.51) compared to the three datasets in Section 4.2,
i.e., Yoochoose 1/64 (4.24), Diginetica (4.85), and Retailrocket (4.30).
KuaiRand-Pure is an emerging recommendation dataset collected from
the recommendation logs of the video-sharing mobile app Kuaishou,
providing a distinct domain.” The overall performance comparison is
summarized in Table 12. In most cases, our Dimos achieves the best per-
formance compared to the baseline models, indicating its effectiveness
of preference learning from long sessions. Notably, on the two ranking
metrics MRR and NDCG, Dimos shows its consistent advantage over all
baselines at all recommendation list lengths. This suggests that Dimos
not only retrieves relevant items but also ranks them more accurately
at the top of the list.

To further investigate how the maximum session length affects per-
formance, we tune the maximum session length among {5, 10, 20, 50,
100 }. The results are presented in Fig. 8. We observe that performance
generally improves as the maximum session length increases from 5
to 20, with the best overall results achieved at 20. However, when
the maximum session length is extended further to 50 or 100, perfor-
mance slightly declines. One reason is that setting too large maximum
session length may introduce noise and irrelevant early interactions,
diminishing the focus on recent relevant behaviors. In summary, our
Dimos benefits from appropriately longer session contexts, highlighting
its parameter efficiency and robustness across a reasonable range of
session lengths.

4.8. Model efficiency

To address RQ7, we first evaluate the overall efficiency of our
Dimos and six representative baseline models on three datasets, includ-
ing three non-diffusion methods, i.e., CM-GNN (Wang et al., 2023a),
GSAU (Cao et al., 2025), and SS4Rec (Xiao et al., 2025), and three
diffusion-based methods, i.e., DiffuRec (Li et al., 2024c), DiffRec (Wang
et al.,, 2023b), and PreferDiff (Liu et al.,, 2025a). Additionally, we
investigate the impact of diffusion steps to demonstrate why our model
is so efficient.

5 https://kuairand.com/
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Table 12

The performance of the examined models on the KuaiRand-Pure dataset.
Models @5 @10 @15 @20

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG

CMGNN 5.70 3.31 3.90 9.40 3.80 5.08 12.67 4.05 5.95 15.71 4.22 6.67
GSAU 5.79 3.29 3.90 9.42 3.76 5.06 12.56 4.01 5.89 15.37 4.17 6.56
SS4Rec 6.36 3.38 4.11 10.63 3.93 5.48 13.88 4.19 6.33 17.05 4.37 7.08
DiffuRec 5.60 3.06 3.68 9.20 3.53 4.83 12.22 3.76 5.63 14.89 3.91 6.26
DiffRec 5.94 2.96 3.69 10.02 3.49 4.99 13.19 3.74 5.83 15.84 3.89 6.46
PreferDiff 2.73 1.40 1.73 3.56 1.52 2.00 4.67 1.60 2.29 5.41 1.65 2.47
Dimos (Ours) 6.62* 3.92% 4.59* 10.58 4.44* 5.86* 14.01* 4.71* 6.76* 17.02 4.88* 7.47*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.
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Fig. 8. Performance of Dimos with varying maximum session length on KuaiRand-Pure.

4.8.1. Overall efficiency

All experiments were conducted on a server equipped with an
Intel(R) Xeon(R) Gold 6426Y CPU and a single NVIDIA GeForce RTX
4090 GPU. To ensure a fair and consistent comparison of training
and inference efficiency, all models were trained and evaluated under
an identical software environment: Python 3.8.10, PyTorch 2.0.0, and
CUDA 11.8. The embedding dimension and batch size are consistently
set to 100 throughout the training process. For each diffusion-based
model, we adopted the optimal number of diffusion steps as reported
in their respective original works. Specifically, the diffusion steps were
set to 32 for DiffuRec, 5 for DiffRec, and 20 for PreferDiff. For our
proposed Dimos, following the results of parameter sensitivity analysis,
we set the diffusion steps to 2 on the Yoochoose 1/64 dataset, 5 on the
Diginetica dataset, and 10 on the Retailrocket dataset. For each epoch,
we evaluate the computational costs, including GPU memory usage,
training duration, inference time, floating point operations (FLOPs),
and the number of model parameters, as summarized in Tables 13 and
14.

Our observations are as follows. First, models based on implicit
preference learning generally exhibit greater efficiency in terms of GPU
memory utilization and training time compared to explicit preference
learning models. Notably, Dimos requires only 7.3% of the GPU mem-
ory and 33.7% of the training time of CMGNN on average across all
datasets. However, this training efficiency often comes at the expense
of longer inference durations—for instance, DiffRec requires over ten
times the inference time of the second-slowest model. Second, Dimos
demonstrates a balanced efficiency in both spatial and temporal dimen-
sions. It maintains GPU memory usage and training time comparable to
diffusion-based models, while achieving inference speeds competitive
with non-diffusion models. This dual advantage stems from the use of
Bi-MaKAN as the backbone, which replaces computationally expensive
self-attention with lightweight Mamba blocks to avoid quadratic time
complexity. Additionally, a parameter-sharing mechanism significantly
reduces memory requirements by eliminating redundant parameter

storage. Third, Dimos exhibits strong scalability as dataset size in-
creases. In contrast to DiffRec, whose inference time escalates rapidly
on larger datasets, Dimos maintains a manageable computational over-
head. This scalability makes Dimos particularly suitable for real-world
deployment. While PreferDiff is the most efficient in terms of run-
time, it consistently underperforms in recommendation effectiveness,
highlighting the trade-off between efficiency and accuracy.

For FLOPs and the number of model parameters, our Dimos model
requires only 0.45M FLOPs, which is dramatically lower than diffusion-
based methods like DiffuRec (156.16M FLOPs) and DiffRec (53.02M
FLOPs). Meanwhile, the model size of Dimos (2.27M) is comparable to
most baseline models, suggesting a favorable space complexity.

4.8.2. Impact of diffusion steps

To validate that the high efficiency of Dimos primarily stems from
its Bi-MaKAN-based denoising network, we evaluate four representative
methods across varying numbers of diffusion steps: (1) Dimos, (2)
Dual Bi-MaKAN, which employs Bi-MaKAN as both the forward feature
encoder and the denoising network, (3) Bi-MaKAN as denoiser only,
which removes the forward encoder, and (4) DiffuRec, the leading
generative baseline.

The results are illustrated in Fig. 9 and we draw the following
observations. First, Dimos and its Bi-MaKAN-based variants consis-
tently outperform DiffuRec even with a small number of diffusion
steps, demonstrating the effectiveness of Bi-MaKAN as a backbone
for diffusion-based SBRSs. Second, the superior efficiency of Dimos
originates from its Bi-MaKAN-based denoising network. Specifically,
by replacing the Transformer-based denoising network in DiffuRec
with Bi-MaKAN, Dimos achieves higher performance with significantly
fewer diffusion steps. Prior studies have highlighted that the number
of diffusion steps substantially affects the performance of diffusion
models (Ulhaq et al., 2022; Lin et al., 2024; Yang et al., 2024c; Li et al.,
2025b). On average, Dimos reaches its peak performance with 53.33
times fewer diffusion steps than DiffuRec. Specifically, Dimos achieves

17
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Table 13
Efficiency performance on the three datasets.
Dataset Method GPU memory (MB) Training time (s) Inference time (s)
CMGNN 13437 506.70 19.05
GSAU 1231 206.27 1.80
Yoochoose SS4Rec 4127 192.97 6.90
1/64 DiffuRec 769 159.00 38.10
DiffRec 1045 17.19 425.67
PreferDiff 747 229.50 5.49
Dimos (Ours) 763 170.72 5.10
CMGNN 13455 961.08 46.42
GSAU 1719 404.25 4.03
SS4Rec 4163 357.01 16.50
Diginetica DiffuRec 1017 299.65 89.20
DiffRec 1399 36.98 863.91
PreferDiff 975 425.64 12.96
Dimos (Ours) 1023 319.03 18.24
CMGNN 12469 1487.75 45.87
GSAU 2401 600.03 4.63
SS4Rec 4173 556.22 15.08
Retailrocket DiffuRec 1181 456.73 81.79
DiffRec 24085 53.54 904.32
PreferDiff 1125 650.56 12.79
Dimos (Ours) 1191 505.67 30.71
Table 14
Floating-point operations and model size of the methods on the Yoochoose 1/64 dataset.
Method CMGNN GSAU SS4Rec DiffuRec DiffRec PreferDiff Dual Bi-MaKAN Dimos (Ours)
FLOPs (M) 3.81 4.84 0.02 156.16 53.02 5.24 0.19 0.45
# model parameters (M) 1.90 14.48 1.98 2.14 10.62 1.96 2.20 2.27
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Fig. 9. Performance of Dimos, Dimos’s two variants, and DiffuRec with varying diffusion steps on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket
(Ret.).
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optimal results at 2 steps on Yoochoose 1/64, 5 steps on Diginetica, and
10 steps on Retailrocket, while DiffuRec requires 160, 80, and over 640
steps on the respective datasets—and still fails to outperform Dimos.
Third, while Dual Bi-MaKAN incorporates Bi-MaKAN for both encoding
and denoising to enhance distribution learning, it suffers from reduced
performance stability and even underperforms on Diginetica. Dimos
further improves upon Dual Bi-MaKAN by introducing an implicit
preference learning module, which enhances both overall effectiveness
and robustness across datasets.

This observed convergence acceleration can be attributed to the the-
oretically grounded design of the Bi-MaKAN backbone. The efficiency-
accuracy trade-off in diffusion models is fundamentally tied to the
representational capacity of the denoising network. Our Bi-MaKAN
addresses the limitations of common backbones in sequence modeling:
it provides linear-complexity, long-range dependency modeling via
Mamba blocks, full bidirectional context via shared-parameter bidirec-
tional processing, and expressive feature fusion via a lightweight KAN.
Consequently, a single denoising step performed by this more powerful
network yields a more accurate estimate of the clean data distribution
than a step performed by a weaker network (e.g., an MLP or a Trans-
former under constrained computational budgets). This higher per-step
fidelity directly translates to the empirical observation that our model
requires drastically fewer steps (2-10) to reach peak performance,
whereas methods with less effective backbones (e.g., DiffuRec) need
orders of magnitude more steps to compensate, yet still may not achieve
the same final quality.

4.9. Visualized case study

To address RQ8, we conduct two sets of visualization experiments
aimed at demonstrating the functions of explicit and implicit pref-
erences, as well as their impact on recommendation lists. First, we
visualize the representations of explicit and implicit preferences learned
by the exploit and explore branches, respectively. For each dataset, we
randomly select a batch of sessions and apply singular value decompo-
sition (SVD) to project the high-dimensional representations of explicit
and implicit preferences into a two-dimensional feature space.

The resulting visualizations are shown in Fig. 10, from which we
draw the following observations and insights. First, by comparing
subfigures (a) and (b), (d) and (e), and (g) and (h), we observe that the
distributions of implicit preferences are more concentrated, whereas
those of explicit preferences are more dispersed. This suggests that
users’ implicit behaviors tend to be more homogeneous and exhibit
shared patterns across sessions, while their explicit feedback reveals
greater diversity and personalization. Second, the lower-left and upper-
right regions of subfigures (c), (f), and (i) show large areas with light
coloration, indicating substantial discrepancies between the prefer-
ence representations learned by the exploit and explore branches. This
finding supports the idea that each branch captures distinct aspects
of user preferences: the explore branch uncovers broad, underlying
behavioral patterns, while the exploit branch focuses on identifying
session-specific or personalized preferences. Additionally, the upper-left
and lower-right regions of the same subfigures also display considerable
light-colored areas, suggesting notable variation within both implicit
and explicit preferences. This intra-preference variability reflects the
complexity and multi-faceted nature of user motivations, even within
the same type of preference.

In the second case study, we compare the recommendation results
from Dimos and its two variants, i.e., w/o explore branch and w/o
exploit branch. We randomly select a session (ID: 104669) from the
Yoochoose 1/64 dataset. For this session, we generate the top-5 recom-
mended items along with their corresponding prediction probabilities
for the three models. The results are shown in Fig. 11.

We observe that three items (IDs: 16034, 16064, and 16071) con-
sistently appear in the top-5 recommendations across all three model
configurations. This convergence indicates a strong consensus signal,
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suggesting these items are highly relevant to the user’s immediate
session context and are reliably captured by both explicit and im-
plicit modeling approaches. Furthermore, we observe that w/o explore
branch uniquely recommends items 16054 and 14723. This implies
these items exhibit a strong, direct correlation with the observed se-
quence of user actions, reflecting short-term and session-specific pat-
terns. Additionally, w/o exploit branch uniquely recommends items
16056 and 16028. This highlights the branch’s capacity for exploratory
discovery, capturing implicit preferences beyond the historical inter-
actions. Finally, our Dimos synthesizes these perspectives into a more
comprehensive recommendation list. It retains the three consensus
items while introducing two unique items (IDs: 16035 and 15953). The
two unique items likely represent a synergistic balance where Dimos
resolves inconsistencies between the immediate session context and
latent preferences. Consequently, the final ranking reflects a calibrated
trade-off: it maintains grounding in the observed context while promot-
ing a balanced set of candidates that bridges short-term relevance and
broader user interest.

In summary, these visualizations highlight the complementary
strengths of the exploit and explore branches in modeling user prefer-
ences. Their combined use offers a more comprehensive understanding
of user behavior, thereby enhancing the effectiveness of session-based
recommendation systems.

5. Related work

This section reviews key related works to contextualize the place-
ment and contribution of Dimos within the broader literature. It begins
with an overview of recent research trends in discriminative and gen-
erative SBRSs, followed by a discussion on the emerging use of Mamba
and diffusion models in the recommender systems domain.

5.1. Session-based recommender systems

SBR has emerged as a prominent research direction, aiming to
capture user preferences by modeling the sequential dependencies and
temporal patterns within item interaction sequences. Unlike traditional
sequential recommendation methods that rely on complete historical
data to build long-term user profiles, SBR emphasizes the current
session context, making it particularly suitable for scenarios involving
new users and real-time dynamic recommendations. However, session
data typically presents unique challenges. The length of sessions—
measured by the number of interactions, is generally short, with the
median session length falling below six items in most widely used
public datasets. Moreover, despite the chronological ordering of items
within sessions, clear sequential behavioral patterns are often lacking.
To address this, some studies have transformed the inherently sequen-
tial session data into various forms of session graphs to better support
preference learning. Following dominant paradigms in the field, ex-
isting SBRS approaches can be broadly categorized into two groups,
as summarized in Table 15: discriminative methods and generative
methods. To offer a more refined taxonomy, this classification is further
organized along two key dimensions: (1) the data structure used for
session representation, and (2) the specific learning strategy adopted
for modeling user preferences.

5.1.1. Explicit preference modeling methods

As the widely adopted paradigm, discriminative SBRSs aim to learn
the representations of user preferences from interactions. Similar to
most sequential recommender systems, sequence learning-based SBRSs
adopt sequential neural networks as backbone to model behavioral pat-
terns from session sequences. These methods assume that the sequential
order of user—item interactions reflect the user preferences, while the
recent interactions are more significant than the older interactions.
Specifically, as one of the pioneering works, GRU4Rec (Hidasi et al.,



W. Li et al. Engineering Applications of Artificial Intelligence 169 (2026) 114131

2 -1 0 1 2 3 4 2 -1 0 1 2 3 4

(d) Implicit preference on Dig. (e) Explicit preference on Dig.

2 2
2 -1 0 1 2 3 2 -1 0 1 2 3

(g) Implicit preference on Ret. (h) Explicit preference on Ret. (i) Correlation matrix on Ret.

Fig. 10. Distribution visualizations of explicit preference and implicit preference representations, along with the visualized corresponding preference correlation
matrices, on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
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Fig. 11. Impact of the explicit and implicit preferences on the recommendation lists. Darker colors indicate higher normalized recommendation scores.
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Table 15
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Overview of representative SBRSs. We summarize them along three dimensions: paradigm, data structure, main approaches.

Paradigm Model Data structure Main approaches
GRU4Rec (Hidasi et al., 2016) Session sequence GRU
NARM (Li et al., 2017) Session sequence GRU, Attention
STAMP (Liu et al., 2018) Session sequence MLP, Attention
NextItNet (Yuan et al., 2019) Session sequence Dilated CNN
PARSRec (Gholami et al., 2022) Session sequence Attention-fused RNN
LSIDN (Zhang et al., 2024a) Session sequence GRU, Attention
MiaSRec (Choi et al., 2024) Session sequence Sparse attention, Attention
SRGNN (Wu et al., 2019) Vanilla session graph, GGNN, Attention
Session sequence
LESSR (Chen and Wong, 2020) Edge-order preserving multigraph, GGNN, GAT, Attention
Shortcut graph, Session sequence
SGNN-HN (Pan et al., 2020) Session star graph, Session sequence GGNN, Attention
GCE-GNN (Wang et al., 2020) Vanilla session graph, GAT, Attention
Global session graph,
Session sequence
FGNN (Qiu et al., 2020) Broadly connected session Weighted GAT, Set2Set (Vinyals et al., 2016)
CGL (Pan et al., 2022a) Vanilla session graph, GGNN, GAT, Attention
Discriminative Global session graph,
method Session sequence
CMGNN (Wang et al., 2023a) Vanilla session graph, GAT, Attention, HCNN
Global session graph,
Hypergraph,
Session sequence
PosRec (Qiu et al., 2022) Vanilla session graph, Position-aware GGNN, Attention
Session sequence
GCARM (Pan et al., 2022b) Vanilla session graph, Global session graph, Graph co-attention network
Session sequence
H3GNN (Yin et al., 2024) Hierarchical hypergraph, HCNN, GCN, Attention
Global session graph
M"3T (Zhuo et al., 2024) Forward session graph, GAT, GRU, Attention
Reverse session graph,
Session sequence
Wang et al. (2024c) Item Knowledge Graph, Heterogeneous graphformer, Attention
Session sequence
RNMSR (Wang et al., 2024e) Similarity-based item-pairwise session graph MLP-based GNN, MLP
MHCL (Guo et al., 2025) Behavior-based global hypergraph, HCNN, Attention
Local session heterogeneous hypergraph
SOFA (Li et al., 2025a) Session sequence Temporal convolutional networks
CVRM (Wang et al., 2018) Session sequence Variational recurrent model
Generative VASER (Zhou et al., 2019) Session sequence Normalizing flows, GRU, Attention
method DCFGAN (Zhao et al., 2022) Session sequence GAN, GRU
PO4ISR (Sun et al., 2024) Session sequence GPT-3.5-turbo, Prompt engineering
VASER-DA (Zhong et al., 2020) Session sequence Normalizing flows, Variational attention,
VASER-VA (Zhong et al., 2020) Deterministic attention, GRU
MMSBR (Zhang et al., 2024b) Session sequence DALL- E, Wasserstein self-attention, Bert,
Hierarchical pivot transformer, GoogLeNet
Mixed LLM-BRec (Jalan et al., 2024) Heterogeneous graph MiniLM-L6-v2, Prompt engineering, Bert, GAT
method LLMGR (Guo et al., 2024) Vanilla session graph LLaMA2-7B, GGNN, Attention,

ALKDRec (Du et al., 2025)
LLM4SBR (Qiao et al., 2025)

Dimos (Ours)

Session sequence
Vanilla session graph

Session sequence

Prompt engineering

GPT-4-turbo, Knowledge distillation
Qwen-7B-Chat, GGNN, Attention,
Prompt engineering

DDPM, Bi-MaKAN, Attention

CNN denotes convolutional neural network. GRU denotes gate recurrent unit. LSTM denotes long short-term memory network. GCN denotes graph convolutional
network. GAT denotes graph attention network. GGNN denotes gated graph neural network. HCNN denotes hypergraph CNN. GAN denotes generative adversarial

network.

2016) constructs session sequences from recent interactions and lever-
ages GRU to capture evolving user preferences. Moreover, by treating
each batch of session sequences as an image, NextltNet (Yuan et al.,
2019) combines masked filters with 1D dilated CNNs to expand re-
ceptive fields, facilitating long-term user preference learning. Recently,
MiaSRec (Choi et al., 2024) introduces frequency encoding to reflect
repeat patterns and adopts sparse attention network to select essential

user intents.
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Although items within sessions are organized chronologically, clear
order patterns are often absent (Wang et al., 2022a; Li et al., 2025c).
For instance, shopping sessions are sometimes unordered, as users
may add a basket of items without following a specific sequence,
e.g., {bread, milk, eggs}. In such unordered sessions, the dependen-
cies among items are based on co-occurrence rather than sequential
order, making traditional sequence models unsuitable for capturing
the hidden relationships. Consequently, some SBRSs first transform
session sequences into various session graphs to represent complex
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contextual relationships among items, then adopt random walk and
graph neural networks to learn item features. Specifically, SRGNN (Wu
et al., 2019) transforms session sequences into vanilla session graphs
and adopts GGNN to learn item features. Moreover, M>T (Zhuo et al.,
2024) integrates the sequence-view information and the graph-view
information of items in a session, highlighting the ambiguity between
cross-view features. Additionally, RNMSR (Wang et al., 2024e) con-
structs the similarity-based item-pairwise session graph to capture the
dependencies within the session. Recently, MHCL (Guo et al., 2025)
leverages graph learning on the session heterogeneous hypergraph
and the multi-behavior line graph to capture user preferences. Fur-
thermore, SOFA (Li et al., 2025a) designs a session-oriented fairness-
aware algorithm to achieve global-oriented fairness by maximizing
session-oriented fairness while maintaining high session utilities.

5.1.2. Implicit preference modeling methods

As another paradigm, generative SBRSs adopt variational autoen-
coders, normalizing flows, adversarial learning, and LLMs to learn the
underlying distribution for preference modeling. Although relatively
few works have been proposed in this direction, they have demon-
strated promising performance. Specifically, CVRM (Wang et al., 2018)
employs the stochastic latent variable to capture the knowledge of fre-
quent click patterns and impose variability for the sequential behavior
modeling. Moreover, VASER (Zhou et al., 2019) integrates normalizing
flows and variational inference for enhanced probabilistic modeling.
Additionally, DCFGAN (Zhao et al.,, 2022) integrates reinforcement
learning to leverage immediate user feedback and employs adversarial
training combined with enhanced negative sampling to improve rec-
ommendation performance. Furthermore, PO4ISR (Sun et al., 2024)
discovers varying numbers of semantic intents hidden in different ses-
sions for more accurate and comprehensible recommendations through
iterative prompt optimization.

5.1.3. Combining explicit with implicit preference modeling

Despite some progress achieved by existing discriminative and gen-
erative methods, most of them still fall short of delivering significantly
improved performance. Specifically, discriminative methods are often
hindered by data sparsity and exposure bias, while generative methods
suffer from limited representation capacity and training instability (Lin
et al., 2024). Consequently, some works integrate both paradigms to
learn preference representations. Specifically, VASER-VA (Zhong et al.,
2020) introduces soft attention as auxiliary latent features to enhance
the effectiveness of variational inference. Moreover, SessionRec (Huang
et al., 2025) addresses the fundamental misalignment between conven-
tional next-item prediction paradigm and real-world recommendation
scenarios. Additionally, MMSBR (Zhang et al., 2024b) models multi-
modal information including descriptive information, i.e., images and
text, and numerical information, i.e. price, to characterize user pref-
erences. Moreover, ALKDRec (Du et al., 2025) is an active LLM-based
knowledge distillation Recommendation method for a sustainable and
effective solution to SBR. Furthermore, LLM4SBR (Qiao et al., 2025)
integrates semantic and behavioral signals from multiple views. We
can find that most existing mixed methods strive to unlock the power
of large pre-trained models for preference learning. While prompt
engineering offers benefits in efficiency and usability, it also presents
several limitations. Specifically, its effectiveness is highly contingent on
the quality of manually crafted prompts, which frequently necessitate
extensive trial and error (Sahoo et al., 2024). Moreover, compared to
full training, prompt engineering affords less flexibility, restricting the
model’s adaptability (Chen et al., 2023).
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5.2. Sequential recommendation with Mamba

As a promising sequential neural network, Mamba shows superior
performance in different areas (Wang et al., 2024a), such as lan-
guage modeling and image restoration. Mamba have recently emerged
as a powerful backbone for sequential recommender systems. Specif-
ically, Mamba4Rec (Liu et al., 2024) introduces a vanilla Mamba
block to replace the self-attention component of the standard trans-
former encoder, whereas RecMamba (Yang et al., 2024b) substitutes
the entire transformer encoder with the vanilla Mamba block. More-
over, EchoMamba4Rec (Wang et al., 2024b) introduces a bidirectional
Mamba module that integrates both forward and reverse Mamba com-
ponents, enabling the model to utilize information from past and
future interactions. Additionally, SSD4Rec (Qu et al., 2024) marks
the variable- and long-length item sequences with sequence registers
and processes the item representations with bidirectional structured
state space duality blocks. Furthermore, SIGMA (Liu et al., 2025b)
introduces a bidirectional, partially flipped Mamba that incorporates
a well-designed dense selective gate to assign weights to each di-
rection, thereby addressing challenges in context modeling. Recently,
SS4Rec (Xiao et al., 2025) integrates a time-aware SSM to manage
irregular time intervals and a relation-aware SSM to capture contex-
tual dependencies. While Mamba has shown promise in discriminative
settings for sequential recommendation, its capabilities in generative
paradigms for SBR are yet to be systematically investigated.

5.3. Sequential recommendation with diffusion models

Recently, diffusion models have emerged as the state-of-the-art
in generative modeling paradigms, demonstrating promising perfor-
mance across various domains such as computer vision (Fuest et al.,
2024), natural language processing (Yang et al., 2024c), and recom-
mender systems (Lin et al., 2024). Compared to VAEs and GANSs,
the denoising process in diffusion models enhances their ability to
capture multi-grained feature representations and to generate high-
quality samples (Lin et al., 2024). Particularly, Compared to traditional
approaches, diffusion-based recommender systems effectively address
challenges related to insufficient collaborative signals, weak latent
representations, and noisy data (Lin et al., 2024).

Some diffusion-based works focus on designing effective denois-
ing networks to improve recommendation performance. Specifically,
DiffuRec (Li et al., 2024c) and DiffRec (Du et al., 2023) introduce Trans-
former encoder as denoising network, while T-DiffRec (Zhao et al.,
2024) and MISD (Li et al., 2024a) adopt MLP-based denoising network.
Moreover, DiffuASR (Liu et al., 2023) treats the sequence dimension as
the image channel to adapt the U-Net-based denoising network, allow-
ing it to preserve sequential information while effectively predicting
the added noise. Other works adopt diffusion models to generate high-
quality data for sequential recommendation. Specifically, CaDiRec (Cui
et al.,, 2024) employs a context-aware diffusion model to generate
alternative items for the given positions within a sequence. Addi-
tionally, Diff4Rec (Wu et al., 2023) employs a curriculum-scheduled
diffusion augmentation method to generate user—item interactive data.
Recent works focus on applying diffusion models within various latent
spaces to reduce computational resource requirements while main-
taining their quality and flexibility. Specifically, DiffRIS (Niu et al.,
2024) and IDSRec (Niu et al., 2025) incorporate implicit feature ex-
traction into the diffusion process to resist noisy interactions. Moreover,
DiQDiff (Mao et al., 2025) quantizes sequences into semantic vectors
based on a codebook, extracting robust guidance to understand user
interests. Furthermore, SeeDRec (Ma et al., 2024b) enhances the dif-
fusion objective and maintains low computational costs by elevating
it from the item level to the sememe level. Despite some success,
existing diffusion-based sequential recommender systems still rely on
sub-optimal forward feature encoder and denoising network, hindering
the ability to achieve full potential in performance.
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6. Discussion and conclusion

This study explores the application of diffusion models in the
session-based recommendation task, serving as a response to the future
research directions outlined in DiffuRec (Li et al., 2024c). In this paper,
we propose a novel framework Dimos, which integrate explicit and
implicit preference learning to improve recommendation performance.
Moreover, we tailor Dimos’s backbone as Bi-MaKAN, which adopts a
pair of bidirectional Mamba blocks with shared parameters to increase
the receptive field for better item feature learning, while alleviating
over-fitting. Furthermore, we introduce the KAN-based method to
fuse the bidirectional features effectively and efficiently. Extensive
experiments conducted on three real-world datasets demonstrate that
Dimos can achieve the state-of-the-art performance. Three groups of
ablation studies validate the effectiveness of the overall framework, the
structure of Bi-MaKAN, and the preference fusion method, respectively.
The subsequent three groups of ablation studies confirm the suitability
of Bi-MaKAN within Dimos. Particularly, based on the results of effi-
ciency experiments, we empirically find that adopting Bi-MaKAN can
significantly reduce the number of diffusion steps, thereby improving
the efficiency of Dimos.

We acknowledge several threats to the validity of our findings. First,
while the present work focuses on session-based recommendation, it is
worth noting that recent research has expanded into lifelong sequential
recommendation, which deals with extremely long and evolving user
histories (Yang et al., 2024b). The architectural design of our model,
particularly its efficient sequential modeling capability, makes it a
promising candidate for this challenging setting. To realize this poten-
tial for lifelong sequences, specific modifications would be required
to address its distinct characteristics. Second, this study focuses on
sequential IDs, integrating rich side information (e.g., multi-modal
features, social context) could alter the learning dynamics between
branches.

The current work opens several avenues for future research. First,
exploring a more formal theoretical foundation for the proposed model
constitutes a promising research direction, such as analyzing its con-
vergence properties or representational capacity from the perspec-
tives of dynamical systems or information theory. Second, while the
current study employs a static, tunable weight for preference fusion
to ensure interpretability, developing dynamic and context-aware fu-
sion methods, such as those based on gating networks or user profile
conditioning, presents a promising direction to further enhance the
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model’s adaptability. Finally, to rigorously validate the practical effi-
cacy and business impact of Dimos, performing rigorous A/B testing
in real-world, large-scale recommendation platforms is a crucial next
step. This will allow us to assess its performance under dynamic,
production-environment conditions, including user engagement metrics
and long-term satisfaction, beyond offline accuracy.
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Appendix. Overall performance compared with baseline models
The performance of Dimos is compared with that of competing

baseline models on the Yoochoose 1/64, Diginetica, and Retailrocket
datasets in Tables A.16, A.17, and A.18, respectively.

Table A.16
Recommendation performance of examined models on the Yoochoose 1/64 dataset.

Models Category @5 @10 @15 @20

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Pop Non-neural 5.04 2.69 3.25 7.95 3.09 4.21 10.07 3.26 4.77 12.69 3.40 5.38
Item-KNN methods 26.70 16.83 19.17 35.41 18.01 22.01 39.96 18.37 23.22 42.87 18.53 23.91
CORE-ave 44.79 26.60 31.12 57.05 28.25 35.10 63.19 28.74 36.73 66.80 28.95 37.59
GRU4Rec Traditional 45.72 27.93 32.36 57.87 29.57 36.30 63.69 30.03 37.84 67.22 30.23 38.68
NextItNet neural 40.07 23.62 27.70 52.13 25.23 31.61 58.21 25.71 33.22 62.04 25.93 34.12
SASRec methods 47.09 28.96 33.46 59.44 30.62 37.47 65.43 31.10 39.06 69.03 31.30 39.92
MSDCCL 44.13 26.36 30.77 56.51 28.02 34.79 62.71 28.52 36.43 66.48 28.73 37.32
SRGNN GNN-based 46.18 28.13 32.61 58.43 29.78 36.59 64.26 30.24 38.14 67.79 30.44 38.97
CMGNN methods 47.73 29.34 33.91 60.01 30.99 37.90 65.70 31.44 39.40 69.22 31.64 40.24
GSAU 46.23 28.50 32.91 58.17 30.11 36.79 63.97 30.57 38.32 67.71 30.78 39.21
Mamba4Rec 46.57 28.31 32.85 58.79 29.96 36.82 64.70 30.43 38.39 68.23 30.63 39.22
RecMamba 47.04 28.89 33.40 58.91 30.49 37.26 64.61 30.94 38.77 68.01 31.13 39.57
EchoMamba4Rec Mamba-based 45.44 28.25 32.52 56.99 29.82 36.28 62.40 30.25 37.72 65.91 30.44 38.55
MLSA4Rec methods 45.72 28.63 32.88 57.25 30.18 36.62 62.86 30.63 38.11 66.25 30.82 38.91
SIGMA 46.48 28.35 32.86 58.69 30.00 36.82 64.58 30.46 38.39 68.15 30.67 39.23
SS4Rec 47.18 28.80 33.37 59.30 30.44 37.31 65.23 30.91 38.88 68.80 31.11 39.72

(continued on next page)
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Table A.16 (continued).

Models Category @5 @10 @15 @20

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
ACVAE Traditional 14.36 3.12 4.19 15.27 3.67 6.00 15.58 3.98 7.07 15.74 4.20 7.94
ContrastVAE generative 3.26 1.97 2.29 5.08 2.19 2.86 6.73 2.31 3.29 7.86 2.38 3.55
SparseEnNet methods 22.83 13.60 15.89 29.97 14.55 18.20 34.25 14.89 19.33 37.24 15.06 20.03
DiffuRec 43.38 26.68 30.83 55.02 28.25 34.61 60.94 28.72 36.18 64.55 28.92 37.03
DiffRec Diffusion- 30.52 24.13 25.72 35.23 24.76 27.24 37.80 24.96 27.92 39.66 25.06 28.36
L-DiffRec based 19.13 13.07 14.56 24.74 13.81 16.37 28.79 14.13 17.44 31.56 14.29 18.09
CaDiRec methods 22.12 13.10 15.33 29.54 14.09 17.73 34.07 14.45 18.94 37.13 14.62 19.66
PreferDiff 34.57 26.16 28.26 39.01 26.77 29.71 41.17 26.94 30.28 42.46 27.02 30.59

Dimos (Ours) Hybrid method 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

Table A.17

Recommendation performance of examined models on the Diginetica dataset.
Models Category @5 @10 @15 @20

Recall MRR NDCG  Recall MRR NDCG  Recall MRR NDCG  Recall MRR NDCG

Pop Non-neural 0.52 0.23 0.30 0.95 0.29 0.44 1.29 0.32 0.53 1.59 0.33 0.60
Item-KNN methods 19.27 11.05 13.01 28.34 12.25 15.94 34.48 12.73 17.56 38.99 12.98 18.63
CORE-ave 30.65 18.27 21.34 41.39 19.70 24.81 48.21 20.23 26.61 53.02 20.51 27.75
GRU4Rec Traditional 26.98 15.57 18.39 37.98 17.03 21.94 45.00 17.58 23.80 50.14 17.87 25.01
NextItNet neural 20.11 11.10 13.33 29.74 12.38 16.43 36.16 12.89 18.13 40.92 13.15 19.25
SASRec methods 28.76 16.91 19.85 39.93 18.40 23.45 47.04 18.96 25.33 52.23 19.25 26.56
MSDCCL 19.53 10.67 12.86 29.31 11.96 16.01 36.07 12.49 17.79 41.35 12.79 19.04
SRGNN GNN-based 27.85 16.23 19.10 38.91 17.70 22.67 45.93 18.25 24.53 51.10 18.54 25.75
CMGNN methods 29.34 17.06 20.10 40.63 18.56 23.75 47.65 19.12 25.60 52.73 19.40 26.80
GSAU 27.55 16.08 18.92 38.48 17.53 22.45 45.62 18.09 24.34 50.79 18.39 25.56
Mamba4Rec 28.31 16.46 19.39 39.43 17.94 22.98 46.36 18.48 24.81 51.44 18.77 26.01
RecMamba 30.07 17.71 20.77 41.17 19.18 24.35 48.19 19.73 26.21 53.12 20.01 27.37
EchoMamba4Rec = Mamba-based 29.49 17.67 20.60 40.03 19.07 24.00 46.62 19.59 25.74 51.38 19.85 26.87
MLSA4Rec methods 28.62 16.86 19.77 39.37 18.29 23.24 46.11 18.82 25.03 50.94 19.09 26.17
SIGMA 27.05 15.88 18.64 37.84 17.31 22.12 44.92 17.87 23.99 50.03 18.15 25.20
SS4Rec 29.29 17.60 20.50 40.05 19.03 23.97 46.81 19.56 25.76 51.84 19.84 26.94
ACVAE Traditional 8.02 5.42 7.35 12.68 7.01 8.33 16.02 7.95 8.74 18.58 8.60 8.97
ContrastVAE generative 0.34 0.17 0.21 0.54 0.19 0.27 0.74 0.21 0.33 0.93 0.22 0.37
SparseEnNet methods 11.22 5.78 7.12 17.80 6.65 9.24 22.94 7.05 10.60 27.11 7.29 11.58
DiffuRec 28.17 16.60 19.46 38.78 18.01 22.89 45.57 18.54 24.68 50.49 18.82 25.85
DiffRec Diffusion- 6.15 3.77 4.36 8.44 4.07 5.09 9.90 4.19 5.48 10.97 4.25 5.73
L-DiffRec based 17.13 12.10 13.35 22.04 12.75 14.92 25.48 13.02 15.83 28.10 13.16 16.45
CaDiRec methods 11.35 5.90 7.24 18.16 6.80 9.43 23.37 7.20 10.81 27.36 7.43 11.75
PreferDiff 20.19 15.84 16.93 22.49 16.15 17.68 23.85 16.26 18.04 24.95 16.32 18.30
Dimos (Ours) Hybrid method 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

Table A.18

Recommendation performance of examined models on the Retailrocket dataset.
Models Category @5 @10 @15 @20

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG

Pop Non-neural 0.44 0.23 0.28 0.72 0.27 0.37 0.90 0.29 0.42 1.24 0.31 0.50
Item-KNN methods 9.75 6.36 7.08 13.35 6.83 8.22 15.53 7.00 8.80 17.05 7.09 9.15
CORE-ave 54.60 40.49 44.03 61.92 41.48 46.40 65.73 41.78 47.41 68.22 41.92 48.00
GRU4Rec Traditional 54.44 41.17 44.50 61.14 42.08 46.67 64.58 42.35 47.59 66.89 42.48 48.13
NextItNet neural 45.36 33.61 36.54 52.45 34.56 38.84 56.27 34.86 39.85 58.79 35.00 40.45
SASRec methods 53.18 41.11 44.12 60.45 42.08 46.48 64.37 42.40 47.52 67.02 42.54 48.15
MSDCCL 43.18 31.82 34.65 50.41 32.79 36.99 54.55 33.11 38.09 57.38 33.27 38.76
SRGNN GNN-based 54.65 40.90 44.35 61.56 41.84 46.60 65.05 42.11 47.52 67.40 42.25 48.07
CMGNN methods 55.46 41.14 44.73 62.40 42.07 46.98 65.92 42.35 47.91 68.30 42.48 48.47
GSAU 49.97 37.95 40.95 57.47 38.96 43.38 61.45 39.27 44.43 64.14 39.43 45.07

(continued on next page)

24



W. Li et al.

Table A.18 (continued).
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Models Category @5 @10 @15 @20

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG
Mamba4Rec 55.80 42.27 45.66 62.26 43.14 47.76 65.66 43.41 48.66 67.87 43.54 49.18
RecMamba 56.65 43.17 46.55 63.11 44.05 48.65 66.37 44.31 49.52 68.55 44.43 50.03
EchoMamba4Rec Mamba-based 55.51 42.77 45.97 61.26 43.54 47.83 64.24 43.78 48.63 66.19 43.89 49.09
MLSA4Rec methods 55.70 42.43 45.76 61.91 43.27 47.78 65.04 43.52 48.61 67.14 43.63 49.10
SIGMA 55.25 41.77 45.15 61.87 42.66 47.30 65.31 42.93 48.21 67.55 43.06 48.74
SS4Rec 56.03 42.43 45.84 62.72 43.33 48.01 66.12 43.60 48.91 68.34 43.72 49.44
ACVAE Traditional 3.38 2.43 3.67 4.89 2.95 4.03 5.92 3.25 4.17 6.67 3.44 4.25
ContrastVAE generative 0.15 0.08 0.10 0.26 0.09 0.13 0.31 0.09 0.14 0.40 0.10 0.16
SparseEnNet methods 6.27 3.47 4.16 9.08 3.85 5.07 10.98 4.00 5.57 12.42 4.08 5.91
DiffuRec 48.89 40.01 42.26 51.92 40.42 43.24 53.48 40.54 43.66 54.59 40.61 43.92
DiffRec Diffusion- 2.86 2.10 2.29 3.37 2.17 2.46 3.71 2.20 2.54 3.95 2.21 2.60
L-DiffRec based 1.86 1.31 1.45 2.50 1.40 1.66 3.00 1.44 1.79 3.52 1.47 1.91
CaDiRec methods 4.97 2.76 3.31 7.25 3.06 4.04 8.89 3.19 4.47 10.03 3.26 4.74
PreferDiff 35.85 35.14 35.32 36.30 35.20 35.46 36.61 35.22 35.54 36.85 35.24 35.60
Dimos (Ours) Hybrid method 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69*

For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (p < 0.05) based on a paired t-test.

Data availability

Data will be made available on request.
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