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 A B S T R A C T

Session-based recommendation aims to predict the next item based on the user–item interactions within the 
current session. Many existing methods adopt discriminative approaches to learn specific preference repre-
sentations, while few methods introduce generative approaches to learn underlying preference distributions, 
failing to handle limited and noisy interactions effectively. Moreover, naive implementations of generative 
models face a trade-off between effectiveness and efficiency, limiting their practical utility. To address these 
challenges, we propose Dimos, a dual-branch framework comprising an exploring branch and an exploiting 
branch, which leverage diffusion models and attention networks to capture implicit and explicit preferences, 
respectively. At the core of Dimos is Bi-MaKAN, a novel backbone architecture featuring a pair of parameter-
sharing bidirectional Mamba blocks and a Kolmogorov–Arnold network-based feature fusion layer, designed to 
enhance both performance and efficiency. To further improve generalization and reduce overfitting, we unify 
the sequential state spaces of both branches. Additionally, we introduce a linearly weighted fusion mechanism 
that integrates preference representations from both branches, enabling flexible adjustment of implicit and 
explicit preference contributions during training and inference. Extensive experiments on three real-world 
benchmark datasets demonstrate the superiority of Dimos, achieving up to 2.79% improvement in Recall, 
3.09% in Mean Reciprocal Rank (MRR), and 3.00% in Normalized Discounted Cumulative Gain (NDCG) over 
state-of-the-art baselines. Efficiency evaluations show substantial gains, with reductions of 94.32% in Graphics 
Processing Unit (GPU) memory usage, 66.81% in training time, and 98.80% in inference time. In-depth analyses 
reveal a collaborative effect between the two branches during both training and inference, with dataset scale 
modulating their relative importance.
1. Introduction

Session-based recommendation (SBR) aims to capture the dynamic 
evolution of user preferences within individual sessions and represents 
a critical subfield of sequential recommendation research (Wang et al., 
2022a; Li et al., 2025c). While session-based recommender systems 
(SBRSs) have shown great potential in enhancing user experiences 
on online platforms (Feng et al., 2019), their effectiveness is often 
hindered by limited contextual information and inherently noisy user 
interactions. One major challenge stems from strict privacy policies, 
which prevent access to rich user data, such as detailed profiles or 
long-term interaction histories, thus complicating the design of accurate 
and personalized SBRSs (Li et al., 2025c). Additionally, session lengths 
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are typically short, with the median number of interactions per session 
being fewer than six in most widely used benchmark datasets (Li et al., 
2025c). Compounding this issue, user behavior during sessions can be 
erratic or exploratory, leading to incidental or irrelevant interactions 
that introduce noise and undermine recommendation accuracy (Wang 
et al., 2022a).

Many SBRSs adopt discriminative approaches to address these chal-
lenges. Specifically, some works adopt sequential modeling methods to 
capture user behaviors, such as recurrent neural networks (RNNs) (Hi-
dasi et al., 2016) and Transformers (Choi et al., 2024). Other ap-
proaches represent session sequences as graphs and apply graph-based 
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learning methods to model spatial dependencies among items, includ-
ing graph attention networks (GATs) (Lv et al., 2025) and gated graph 
neural networks (GGNNs) (Lin et al., 2025). Despite their success, these 
discriminative methods often struggle with limited and noisy session 
interactions, as they rely heavily on ground-truth labels to learn explicit 
user preferences (Ng and Jordan, 2001; Zheng et al., 2023). This depen-
dency limits their generalizability in real-world scenarios, where user 
behavior is uncertain and evolving (Li et al., 2024c), making it difficult 
to estimate user intent in real-time. To overcome these limitations, 
generative approaches have been explored, modeling preferences as 
probabilistic distributions rather than fixed representations. Methods 
based on variational autoencoders (VAEs) (Wang et al., 2022b) and 
adversarial learning (Chen et al., 2024) aim to capture implicit prefer-
ences by learning latent variables that reflect underlying user interests. 
However, such generative methods face notable challenges, including 
posterior collapse in VAEs (Zhao et al., 2019) and training instability 
in adversarial setups (Becker et al., 2022), which hinder their practical 
performance and adoption.

Diffusion models have recently emerged as a powerful generative 
framework for recommendation, offering strong probabilistic modeling 
capabilities and high-quality representation learning. Originally devel-
oped for tasks such as semantic segmentation (Tian et al., 2024) and 
image editing (Tumanyan et al., 2023), they are now gaining traction 
in the recommendation domain, including applications in sequential 
recommendation (Zhao et al., 2024; Yang et al., 2024a; Wang et al., 
2024d; Li et al., 2024c; Xie et al., 2024; Gupta et al., 2024), where 
the goal is to capture users’ evolving preferences over time. How-
ever, existing diffusion-based recommender systems often adopt Trans-
formers (Vaswani et al., 2017) or U-Net architectures (Ronneberger 
et al., 2015) as the backbone for the denoising process, both of which 
present significant limitations. U-Net, originally designed for image 
tasks, struggles with modeling sequential dependencies due to its equiv-
ariance constraints (Lenc and Vedaldi, 2019) and limited receptive 
field, which hinders its ability to capture global user preferences (Li 
et al., 2024c). Transformers, while effective in sequence modeling, 
suffer from quadratic complexity in the self-attention mechanism, mak-
ing them computationally expensive and less scalable in large-scale 
recommendation scenarios (Liu et al., 2024). These challenges high-
light the need for alternative backbones that can better balance ef-
fectiveness and efficiency in diffusion-based SBRSs. This motivates 
the exploration of lightweight, sequentially expressive, and compu-
tationally scalable architectures tailored to the unique constraints of 
session-based recommendation.

Another key challenge in applying diffusion models to SBR lies in 
the underutilization of feature encoders during the forward diffusion 
process, which limits the model’s ability to learn meaningful under-
lying preference distributions. While prior works have made progress 
by optimizing sampling strategies (Song et al., 2021; Zhang et al., 
2023), designing noise schedulers (Nichol and Dhariwal, 2021; Kingma 
et al., 2021), and exploring alternative noise types (Bansal et al., 
2023; Qi et al., 2024; Ma et al., 2025), these enhancements still 
struggle to achieve an effective balance between generation quality 
and computational efficiency (Yang et al., 2024c), leaving room for 
further innovation. Inspired by the success of latent diffusion models 
(LDMs) (Rombach et al., 2022), several recent approaches shift the 
diffusion process from the raw entity space to a learned latent feature 
space, improving inference efficiency. However, these methods often 
depend on large pre-trained models, which are expensive to train and 
fine-tune. This issue is further exacerbated in recommendation settings, 
where widely used ID features are far less expressive and general than 
natural language or visual inputs, thereby limiting the applicability and 
reusability of foundation models developed in other domains. To reduce 
deployment costs, some studies (Li et al., 2024c; Yang et al., 2023) have 
proposed initiating the diffusion process directly from simple initial 
features. However, these naive feature encodings lack essential prior 
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knowledge, making it more difficult for the model to effectively learn 
user preferences, especially in short and noisy session contexts.

To address these challenges, we propose Dimos, a Diffusion Model 
with Unified Sequential State Space for SBR. Dimos features a dual-
branch architecture that captures user preferences from both explicit 
and implicit perspectives. The exploiting branch employs attention 
networks to extract explicit preferences directly from user–item in-
teractions, while the exploring branch leverages a latent diffusion 
model to uncover implicit preferences beyond observed behavior. This 
dual-view representation learning promotes a more comprehensive 
understanding of user intent. At the core of Dimos is a novel backbone 
module, Bi-MaKAN, designed to enhance both performance and effi-
ciency. It consists of a pair of parameter-sharing bidirectional Mamba 
blocks, coupled with a Kolmogorov–Arnold network (KAN)-based fea-
ture fusion layer. Compared to standard Mamba, the bidirectional 
design enables the model to incorporate both past and future ses-
sion interactions, improving its contextual modeling capabilities. The 
parameter-sharing mechanism not only reduces model complexity but 
also helps mitigate overfitting. The KAN-based feature fusion layer 
integrates features from forward and reverse session contexts, lever-
aging its strong capacity to model complex, nonlinear relationships 
in high-dimensional spaces (Hou et al., 2024). Moreover, we share 
the Bi-MaKAN parameters across the exploring branch’s forward diffu-
sion process and the exploiting branch’s attention-based encoder. This 
design establishes a unified sequential state space, ensuring feature 
consistency and enhancing generalization across branches.

Extensive experiments conducted on three benchmark datasets
demonstrate the superior performance of Dimos and confirm the ef-
fectiveness of its core components. The in-depth analyses yield several 
key insights. To quantify the contributions of the exploring and ex-
ploiting branches during both training and inference, two weighting 
mechanisms (i.e., loss weight and preference weight) are introduced 
to linearly combine their outputs based on relative importance. Our 
empirical results demonstrate a collaborative effect between the ex-
ploring and exploiting branches during both training and inference. 
Furthermore, we find that data scale acts as a key modulator. On 
smaller datasets, the exploring branch plays a more substantial role, 
while the influence of the exploiting branch becomes increasingly 
significant as the dataset grows. These findings highlight the comple-
mentary nature of the two branches and offer practical guidance for 
future architectural design in SBRSs. In addition, ablation studies verify 
that the proposed Bi-MaKAN backbone not only delivers robust feature 
learning but also brings significant efficiency gains. Remarkably, it 
reduces the number of diffusion steps from thousands to fewer than ten, 
without sacrificing performance. This advancement greatly enhances 
the practical applicability of diffusion models and paves the way for 
future developments in efficient and scalable recommendation systems.

Our work makes three primary contributions.

• We introduce Dimos, a dual-branch framework for session-based 
recommendation that combines an attention-based exploiting 
branch for learning explicit preferences and a diffusion-based 
exploring branch for modeling implicit preferences. This hybrid 
design enables a nuanced understanding of user intent. Empirical 
results show that the two branches contribute differently across 
training and inference phases, with the exploiting branch gaining 
more influence as the dataset scale increases.

• We present Bi-MaKAN, a novel state–space backbone composed of 
bidirectional, parameter-sharing Mamba blocks and a
Kolmogorov–Arnold network-based fusion layer. This architecture 
enhances sequential modeling while offering robust preference 
representations. Importantly, Bi-MaKAN accelerates the diffusion 
process by reducing the number of required steps from thou-
sands to fewer than ten, without compromising recommendation 
performance.
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• The effectiveness and efficiency of Dimos are validated through 
extensive experiments on three real-world benchmark datasets, 
where it outperforms twenty-four competitive baselines. Detailed 
ablation and efficiency analyses further demonstrate the signifi-
cance of each module and the model’s scalability for large-scale 
deployment.

2. Preliminaries

Similar to sequential recommendation, SBR aims to predict the next 
item a user will interact with, based on their current session interac-
tions. Formally, let the item set be denoted as 𝑉 = {𝑣1,… , 𝑣

|𝑉 |

}, where 
each 𝑣𝑖 represents a unique item and |𝑉 | is the total number of items. 
A session 𝑠𝑢 for user 𝑢 is defined as an ordered sequence {𝑣1,… , 𝑣𝑡}, 
where 𝑣𝑡 denotes the item interacted with at the 𝑡th timestamp. Given 
a session 𝑠𝑢, the objective of a SBRS is to predict the next interaction 
𝑣𝑡+1 at the subsequent timestamp. The proposed model first learns a 
preference representation for the user based on their current session 
and then computes prediction scores for all candidate items in 𝑉 . The 
top-𝐾 items with the highest scores are subsequently recommended. 
Next, two core components of the proposed architecture are briefly 
introduced: the Mamba selective state space model and the denoising 
diffusion probabilistic model (DDPM).

2.1. Mamba

Mamba, an optimized selective state space model (SSM), is widely 
used in sequence modeling tasks due to its linear scalability with 
sequence length and low computational cost. Instead of relying on 
attention mechanisms, Mamba adopts the state space model frame-
work, encoding context through hidden states during recurrent scans. 
Its selection mechanism enables control over which parts of the input 
are integrated into the hidden states, forming the context that influ-
ences subsequent embedding updates. Formally, given the item feature 
sequence 𝐸𝑢 = {𝑒1,… , 𝑒𝑡} ∈ R𝑡×𝑑 corresponding to the session sequence 
𝑠𝑢 = {𝑣1,… , 𝑣𝑡}, the state equation and observation equation with 
zero-order hold (ZOH) discretization and selection mechanism can be 
written by:
ℎ̄𝑘 = 𝐴̄ℎ𝑘−1 + 𝐵̄𝑒𝑘, (1)

ℎ𝑘 = 𝐶ℎ̄𝑘, (2)

𝐴̄ = exp(𝛥𝐴), (3)

𝐵̄ = (𝛥𝐴)−1(exp(𝛥𝐴) − 𝐼)𝛥𝐵, (4)

where ℎ𝑘 ∈ R𝑑 is the 𝑘th hidden state, 𝑘 is the discrete time step. 
Moreover, 𝐴 is the state transition matrix that describes how states 
change over time, 𝐵 = 𝑊𝐵𝐸𝑢 is the input matrix that controls how 
inputs affect state changes, 𝐶 = 𝑊𝐶𝐸𝑢 denotes the output matrix 
that indicates how outputs are generated based on current states, and 
𝛥 = 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐵𝑟𝑜𝑎𝑑𝐶𝑎𝑠𝑡𝐷(𝑊𝛥𝐸𝑢)) is the context-aware interval for ZOH 
discretization. 𝑊𝐵 ∈ R𝑛×𝑑 , 𝑊𝐶 ∈ R𝑛×𝑑 , and 𝑊𝛥 ∈ R𝑑×1 are the selection 
weights, and BroadCast𝐷(⋅) means to broadcast the result to all the 
dimensions. 𝑡, 𝑛, and 𝑑 represent the input length, input feature size, 
and hidden channel number, respectively.

The discrete SSM, as a linear system, inherently possesses the asso-
ciated property, allowing it to integrate seamlessly with convolutional 
computation. Specifically, it can compute the output at each time step 
independently, as follows: 
𝐻 = 𝐸𝑢 ∗ 𝐾̄, (5)

where 𝐾̄ = (𝐶𝐴̄0𝐵̄,… , 𝐶𝐴̄𝑘𝐵̄) is a set of convolutional kernels, 𝐻 =
{ℎ0,… , ℎ𝑘} is the output hidden state sequence. Exactly, Mamba’s 
structure combines elements of both RNNs and convolutional neural 
networks (CNNs), which helps it enhance efficiency during both train-
ing and inference by leveraging the strengths of sequential modeling 
and local pattern extraction. For simplicity, we define this process as 
𝑦 = Mamba(𝑥).
3 
2.2. Diffusion model

Diffusion models are a class of probabilistic generative models 
that gradually corrupt data by adding noise, and then learn to invert 
this process to generate new samples. Compared to VAEs and GANs 
diffusion models have greater representation capacity and are more 
stable during training (Wei and Fang, 2025; Yang et al., 2024c; Lin 
et al., 2024). As a prominent framework within diffusion models, the 
DDPM has achieved notable success across several tasks, including 
traffic prediction (Li et al., 2024b), image reconstruction (Huberman-
Spiegelglas et al., 2024), and sequential recommendation (Li et al., 
2024c). Technically, DDPM adopts a forward first-order Markov chain 
that add Gaussian noise to the input, and a reverse first-order Markov 
chain that denoise and reconstruct the original input incrementally. 
Specifically, given the original representation 𝑥0 ∼ 𝑞(𝑥0) and subse-
quent noised representations {𝑥1,… , 𝑥𝐿}, the forward diffusion process 
can be formalized using the chain rule of probability and the Markov 
property as follows:

𝑞
(

𝑥1∶𝐿|𝑥0
)

=
𝐿
∏

𝑙=1
𝑞
(

𝑥𝑙|𝑥𝑙−1
)

, (6)

𝑞
(

𝑥𝑙|𝑥𝑙−1
)

=  (𝑥𝑙;
√

1 − 𝛽𝑙𝑥𝑙−1, 𝛽𝑙𝐼), (7)

where 𝑞(⋅|⋅) is the transition kernel, {𝛽1,… , 𝛽𝐿} represents a variance 
schedule that controls the magnitude of noise added at each step in 
the Markov chain. Instead of computing the transition 𝐿 times from 𝑥0
to 𝑥𝐿, 𝑥𝐿 can be obtained in a single step by marginalizing the joint 
distribution 𝑞 (𝑥1∶𝐿|𝑥0

) as follows: 

𝑞
(

𝑥𝑙|𝑥0
)

=  (𝑥𝑙;
√

𝛼̄𝑙𝑥0, (1 − 𝛼̄𝑙)𝐼), (8)

where 𝛼̄𝑙 =
∏𝑙

𝑠=0 𝛼𝑙 and 𝛼𝑠 = 1 − 𝛽𝑙. Given 𝑥0, we can obtain a sample 
of 𝑥𝑙 by sampling a Gaussian vector 𝜖 ∼  (0, 𝐼) and applying the 
transformation 𝑥𝑙 =

√

𝛼̄𝑙𝑥0 + (1 − 𝛼̄𝑙)𝜖.
In the reverse denoising process, DDPM-based models begin by 

generating an unstructured noise vector from the prior distribution, 
then progressively denoise it by running a learnable Markov chain in 
the reverse time direction. Formally,

𝑝𝜃
(

𝑥0∶𝐿
)

= 𝑝(𝑥𝐿)
𝐿
∏

𝑙=1
𝑝𝜃

(

𝑥𝑙−1|𝑥𝑙
)

, (9)

𝑝𝜃
(

𝑥𝑙−1|𝑥𝑙
)

=  (𝑥𝑙−1;𝜇𝜃
(

𝑥𝑙 , 𝑙
)

, 𝛴𝜃
(

𝑥𝑙 , 𝑙
)

), (10)

where 𝜇𝜃
(

𝑥𝑙 , 𝑙
) and 𝛴𝜃

(

𝑥𝑙 , 𝑙
) are the mean and variance learned by 

the denoising network with parameters 𝜃. With the reverse Markov 
chain, we can generate a data sample 𝑥0 by first sampling a noise vector 
𝑥𝐿 ∼ 𝑝(𝑥𝐿), then iteratively sampling from the learnable transition 
kernel 𝑥𝑙−1 ∼ 𝑝𝜃(𝑥𝑙−1|𝑥𝑙) until 𝑙 = 1.

The success of the sampling process heavily relies on training the 
denoising network so that the learned reverse Markov chain accurately 
approximates the true time-reversal of the forward diffusion process. 
Following the foundational work (Ho et al., 2020), we can optimize 
the variational lower bound, simplified as the mean-squared error loss, 
to train the denoising network as follows: 

𝐷𝐷𝑃𝑀 = E𝑙∈ (1,𝐿),𝑥0∈𝑞(𝑥0),𝜖∈ (0,𝐼)

[

‖𝜖 − 𝜖𝜃(
√

𝛼̄𝑙𝑥0,
√

1 − 𝛼̄𝑙𝜖, 𝑙)‖2
]

, (11)

where  (1, 𝐿) is a uniform distribution over the integers 1 to 𝐿. Here 
the denoising network 𝜖𝜃 with parameter 𝜃 shifts to predicting the noise 
vector 𝜖 given 𝑥𝑙 and 𝑙, which has been shown to be equivalent to 
predicting the mean and variance.

3. Dimos

This section outlines the architecture of the proposed Dimos frame-
work, illustrated in Fig.  1. The framework consists of three main 
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Fig. 1. Schematic overview of the proposed dual-branch framework Dimos for session-based recommendation. The top part depicts the explore branch, which 
employs a latent diffusion model over the Bi-MaKAN backbone to capture implicit user preferences beyond observed interactions. The bottom part illustrates the 
exploit branch, which adopts attention networks over the Bi-MaKAN backbone to model explicit preferences directly from user–item interactions. Both branches 
share the Bi-MaKAN backbone (left part), which consists of parameter-sharing bidirectional Mamba blocks and a KAN-based fusion layer, establishing a unified 
sequential state space for consistent feature learning.
components: the implicit preference learning module, the explicit pref-
erence learning module, and the prediction layer. The implicit prefer-
ence module (explore branch) utilizes Bi-MaKAN in conjunction with 
a DDPM to model latent user preferences. In parallel, the explicit 
preference module (exploit branch) incorporates Bi-MaKAN and an 
Unsqueeze-and-Excitation Network (UE-Net) to capture observable user 
intents. To enhance model consistency and reduce overfitting, both 
branches operate over a shared sequential state space generated by Bi-
MaKAN. The final prediction layer computes relevance scores for all 
candidate items and outputs the top-𝐾 recommendations.

3.1. Explore branch: Implicit preference learning module

Although LDM (Rombach et al., 2022) demonstrates that using 
diffusion models in the latent feature space from well-pretrained au-
toencoders can enhance performance and efficiency, this approach is 
not well-suited for addressing session-based recommendation tasks. On 
the one hand, the pretrain-finetune paradigm usually requires signifi-
cant computational resources and time. On the other hand, item IDs, 
commonly used by SBRSs, vary across different scenarios, limiting the 
effectiveness of pre-trained SBRSs. Therefore, designing an effective 
feature encoder is crucial to create a robust latent feature space, 
enabling diffusion models to fully leverage their generative potential.

Instead of the widely adopted U-Net and Transformer, we propose 
a Mamba-based feature encoder due to its strong sequence modeling 
capacity and linear scalability with sequence length. Specifically, a pair 
of parameter-sharing Mamba blocks are employed to effectively capture 
sequential item dependencies from bidirectional session contexts. Here, 
parameter sharing refers to full weight sharing across the two direc-
tional blocks, meaning that the same set of trainable parameters is used 
for processing both the forward and backward sequences. Subsequently, 
we introduce the Kolmogorov–Arnold network-based feature fusion 
component to integrate the bidirectional sequential item dependencies. 
Formally,

𝐸̄𝑢 = Mamba
(

𝐸𝑢
)

+ Flip
(

Mamba
(

Flip
(

𝐸𝑢
)

𝑙𝑑
))

𝑙𝑑 , (12)

𝐸′
𝑢 = KAN(𝐸̄𝑢), (13)

where Flip(⋅)𝑙𝑑 denotes flipping the input sequence along the length 
dimension. Here, we present two options for the fusion method KAN(⋅). 
The first is Fourier KAN (Xu et al., 2024). Formally, 

Fourier-KAN(𝑥) =
𝑑
∑

𝑔
∑

(

cos (𝑘𝑥)𝑎𝑖𝑘 + sin (𝑘𝑥) 𝑏𝑖𝑘
)

, (14)

𝑖=1 𝑘=1

4 
where 𝑎𝑖𝑘 and 𝑏𝑖𝑘 are trainable Fourier coefficients. 𝑔 refers to the 
grid size, which controls the number of terms (frequencies) used in 
the Fourier series expansion. Specifically, 𝑔 determines the number of 
sine and cosine terms incorporated into the Fourier coefficients for 
each input dimension. Compared to vanilla KAN, Fourier KAN uses 
1D Fourier coefficients rather than B-spline coefficients, which simpli-
fies the optimization process and decreases the number of learnable 
parameters (Xu et al., 2024).

The second option is group-rational KAN (GR-KAN). Formally, 

GR-KAN(𝑥) =
[ 𝑑
∑

𝑖=1
𝜔𝑖,1𝐹⌊1∕𝑑𝑔⌋(𝑥𝑖) …

𝑑
∑

𝑖=1
𝜔𝑖,𝑑𝐹⌊1∕𝑑𝑔⌋(𝑥𝑖)

]

, (15)

where

𝐹 (𝑥𝑖) =
𝑎0 + 𝑎1𝑥𝑖 +⋯ + 𝑎𝑚𝑥𝑚𝑖
1 + |𝑏1𝑥𝑖 +⋯ + 𝑏𝑛𝑥𝑛𝑖 |

,

and 𝑖 is the index of the input dimension, 𝑔 denotes the number of 
groups. Each group contains 𝑑𝑔 = 𝑑𝑖𝑛∕𝑔 dimensions, with the group 
index determined by ⌊𝑖∕𝑑𝑔⌋. 𝐹 (⋅) is the input-wise rational function, 
specifically implemented using the Safe Padé Activation Unit (Molina 
et al., 2020) with the coefficients 𝑎𝑚 and 𝑏𝑛 to ensure training stability. 
Compared to vanilla KAN, GR-KAN replace B-spline functions with 
rational functions as the base functions to enhance the model’s expres-
siveness, stability, and computational efficiency (Yang and Wang, 2024; 
Zhang et al., 2025). For simplicity, we omit layer normalization and 
dropout operations in the equations above. For brevity, we define this 
process as 𝐸′

𝑢 = Bi-MaKAN(𝐸𝑢; 𝜉), where 𝜉 are the parameters of the Bi-
MaKAN. Our Bi-MaKAN incorporates sequential dependencies into item 
representations, allowing it to refine the initial hidden feature space 
and capture contextual relationships more effectively.

Subsequently, by treating the user’s historical behavior sequence 
as an information diffusion process (Niu et al., 2024), the DDPM is 
adopted to learn the underlying distribution for capturing the evolution 
of user preferences: 𝑒𝑔𝑢 = DDPM(𝐸′

𝑢).
In the forward diffusion process, we incrementally add Gaussian 

noise to the sequential dependency-aware hidden state of the target 
item 𝑒′𝑖 , until the complete transformation into a thoroughly Gaussian 
noise 𝑥𝑢 after 𝑇  diffusion steps. Then, the current noised hidden state 
𝑥𝑢 is adopted to modify the hidden state of each historical item in 𝑠𝑢, 
denoted as 𝑍𝑥𝑢 = {𝑧1,… , 𝑧𝑙}. Furthermore, the denoising network is 
used to refine the reconstructed the hidden state of the target item 𝑒′
𝑖
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from 𝑍𝑥𝑢 , bringing it closer to the original hidden state 𝑒′𝑖 . Formally, 
the forward diffusion process can be formulated as follows:
𝑥𝑢 = 𝑞(𝑥𝑢|𝑥0, 𝑠𝑢), (16)

𝑥̂0 = Bi-MaKAN(𝑍𝑥𝑢 ; 𝜂), (17)

𝑧𝑖 = 𝑒′𝑖 + 𝜆𝑖 ⊙ (𝑥𝑢 + 𝑓𝑢), (18)

where ⊙ denotes the Hadamard product. 𝑓(⋅) is the sinusoidal position 
encoding (Ho et al., 2020) that represents different diffusion steps, 
allowing the model to recognize the current noise level. 𝜆𝑖 is sampled 
from a Gaussian distribution 𝜆𝑖 ∼  (𝛿, 𝛿), where 𝛿 is a hyperparameter 
which defines both the mean and variance. 𝜆𝑖 modulates the amount 
of noise injected, introducing uncertainty into the modeling of user 
interest evolution.

In the reverse denoising process, we aim to recover the sequential 
dependency-aware hidden state of the target item 𝑥0 iteratively from 
a pure Gaussian noise 𝑥𝑙. We firstly sample the noised target item 
representation 𝑥𝑙 from a standard Gaussian distribution  (0, 𝐼). Sub-
sequently, similar to the diffusion process, 𝑥𝑙 is adopted to adjust the 
hidden state of each historical item in 𝑠𝑢, denoted as 𝑍𝑥𝑙 . Furthermore, 
the denoised network is used to estimating the original hidden state 𝑥̂0. 
After that, 𝑥𝑙−1 is estimated by Eq. (10). We repeat the above process 
until we arrive at 𝑥0. Formally,

𝑥̂0 = Bi-MaKAN(𝑍𝑥𝑙 ; 𝜂), (19)

𝑧𝑖 = 𝑒′𝑖 + 𝜆𝑖 ⊙ (𝑥𝑙 + 𝑓𝑙), (20)

𝑥𝑙−1 = 𝑝(𝑥𝑙−1|𝑥̂0, 𝑥𝑙), (21)

where 𝜆𝑖 allows the importance of each latent aspect of a historical item 
to be iteratively adjusted in a user-aware manner during the reverse 
denoising process. Moreover, the reparameterization trick is adopted 
to facilitate better optimization by connecting model parameters with 
noise variables. Formally,

𝑥𝑙−1 = 𝜇̃𝑙(𝑥𝑙 , 𝑥̂0) + 𝛽𝑙𝜖
′, (22)

𝜇̃𝑙(𝐱𝑙 , 𝑥̂0) =
√

𝛼𝑙−1𝛽𝑙
1 − 𝛼𝑙

𝑥̂0 +

√

𝛼𝑙(1 − 𝛼𝑙−1)

1 − 𝛼𝑙
𝐱𝑙 , (23)

𝛽𝑙 =
1 − 𝛼𝑙−1
1 − 𝛼𝑙

𝛽𝑙 , (24)

where 𝜖′ is the vector sampled from Gaussian distribution  (0, 𝐼). So 
far, we obtain the refined representation of user preference 𝑒𝑔𝑢 = 𝑥̂0, 
which considers the sequential interactions and uncertain behaviors.

3.2. Exploit branch: Explicit preference learning module

This module adopts Bi-MaKAN and UE-Net to capture the explicit 
preference 𝑒𝑑𝑢 . To ensure the consistency of the sequential dependency-
aware hidden state space, we share parameters between the Bi-MaKAN 
in this module and the Bi-MaKAN used before the forward diffusion 
process: 𝐸′

𝑢 = Bi-MaKAN(𝐸𝑢; 𝜉). This parameter sharing establishes the 
unified sequential state space, a core design principle of Dimos.

Formally, the unified sequential state space 𝜉 is the feature space 
induced by the shared Bi-MaKAN with parameter 𝜉. Formally, for the 
input item feature sequence 𝐸𝑢, there exists a unique corresponding 
item state sequence 𝐸′

𝑢. The unification is ensured by the parameter 
sharing of the Bi-MaKAN across the explore and exploit branches. Con-
sequently, for the same input 𝐸𝑢, both branches compute the identical 
state sequence 𝐸′

𝑢.
The unified sequential state space guarantees that the implicit pref-

erence distribution explored by the diffusion process and the explicit 
intents modeled by the attention mechanism are semantically aligned in 
the same feature space, enabling their effective fusion. Furthermore, the 
unified sequential state space acts as a strong regularizer, allowing the 
model to learn robust, general-purpose sequential features from both 
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generative and discriminative signals simultaneously, which improves 
parameter efficiency and reduces the risk of overfitting in either branch.

Subsequently, we identify various user intents and adaptively fuse 
them to generate the robust preference representation. Specifically, in 
line with related works (Li et al., 2023a,b), the hidden state of the 
last item is considered as the short-term intent, i.e. 𝑐𝑠𝑡 = 𝑒′𝑡. Compared 
to directly capturing long-term intent based on short-term intent, we 
additionally introduce contextual intent to alleviate the impact of 
the potential noised short-term intent caused by unexpected clicks or 
interest drift. Formally, we adopt the additive attention network as 
follows:

𝑐𝑙𝑡 =
∑

𝑣𝑖∈𝑠𝑢

𝜙𝑖𝑒
′
𝑖 , (25)

𝜙𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊 𝑇
1 𝜎

([

𝑊2𝑒
′
𝑖
‖

‖

𝑊3𝑐𝑐𝑜𝑛‖‖𝑊4𝑐𝑠𝑡
]))

, (26)

𝑐𝑐𝑜𝑛 =
1
𝑡
∑

𝑣𝑖∈𝑠𝑢

𝑒′𝑖 , (27)

where 𝜎 denotes the sigmoid activation function, 𝑊1 ∈ R3𝑑 , and 
𝑊2,𝑊3,𝑊4 ∈ R𝑑×𝑑 are the learnable parameters. Furthermore, the 
UE-Net is adopted to fuse various preference representations as follows:
𝐶𝑖𝑛𝑡𝑒𝑛𝑡 = 𝑆𝑡𝑎𝑐𝑘

(

𝑊5𝑐𝑠𝑡,𝑊6𝑐𝑐𝑜𝑛,𝑊7𝑐𝑙𝑡
)

(28)

𝛾 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(

𝐶𝑖𝑛𝑡𝑒𝑛𝑡
)

(29)

𝑒𝑑𝑢 = 𝑆𝑞𝑢𝑒𝑒𝑧𝑒 − 𝑠𝑢𝑚
(

𝛾𝐶𝑖𝑛𝑡𝑒𝑛𝑡
)

, (30)

where 𝑆𝑡𝑎𝑐𝑘(⋅) denotes the concatenation in the additional prefer-
ence dimension, i.e. unsqueeze operation. 𝛾 is the adaptive preference 
weight for each preference representation, i.e. excitation operation. 
𝑆𝑞𝑢𝑒𝑒𝑧𝑒 − 𝑠𝑢𝑚 (⋅)  denotes a dimension reduction operation based on 
sum fusion. 𝑊5,𝑊6,𝑊7 ∈ R𝑑×𝑑 are the learnable parameters. Instead 
of a shallow feed-forward network, our UE-Net offers greater flexibility 
for preference fusion by assigning dynamic attention weights across 
additional preference dimensions.

3.3. Prediction layer and optimization

The prediction layer first calculates the recommendation score for 
each candidate item, then selects the top-𝐾 items to form the rec-
ommendation list. For clarity in understanding the significance of 
explicit and implicit preferences in recommendations, a weighted linear 
method is adopted to fuse both types of preferences: 𝑒𝑢 = 𝜌⋅𝑒𝑔𝑢+(1−𝜌)⋅𝑒𝑑𝑢 , 
where 𝜌 ∈ [0, 1] is the predefined preference weight. Subsequently, 
the recommended score is computed by inner product: score𝑖 = 𝑒𝑢 ⋅ 𝑒𝑖. 
Furthermore, the optimization objective is defined as the cross-entropy 
of the ground-truth and the prediction scores. Similarly, we predefined 
the loss weight 𝜁 ∈ [0, 1] to indicate the different importance of both 
modules during model training. Formally,

𝑦̂𝑔𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑔𝑢 ⋅ 𝑒𝑖), 𝑦̂𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑑𝑢 ⋅ 𝑒𝑖), (31)

ℒ𝑔 = −
|𝑉 |

∑

𝑖=1
𝑦𝑖 log(𝑦̂

𝑔
𝑖 ), ℒ𝑑 = −

|𝑉 |

∑

𝑖=1
𝑦𝑖 log(𝑦̂𝑑𝑖 ), (32)

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜁 ⋅ ℒ𝑔 + (1 − 𝜁 ) ⋅ ℒ𝑑 , (33)

where 𝑦𝑖 is the one-hot encoding vector of the ground truth.

3.4. Time complexity analysis

The time complexity of the proposed Dimos framework stems from 
four key components. First, the time complexity of the Bi-MaKAN 
(Fourier KAN version) shared between implicit preference learning 
module and implicit preference learning module is 𝑂(2𝑡𝑑2(1+𝑔)), where 
𝑡 is the session length, 𝑑 is the hidden dimension, and 𝑔 is the grid size 
for the Fourier transform operation. Second, the time complexity of the 
DDPM is 𝑂(2𝑡𝑇 𝑑2(1 + 𝑔)), where 𝑇  is the number of diffusion steps. 
Third, the time complexity of the long-term intent computation and 
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Fig. 2. Session time span distribution (Time distrib.) and user activity distribution (Act. distrib.) of Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket 
(Ret.).
the UE-Net 𝑂(4𝑡𝑑2+8𝑡𝑑). Finally, the time complexity of the prediction 
layer is 𝑂(|𝑉 |𝑑), where |𝑉 | is the number of candidate items. Therefore, 
the overall time complexity of Dimos is (6+2𝑔+2𝑇+2𝑔𝑇 )𝑡𝑑2+(8𝑡+|𝑉 |)𝑑. 
With usually a grid size of 1, the overall time complexity depends on 
the diffusion steps, session length, and hidden dimensions.

4. Experiments

This section conducts comprehensive experiments to evaluate the 
effectiveness and efficiency of our proposed model. They are designed 
to address the following key research questions: (RQ1) How does Dimos 
perform in SBR tasks compared to twenty-four competitive baseline 
models across three real-world datasets? (RQ2) What impact do the 
main components of Dimos have on recommendation performance? 
(RQ3) What specific roles do the exploit and explore branches play 
during the training and inference stages? (RQ4) How does Dimos 
perform under varying hyperparameter settings? (RQ5) How well does 
Dimos generalize across user groups with different levels of activity? 
(RQ6) What is the impact of varying session lengths on the effectiveness 
of Dimos? (RQ7) How does the computational efficiency of Dimos com-
pare with that of representative baseline models? (RQ8) Finally, how 
can we interpret both explicit and implicit user preferences captured 
by Dimos? The implementation code of our proposed model is publicly 
available for reference at: https://anonymous.4open.science/r/Dimos-
1374.

4.1. Experimental settings

We begin by introducing the datasets used in the experiments, along 
with the preprocessing methods applied to prepare the data. Next, we 
outline the evaluation metrics employed to assess the performance of all 
models. Finally, we describe the baseline models used for comparison 
and provide details on the implementation settings.
6 
4.1.1. Datasets and preprocessing
The overall performance of our Dimos and twenty-four competitive 

baseline models are evaluated on three public real-world datasets, 
including Yoochoose, Diginetica, and Retailrocket. Specifically, Yoo-
choose, released for the RecSys Challenge 2015, contains anonymized 
e-commerce clickstream data collected over six months.2 Due to its 
large scale, we extracted the most recent 1/64 of the dataset based on 
the timestamp, consistent with Pan et al. (2020), Qiu et al. (2022), Qiu 
et al. (2020), and Wu et al. (2019). Diginetica, released for the CIKM 
Cup 2016, comprises anonymized user clickstream data collected from 
an online retail platform.3 Retailrocket, sourced from an e-commerce 
platform over 4.5 months, includes three anonymized behavioral event 
types: view, add-to-cart, and transaction.4 For our experiments, we 
exclusively utilized view interactions from Retailrocket.

To gain deeper insights into the characteristics of the datasets, we 
analyze the session time span distributions and user activity distri-
bution across the three benchmark datasets. Fig.  2(a), (b), and (c) 
present the session time span distributions for the three benchmark 
datasets, revealing distinct temporal engagement patterns across dif-
ferent e-commerce platforms. The Yoochoose 1/64 dataset exhibits 
relatively brief user sessions, indicating predominantly short, goal-
oriented browsing behavior. In contrast, both Diginetica and Retail-
rocket demonstrate significantly longer session durations. Fig.  2(d) (e), 
and (f) illustrate the user activity distributions across the three datasets. 
All datasets exhibit similar long-tailed patterns, i.e., the majority of 
sessions consist of very few interactions. In summary, the observed 
patterns further validate the selection of these three datasets for com-
prehensive evaluation, as they collectively represent diverse real-world 
scenarios in terms of user engagement intensity and temporal dynamics.

Following Hou et al. (2022), Pan et al. (2022b), and Qiu et al. 
(2022), the sessions longer than 1 and the items appearing more than 
4 times are reserved in all the datasets. Table  1 shows the statistics for 
the three datasets. For fair comparison, the data augment method (Tan 

2 https://recsys.acm.org/recsys15/challenge
3 http://cikm2016.cs.iupui.edu/cikm-cup
4 https://www.kaggle.com/retailrocket/ecommerce-dataset

https://anonymous.4open.science/r/Dimos-1374
https://anonymous.4open.science/r/Dimos-1374
https://anonymous.4open.science/r/Dimos-1374
https://recsys.acm.org/recsys15/challenge
http://cikm2016.cs.iupui.edu/cikm-cup
https://www.kaggle.com/retailrocket/ecommerce-dataset
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Table 1
Summary of the used datasets.
 Dataset # Sessions # Items # Interactions Avg. session length Avg. action per item Sparsity  
 Yoochoose 1/64 124724 17606 528858 4.24 30.04 99.9759% 
 Diginetica 204062 42172 989204 4.85 23.46 99.9885% 
 Retailrocket 328904 58000 1413976 4.30 24.38 99.9926% 
et al., 2016) is adopted which generates the sessions and corresponding 
labels by splitting the input session. For example, for an input ses-
sion 𝑆 =

{

𝑣1,… , 𝑣
|𝑆|

}

, the generated sessions and the corresponding 
labels are ({𝑣1

}

, 𝑣2
)

,
({

𝑣1, 𝑣2
}

, 𝑣3
)

,… ,
({

𝑣1,… , 𝑣
|𝑆|−1

}

, 𝑣
|𝑆|

)

. More-
over, leave-one-out strategy is adopted to split datasets. Specifically, 
we preserve the last and the second last interactions in each session as 
the testing and validation data, while the rest is taken as the training 
data.

4.1.2. Evaluation metrics, baseline models and their implementation
We adopt three evaluation metrics for recommendation perfor-

mance: Recall@K, Mean Reciprocal Rank (MRR@K), and Normalized 
Discounted Cumulative Gain (NDCG@K). Specifically, Recall@K mea-
sures the proportion of test cases in which the correct item appears 
within the top-𝐾 recommended list. MRR@K is a ranking-based metric 
that computes the average reciprocal rank of the first relevant item 
across all test cases. NDCG@K, another ranking metric, considers both 
the relevance and the position of recommended items, assigning higher 
scores to correctly ranked items that appear earlier in the list. To 
enable a more comprehensive comparison, we evaluate each metric at 
𝐾 = 5, 10, 15, and 20. To mitigate potential biases, the rankings of all 
candidate items are considered during evaluation.

Regarding efficiency, we employ five metrics: GPU memory con-
sumption, training time, inference time, the number of parameters, and 
floating point operations (FLOPs). GPU memory consumption denotes 
the memory consumed during model training and inference. Train-
ing time corresponds to the computational cost per epoch during the 
training phase, while inference time corresponds to the cost per epoch 
during inference. The number of parameters indicates the total amount 
of learnable weights in the model, reflecting its scale, capacity, and 
storage requirements. FLOPs measure the total computational workload 
required for a single forward pass, commonly used to estimate the 
model’s theoretical computational complexity and speed.

Table  2 summarizes the baseline models, which can be broadly 
categorized into six groups: (1) non-neural methods, (2) traditional 
neural methods, (3) GNN-based methods, (4) Mamba-based methods, 
(5) traditional generative methods, and (6) diffusion-based methods. 
Our proposed Dimos and all the baseline models are implemented 
based on the popular recommendation framework RecBole (Zhao et al., 
2021) for easy development and reproduction. Following Peintner et al. 
(2023), Wu et al. (2019), the embedding dimension and batch size is set 
to 100. The initial learning rate is set to 0.001 and will decay by 10% 
after each 3 epochs. The Adam optimizer is adopted to train parame-
ters. The max length of session is set to 20 for all the baseline models 
and our Dimos. The SSM state expansion factor, the local convolution 
width, and the block expansion factor is respectively set to 50, 4, and 
2 for all models that include Mamba blocks. To alleviate over-fitting 
problem, the dropout strategy with 20% ratio has been applied to our 
model. The stacking layer number of Bi-MaKAN is searched among {1, 
2, 3, 4}. The diffusion step is searched among {2, 5, 10, 20, 40, 80, 160, 
320, 640}. The noise strength 𝛿 ranges from 1e-6 to 1e-2, with a step 
size of 10. The noise scheduler is selected from {sqrt, cosine, truncate 
cosine, truncate linear }. The preference weight and loss weight range 
from 0 to 1, with a step size of 0.1. The grid-size of Fourier KAN is set 
as 1. The group number of GR-KAN is set as 10 and its rational layer is 
initialized to behave like an identity function. For all other parameters, 
the baseline models follow the optimal configurations reported in their 
respective references. To ensure robustness and reduce variance, all 
models were evaluated over 5 independent runs with different random 
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seeds. The best results of all the models are recorded. Additionally, the 
statistically significant results (𝑝 < 0.05) are confirmed by a paired t-
test against the best baseline model on each dataset, ensuring that the 
observed improvement is not attributable to random chance.

4.2. Overall performance

To address RQ1, we conduct an empirical evaluation of overall 
performance on the session-based recommendation task across three 
real-world e-commerce datasets: Yoochoose 1/64, Diginetica, and Re-
tailrocket. To enhance readability and support consistent cross-dataset 
comparisons, we report the average performance of our proposed Dimos
model and all baseline models in terms of Recall, MRR, and NDCG 
across varying lengths of the top-𝐾 recommendation list, as shown in 
Table  3. Additional dataset-specific results and implementation details 
are provided in Appendix.

On average, our proposed Dimos model outperforms all baseline 
methods across all metrics and datasets, demonstrating its strong gen-
eralization ability. As shown in the last row of Table  3, Dimos achieves 
improvements over the best-performing baseline ranging from 1.43% to 
2.79% in terms of Recall@K (𝐾 = 5, 10, 15, 20). Similarly, the improve-
ments in MRR@K and NDCG@K fall within 2.87% to 3.09% and 2.49% 
to 3.00%, respectively. These results suggest that Dimos is particularly 
effective at ranking the target item higher in the recommendation list, 
rather than merely including it. Several design choices contribute to the 
superior performance of Dimos.

First, Dimos incorporates explicit and implicit preference learn-
ing modules to balance preference exploitation and exploration. The 
exploitation branch learns specific preference representations, while 
the exploration branch captures underlying preference distributions. 
Serving as the backbone, Bi-MaKAN exhibits strong context modeling 
capability for both branches. Specifically, Bi-MaKAN transforms the 
latent item embedding space into a sequentially aware hidden state 
space, effectively capturing meaningful user behavior patterns. In ad-
dition, the proposed UE-Net adaptively integrates multiple user intents 
into a unified preference representation, further enhancing the model’s 
capacity for preference learning.

Second, Mamba-based baseline models show competitive perfor-
mance. In particular, RecMamba consistently outperforms RNN-based, 
CNN-based, and Transformer-based baselines, achieving the best results 
across most metrics. This highlights the potential of Mamba-style struc-
tures in session-based recommendation. Compared to CNN-based mod-
els (Yuan et al., 2019), Mamba benefits from a global receptive field 
that enables it to capture the evolution of user preferences throughout 
the entire session. In contrast to RNN-based methods (Hidasi et al., 
2016), Mamba employs a selective mechanism that determines which 
interactions to retain in memory, enhancing its ability to model long-
range dependencies. Compared to Transformer-based approaches (Kang 
and McAuley, 2018), Mamba trains in parallel with superlinear time 
complexity and switches to a recurrent mode with linear complexity 
during inference, avoiding the quadratic overhead of self-attention 
mechanisms.

Third, among generative models, diffusion-based methods (Li et al., 
2024c; Liu et al., 2025a) outperform traditional VAE-based (Wang 
et al., 2022b), adversarial learning-based (Chen et al., 2024), and 
hybrid models (Xie et al., 2021), showcasing their ability to learn com-
pact, high-quality representations in a probabilistic generative manner. 
VAE-based models suffer from limited representation capacity and 
posterior collapse, while adversarial models face training instability, 
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Table 2
Summary of the baseline models.
 Category Method Description  
 Non-neural
methods 

Pop Pop recommends the most universally popular items to all users, irrespective of 
individual preferences. Despite its simplicity and efficiency, POP often serves as a 
fundamental baseline model.

 

 Item-KNN (Sarwar et al., 2001) Item-KNN is a collaborative filtering method that predicts a user’s preference for a 
target item by aggregating their interactions with items most similar to it.

 

 CORE-ave (Hou et al., 2022) CORE-ave is a simple yet effective framework for session-based recommendation that 
maintains a consistent representation space throughout encoding and decoding, 
addressing the issue of inconsistent predictions.

 

 Traditional
neural
methods 

GRU4Rec (Hidasi et al., 2016) GRU4Rec stacks multiple gated recurrent unit (GRU) layers to encode the session 
sequence into a final state. It also applies the ranking loss to train the model.

 

 NextItNet (Yuan et al., 2019) NextItNet is the CNN-based method that adopts dilated convolutions to increase 
receptive fields instead of suboptimal pooling operation.

 

 SASRec (Kang and McAuley, 2018) SASRec introduces causal self-attention network to capture sequential item transition 
patterns. It also employs positional encoding and layer normalization to preserve 
sequence order and stabilize training,

 

 MSDCCL (Zhu et al., 2024) MSDCCL employs soft and hard denoising strategies to mitigate noise while 
preserving informative interactions, coupled with cross-signal contrastive learning to 
enhance robustness by contrasting valid signals against noisy counterparts.

 

 GNN-based
methods 

SRGNN (Wu et al., 2019) SRGNN transforms session sequences into session graphs and applies graph gated 
neural network to capture pair-wise item transition relations.

 

 CMGNN (Wang et al., 2023a) CMGNN is a novel contrastive multi-level graph neural network that captures 
complex and high-order item transition information.

 

 GSAU (Cao et al., 2025) GSAU designs a novel objective function to enforce alignment and uniformity 
between graph learning module and sequence learning module.

 

 

Mamba-based
methods 

Mamba4Rec (Liu et al., 2024) Mamba4Rec enhances the basic Mamba block with Transformer techniques for 
efficient sequential recommendation.

 

 RecMamba (Yang et al., 2024b) RecMamba adopts the basic Mamba block to capture long-term user preference.  
 EchoMamba4Rec (Wang et al., 2024b) EchoMamba4Rec enhances Mamba-based models with Fourier transform layer, GLU, 

and bi-directional mechanism.
 

 MLSA4Rec (Su and Huang, 2024) MLSA4Rec combines the basic Mamba block with low-rank decomposition 
self-attention to leverage complementary advantages.

 

 SIGMA (Liu et al., 2025b) SIGMA proposes a partially flipped Mamba with a dense selective gate and a feature 
extract GRU, addressing challenges in context modeling and short sequence modeling.

 

 SS4Rec (Xiao et al., 2025) SS4Rec leverages SSMs to capture the continuous-time dynamics of user interests, 
addressing limitations of discrete-time methods in modeling irregularly spaced 
interactions.

 

 Traditional
generative
methods 

ACVAE (Xie et al., 2021) ACVAE incorporates adversarial learning under the AVB framework, contrastive 
learning for user personalization, and a convolutional layer to enhance short-term 
sequential relationships.

 

 ContrastVAE (Wang et al., 2022b) ContrastVAE is a two-branched VAE framework guided by ContrastELBO and 
employing model and variational augmentation.

 

 SparseEnNet (Chen et al., 2024) SparseEnNet is an adversarial method that explores the hidden space to generate 
more robust enhanced items in sequence recommendation.

 

 
Diffusion-based
methods 

DiffuRec (Li et al., 2024c) DiffuRec fuses the target item embedding into the diffusion process to generate 
historical interaction representations.

 

 DiffRec (Wang et al., 2023b) DiffRec corrupts user interaction histories by injecting scheduled Gaussian noise in 
the forward process, then iteratively recovers the original interactions using a 
parameterized neural network.

 

 L-DiffRec (Wang et al., 2023b) L-DiffRec compresses high-dimensional user–item interactions into a latent space via 
item clustering and variational encoding, then performs the diffusion process in this 
compressed space before decoding back to the original interaction dimension for 
ranking.

 

 CaDiRec (Cui et al., 2024) CaDiRec uses conditional generation for augmented views and employs both 
preceding and succeeding items for contrastive learning.

 

 PreferDiff (Liu et al., 2025a) PreferDiff introduces a personalized ranking loss to enhance ranking accuracy and 
speed up convergence by focusing on hard negatives in diffusion-based 
recommenders.

 

mode collapse, and convergence issues. Also, their relatively weak 
feature extraction capabilities limit them to capture complex behavioral 
patterns.

Lastly, consistent with recent findings (Ma et al., 2024a; Qu and 
Nobuhara, 2025; Niu et al., 2025; Li et al., 2025b; Benigni et al., 2025), 
we observe that not all diffusion-based models achieve competitive 
performance. Specifically, models such as DiffRec and L-DiffRec (Wang 
et al., 2023b) employ MLP-based denoising networks, which lack se-
quential inductive bias and thus hinder effective distribution learning in 
the diffusion process. Furthermore, CaDiRec (Cui et al., 2024) struggles 
on datasets with short interaction sequences (Liu et al., 2021), where 
contrastive learning based on data-level augmentation (Dang et al., 
2024) is less effective. Based on these insights, our Dimos model omits 
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contrastive learning and instead adopts Bi-MaKAN as the denoising 
network for the diffusion process.

4.3. Ablation studies

To address RQ2, we conduct four groups of ablation experiments de-
signed to evaluate the effectiveness of the overall framework, the struc-
ture of Bi-MaKAN, and the functionality of Bi-MaKAN when serving as 
the forward feature encoder and the denoising network. Additionally, 
we examine the performance of alternative neural architectures when 
used as both the feature encoder and the denoising network. Further-
more, we investigate the effectiveness of our simple linear preference 
fusion method. Similarly, to ensure robustness and reduce variance, 
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Table 3
Average performance of the examined models across the three datasets.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Non-neural

methods 
2.00 1.05 1.28 3.21 1.22 1.67 4.09 1.29 1.91 5.17 1.35 2.16  

 Item-KNN 18.57 11.41 13.09 25.70 12.36 15.39 29.99 12.70 16.53 32.97 12.87 17.23  
 CORE-ave 43.35 28.45 32.16 53.45 29.81 35.44 59.04 30.25 36.92 62.68 30.46 37.78  
 GRU4Rec Traditional

neural
methods 

42.38 28.22 31.75 52.33 29.56 34.97 57.76 29.99 36.41 61.42 30.19 37.27  
 NextItNet 35.18 22.78 25.86 44.77 24.06 28.96 50.21 24.49 30.40 53.92 24.69 31.27  
 SASRec 43.01 28.99 32.48 53.27 30.37 35.80 58.95 30.82 37.30 62.76 31.03 38.21  
 MSDCCL 35.61 22.95 26.09 45.41 24.26 29.26 51.11 24.71 30.77 55.07 24.93 31.71  
 SRGNN GNN-based

methods 
42.89 28.42 32.02 52.97 29.77 35.29 58.41 30.20 36.73 62.10 30.41 37.60  

 CMGNN 44.18 29.18 32.91 54.35 30.54 36.21 59.76 30.97 37.64 63.42 31.17 38.50  
 GSAU 41.25 27.51 30.93 51.37 28.87 34.21 57.01 29.31 35.70 60.88 29.53 36.61  
 Mamba4Rec

Mamba-based
methods 

43.56 29.01 32.63 53.49 30.35 35.85 58.91 30.77 37.29 62.51 30.98 38.14  
 RecMamba 44.59 29.92 33.57 54.40 31.24 36.75 59.72 31.66 38.17 63.23 31.86 38.99  
 EchoMamba4Rec 43.48 29.56 33.03 52.76 30.81 36.04 57.75 31.21 37.36 61.16 31.39 38.17  
 MLSA4Rec 43.35 29.31 32.80 52.84 30.58 35.88 58.00 30.99 37.25 61.44 31.18 38.06  
 SIGMA 42.93 28.67 32.22 52.80 29.99 35.41 58.27 30.42 36.86 61.91 30.63 37.72  
 SS4Rec 44.17 29.61 33.24 54.02 30.93 36.43 59.39 31.36 37.85 62.99 31.56 38.70  
 ACVAE Traditional

generative
methods 

8.59 3.66 5.07 10.95 4.54 6.12 12.51 5.06 6.66 13.66 5.41 7.05  
 ContrastVAE 1.25 0.74 0.87 1.96 0.82 1.09 2.59 0.87 1.25 3.06 0.90 1.36  
 SparseEnNet 13.44 7.62 9.06 18.95 8.35 10.84 22.72 8.65 11.83 25.59 8.81 12.51  
 DiffuRec

Diffusion-based
methods 

40.15 27.76 30.85 48.57 28.89 33.58 53.33 29.27 34.84 56.54 29.45 35.60  
 DiffRec 13.18 10.00 10.79 15.68 10.33 11.60 17.14 10.45 11.98 18.19 10.51 12.23  
 L-DiffRec 12.71 8.83 9.79 16.43 9.32 10.98 19.09 9.53 11.69 21.06 9.64 12.15  
 CaDiRec 12.81 7.25 8.63 18.32 7.98 10.40 22.11 8.28 11.41 24.84 8.44 12.05  
 PreferDiff 30.20 25.71 26.84 32.60 26.04 27.62 33.88 26.14 27.95 34.75 26.19 28.16  
 Dimos (Ours) Hybrid method 45.83* 30.85* 34.58* 55.62* 32.16* 37.75* 60.87* 32.58* 39.14* 64.33* 32.77* 39.96* 

Improvement 2.79% 3.09% 3.00% 2.24% 2.96% 2.72% 1.86% 2.90% 2.56% 1.43% 2.87% 2.49%  
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Table 4
Effects of the overall framework.
 Dataset Model Explore

branch
Exploit
branch

Unified
state space @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 
Yoochoose
1/64

w/o explore branch 7 4 7 44.08 27.39 31.54 55.56 28.94 35.26 60.97 29.36 36.70 64.36 29.55 37.50   w/o exploit branch 4 7 7 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22   w/o unified state space 4 4 7 48.08 29.76 34.31 59.90 31.35 38.15 65.62 31.80 39.67 68.95 31.99 40.46   Dimos (Ours) 4 4 4 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
 
Diginetica

w/o explore branch 7 4 7 27.33 15.97 18.79 37.69 17.35 22.13 44.15 17.86 23.84 48.85 18.13 24.95   w/o exploit branch 4 7 7 31.22 18.52 21.67 42.47 20.02 25.30 49.32 20.56 27.11 54.26 20.84 28.28   w/o unified state space 4 4 7 29.51 16.73 19.89 41.40 18.31 23.73 48.94 18.90 25.72 54.22 19.20 26.97   Dimos (Ours) 4 4 4 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
 
Retailrocket

w/o explore branch 7 4 7 55.09 41.77 45.12 60.70 42.53 46.94 63.50 42.75 47.68 65.41 42.85 48.13   w/o exploit branch 4 7 7 56.77 42.86 46.35 63.37 43.75 48.49 66.68 44.01 49.37 68.84 44.14 49.88   w/o unified state space 4 4 7 55.58 41.36 44.92 62.57 42.30 47.19 66.23 42.59 48.16 68.60 42.72 48.72   Dimos (Ours) 4 4 4 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
all models were evaluated over 5 independent runs with different 
random seeds. The best results of all the models are recorded. Statistical 
significance (𝑝 < 0.05) is verified for every ablation study by comparing 
against the best ablation model on each dataset.

4.3.1. Effects of the overall framework
The first group of ablation study investigates the impact of key 

components in our dual-branch framework. Specifically, we compare 
three variants: (1) w/o explore branch, which removes the implicit 
preference learning module; (2) w/o exploit branch, which removes the 
explicit preference learning module; and (3) w/o unified state space, 
which uses separate Bi-MaKAN components to independently model the 
sequential state spaces in the two branches.

The results are presented in Table  4. We observe that the perfor-
mance of all variants drops when any component of the full Dimos 
framework is removed. The complete model consistently achieves the 
best results, demonstrating the effectiveness of its unified architecture. 
The performance gains can be attributed to the complementary roles 
of the two branches. The explore branch leverages a diffusion-based 
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generative process to capture implicit user preferences by learning the 
underlying distribution of user behavior. In contrast, the exploit branch
focuses on modeling explicit preferences by identifying and integrating 
diverse user intents. Moreover, the dual-branch design is a structured 
approach to leverage the collaborative strengths of the generative and 
discriminative paradigms. Specifically, the explore branch provides a 
robust, distributional prior of user preferences, helping to regularize 
and generalize the discriminative branch, especially under sparsity. 
Conversely, the exploit branch provides strong, instance-specific super-
visory signals, anchoring the generative process to the observed data 
and preventing it from diverging into implausible regions. Furthermore, 
the shared sequential state space plays a crucial role in maintain-
ing feature consistency across both branches, further contributing to 
performance improvements.

Interestingly, the variant without the exploit branch slightly out-
performs the variant without the explore branch. This indicates that 
the generative component has a relatively stronger influence on per-
formance. Unlike fixed preference representations, the generative ap-
proach provides a probabilistic view of user behavior, which enhances 
robustness and helps mitigate the effects of exposure bias.
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Table 5
Effects of the Bi-MaKAN’s structure.
 Dataset Model Shared

Parameter
Fusion
Method

Bidirectional
Mechanism

@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 
Yoochoose
1/64 

w/o Bidirectional Mechanism 7 None 7 4.03 1.98 2.49 6.55 2.32 3.31 8.49 2.47 3.82 10.46 2.58 4.28   w/o Parameter Sharing 7 Fourier KAN 4 47.83 29.72 34.23 59.83 31.34 38.12 65.39 31.78 39.60 68.88 31.97 40.42   MLP fusion 4 Linear 4 47.84 29.53 34.08 59.97 31.16 38.02 65.64 31.61 39.52 68.99 31.80 40.32   GR-KAN fusion 4 GR-KAN 4 48.27 29.85 34.43 60.35* 31.48 38.36 66.05* 31.93 39.87 69.34 32.12 40.64   Fourier KAN fusion 4 Fourier KAN 4 48.37* 30.07* 34.62* 60.34 31.69* 38.51* 65.92 32.13* 39.99* 69.34 32.32* 40.80* 
 
Diginetica

w/o Bidirectional Mechanism 7 None 7 29.75 17.56 20.58 40.74 19.02 24.13 47.56 19.56 25.93 52.45 19.84 27.09   w/o Parameter Sharing 7 Fourier KAN 4 31.19 18.51 21.65 42.19 19.98 25.21 49.09 20.52 27.04 53.99 20.80 28.19   MLP fusion 4 Linear 4 31.20 18.62 21.74 42.36 20.11 25.34 49.29 20.65 27.18 54.33 20.94 28.37   GR-KAN fusion 4 GR-KAN 4 31.59* 18.74* 21.93* 42.79* 20.24* 25.55* 49.72* 20.78* 27.38* 54.64* 21.06* 28.54*  Fourier KAN fusion 4 Fourier KAN 4 31.42 18.64 21.81 42.52 20.12 25.39 49.51 20.67 27.24 54.39 20.94 28.39  
 
Retailrocket

w/o Bidirectional Mechanism 7 None 7 56.76 43.29 46.68 63.02 44.14 48.71 66.10 44.39 49.53 68.22 44.51 50.03   w/o Parameter Sharing 7 Fourier KAN 4 55.66 41.27 44.88 62.71 42.22 47.17 66.32 42.51 48.12 68.76 42.64 48.70   MLP fusion 4 Linear 4 57.63 43.55 47.08 63.85 44.39 49.10 67.01 44.64 49.94 69.05 44.75 50.42   GR-KAN fusion 4 GR-KAN 4 57.95* 43.68 47.26 64.27* 44.53 49.32 67.40* 44.78 50.14 69.48* 44.90 50.64   Fourier KAN fusion 4 Fourier KAN 4 57.70 43.83* 47.31* 63.99 44.68* 49.36* 67.17 44.93* 50.20* 69.25 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
4.3.2. Effects of the Bi-MaKAN’s structure
The second group of ablation study aims to demonstrate the ef-

fectiveness of the Bi-MaKAN’s structure. Specifically, we produce five 
variants for comparison, including: (1) w/o Bidirectional Mechanism, 
which adopts vanilla Mamba block for feature learning; (2) w/o Pa-
rameter Sharing, which removes the parameter sharing between the 
forward Mamba block and the reverse Mamba block; (3) MLP fusion, 
which adopts the naive linear projection to fuse the bidirectional con-
textual features; (4) GR-KAN fusion, which adopts the GR-KAN to fuse 
the bidirectional contextual features; and (5) Fourier KAN fusion, which 
adopts the Fourier KAN to fuse the bidirectional contextual features.

As shown in Table  5, removing parameter sharing and bidirectional 
mechanism leads to sub-optimal performance, demonstrating the ef-
fectiveness of both approaches. Specifically, bidirectional mechanism 
expands the receptive field to facilitate sequence modeling capacity, 
especially for sparser datasets. Additionally, parameter sharing reduces 
model complexity and over-fitting risk. Notably, w/o Bidirectional 
Mechanism exhibited a pronounced performance collapse on the Yoo-
choose 1/64 dataset, demonstrating the instability of a vanilla Mamba 
backbone in Dimos with limited data. This insight motivated the in-
vestigation into the contributions of the denoising network and the 
forward feature encoder via subsequent ablation studies.

In terms of three feature fusion methods, MLP-based approach fails 
to achieve promising performance, suggesting the superiority of KAN-
based fusion methods. Specifically, KAN adopts the same fully con-
nected architecture as MLPs but differ by placing learnable activation 
functions on the edges rather than applying fixed activation functions 
at the nodes, as in standard MLPs (Liu et al., 2025c). Therefore, 
KAN exhibits less bias toward low-frequency components compared to 
MLPs, which are prone to spectral bias and tend to fit low-frequency 
features first (Wang et al., 2025). However, the recursive computa-
tions in vanilla KAN significantly slows down performance. Moreover, 
vanilla KAN requires unique parameters and base functions for each 
input–output pair. It leads to exponential growth in parameters and 
computation overhead as the network scales (Yang and Wang, 2024).

By adopting 1D Fourier coefficients instead of B-spline coefficients, 
Fourier KAN offers easier optimization due to the denser nature of 
Fourier coefficients, which operate on a global scale, in contrast to 
the local nature of splines. Moreover, the introduced Fourier coeffi-
cients benefits from periodicity, making the functions more numerically 
bounded and helping to avoid issues related to going out of the grid. 
In terms of GR-KAN, it adopts rational functions instead of B-spline 
functions to enhance efficiency. Additionally, by sharing function co-
efficients and base functions across groups of edges, it significantly 
reduces computational complexity. Furthermore, its carefully designed 
weight initialization strategy maintains consistent activation variance 
across layers, improving training stability and performance.
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4.3.3. Effects of the bi-makan as the denoising network
The third group of ablation study is designed to demonstrate the 

effectiveness of our Bi-MaKAN as the denoising network. Specifically, 
we fix the forward feature encoder as Bi-MaKAN with the Fourier KAN 
fusion method and compare the performance of various methods as the 
denoising network, including Transformer, GRU, Fourier KAN, MLP, 
SU-Net (Liu et al., 2023), Mamba, and our Bi-MaKAN. Notably, these 
variants are employed in traditional LDM framework (Rombach et al., 
2022), equivalently removing the implicit preference learning module. 
The results are shown in Table  6.

We have the following observations. First, with different neural 
networks serving as the denoising network, all variants achieve satis-
factory performance, demonstrating the generalizability of our Dimos 
framework with respect to the choice of the denoising network. Second, 
the variant with the Bi-MaKAN-based denoising network achieves the 
best performance on the Retailrocket dataset, while the variant with the 
vanilla Mamba-based denoising network outperforms other methods 
on the Yoochoose 1/64 and Diginetica datasets. This highlights the 
effectiveness of Mamba-based methods within the Dimos framework. 
Third, these variants fail to consistently achieve the best performance 
on all the three datasets. One reason is that these generative methods 
focus on modeling implicit preferences, while neglecting to capture the 
explicit preferences, leading to biased preference learning.

4.3.4. Effects of the Bi-MaKAN as the forward feature encoder
The fourth group of ablation study is designed to demonstrate 

the effectiveness of our Bi-MaKAN as the forward feature encoder. 
Similarly, we fix the denoising network as Bi-MaKAN with the Fourier 
KAN fusion method and compare the performance of various neural 
networks used as the forward feature encoder. Notably, following 
LDM (Rombach et al., 2022), we further conduct experiments without 
using any forward feature encoder as the baseline, denoted as ‘‘None’’.

From the results as shown in Table  7, we observe that the variant 
without forward feature encoder achieves competitive performance 
on the Yoochoose 1/64 and Diginetica datasets, demonstrating the 
effectiveness of our Bi-MaKAN as the denoising network. Further-
more, the variant with Bi-MaKAN-based forward feature network out-
performs other variants on the Retailrocket dataset, suggesting its 
potential to handle the large scaled datasets. Lastly, our Dimos frame-
work outperforms all the variants, indicating that simultaneously learn-
ing both explicit and implicit preferences facilitates more accurate 
recommendations.

4.3.5. Evaluation of alternative networks as the backbone
In the fifth group of ablation study, we aim to further investigate the 

adaptability between the proposed Bi-MaKAN module and the overall 
Dimos framework. Specifically, we simultaneously alter the forward 
feature encoder and the denoising network to other neural networks 
as mentioned in Section 4.3.3. The results are shown in Table  8.
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Table 6
Effects of the Bi-MaKAN as the denoising network. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.
 Dataset Denoising 

Network
@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 

Yoochoose
1/64 

Transformer 47.69 29.46 34.00 59.68 31.08 37.89 65.48 31.54 39.43 68.77 31.72 40.21  
 GRU 47.46 29.46 33.94 59.53 31.09 37.85 65.03 31.52 39.31 68.38 31.71 40.11  
 Fourier KAN 46.34 28.79 33.15 58.16 30.38 36.99 63.67 30.82 38.45 67.11 31.01 39.27  
 MLP 45.87 28.13 32.54 57.86 29.74 36.43 63.65 30.20 37.96 67.06 30.39 38.77  
 SU-Net 48.01 29.61 34.18 60.06 31.24 38.10 65.68 31.68 39.59 69.15 31.88 40.41  
 Mamba 47.76 29.78 34.25 59.55 31.37 38.08 65.09 31.81 39.55 68.51 32.00 40.36  
 Bi-MaKAN 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22  
 Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
 

Diginetica

Transformer 29.54 17.46 20.45 40.66 18.94 24.04 47.73 19.50 25.91 52.70 19.78 27.09  
 GRU 30.29 17.96 21.01 41.27 19.42 24.56 47.91 19.94 26.32 52.83 20.22 27.48  
 Fourier KAN 26.67 15.25 18.08 26.67 16.72 21.64 44.68 17.27 23.49 49.74 17.56 24.68  
 MLP 27.02 15.56 18.39 38.06 17.03 21.96 45.18 17.59 23.84 50.40 17.88 25.07  
 SU-Net 29.87 16.90 20.11 41.54 18.45 23.88 48.98 19.04 25.84 54.14 19.33 27.07  
 Mamba 30.75 18.26 21.36 41.86 19.74 24.94 48.69 20.28 26.75 53.58 20.55 27.91  
 Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51  
 Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
 

Retailrocket

Transformer 56.72 43.10 46.52 63.32 43.99 48.66 66.70 44.26 49.55 68.93 44.38 50.08  
 GRU 56.71 43.25 46.63 62.76 44.07 48.60 65.67 44.30 49.37 67.56 44.41 49.82  
 Fourier KAN 55.84 42.35 45.74 62.43 43.24 47.88 65.78 43.51 48.76 68.01 43.63 49.29  
 MLP 52.16 39.09 42.36 59.19 40.04 44.64 62.89 40.33 45.62 65.36 40.47 46.21  
 SU-Net 55.62 41.16 44.78 62.63 42.10 47.06 66.16 42.38 48.00 68.59 42.52 48.57  
 Mamba 57.33 43.21 46.75 63.63 44.06 48.80 66.70 44.30 49.62 68.78 44.42 50.11  
 Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39  
 Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
We have the following observations. First, the variants with Fourier 
KAN-based and MLP-based backbones are not as competitive. It is at-
tributed that these non-sequential models struggle to capture dynamic 
behavioral patterns, hindering representative underlying distribution 
learning. Surprisingly, the variant with vanilla Mamba-based backbone 
underperforms other variants due to severe over-fitting, revealing its 
potential limitation when applied to small-scale datasets. Moreover, the 
variant with widely adopted Transformer-based backbone consistently 
fail to achieve promising performance, while the variant with SU-
Net-based backbone gains the best performance on the Yoochoose 
1/64 and Diginetica datasets. However, both of them fail to achieve 
the improved performance in larger dataset, Yelp. These observations 
motivate the design of Bi-MaKAN, which demonstrates competitive 
performance across all three datasets. Furthermore, our Dimos consis-
tently outperforms all the variants, highlighting the effectiveness of 
integrating explicit and implicit preference learning for session-based 
recommendation.

4.3.6. Effects of the preference fusion method
In the sixth group of ablation study, we aim to investigate the effec-

tiveness of the simple linear preference fusion method. Specifically, we 
compared our Dimos with two variants adopted MLP and Hadamard 
product as preference fusion method, respectively. The results are 
shown in Table  9.

We have the following observations. First, the MLP-based fusion 
performs remarkably poorly across all datasets. This severe perfor-
mance degradation suggests that a deep, non-linear transformation 
of the preference vectors may inadvertently destroy or obfuscate the 
distinct, complementary information encoded in each branch, likely 
leading to optimization difficulties and loss of critical signals. Second, 
the Hadamard product serves as a much stronger baseline, achiev-
ing the second-best performance. However, its consistent suboptimal 
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performance compared to our linear method suggests that forcing a 
purely multiplicative fusion couples the two signals or amplify noise, 
rather than optimally balancing their contributions. Lastly, our simple 
linear fusion strategy consistently and significantly outperforms both 
non-linear alternatives on every dataset and across all metrics. Its suc-
cess demonstrates that preserving the original structure of the learned 
preference representations and allowing for an additive combination is 
more effective than enforcing complex and non-linear interactions for 
our model.

4.4. Effects of explicit and implicit preference learning modules in training 
and inference

To address RQ3, we vary the loss weight 𝜁 and the preference 
weight 𝜌 from 0 to 1 in increments of 0.1, respectively. Notably, when 
setting 𝜁 = 0 and 𝜌 = 0, only the implicit preference learning module 
works during training and inference. Moreover, when setting 𝜁 = 1
and 𝜌 = 1, only the implicit preference learning module works during 
training and inference.

From the results as shown in Fig.  3, we observe that setting 𝜁
as 0 and 1 fails to achieve promising performance, suggesting the 
complementary strengths of both preference learning modules during 
training. Specifically, the two modules focus on capturing explicit and 
implicit user preferences by adopting attention network and DDPM, 
respectively. This dual-view preference learning facilitates more robust 
preference learning. The sharp performance degradation at extreme 𝜁
values stems from insufficient gradient signals from one module, lead-
ing to suboptimal feature adaptation in the hidden space. Moreover, 
the loss weight 𝜁 effectively balances the contribution of each module’s 
gradients during training. When 𝜁 varies within the range of 0.5 to 
0.7, it achieves a favorable trade-off that prevents either module from 
overwhelming the other. We further find that the optimal loss weight is 
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Table 7
Effects of the Bi-MaKAN as the forward feature encoder. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.
 Dataset Forward 

Encoder
@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 

Yoochoose
1/64 

None 48.11 29.85 34.39 60.03 29.85 38.26 65.60 31.90 39.74 69.09 32.10 40.57  
 Transformer 47.25 29.13 33.64 59.34 30.77 37.56 65.25 31.23 39.13 68.75 31.43 39.96  
 GRU 47.26 29.32 33.78 59.10 30.92 37.63 64.79 31.37 39.14 68.07 31.56 39.92  
 Fourier KAN 46.95 28.95 33.43 58.82 30.55 37.28 64.54 31.00 38.80 68.06 31.20 39.63  
 MLP 47.21 28.90 33.45 59.43 30.54 37.42 65.22 31.00 38.95 68.59 31.19 39.75  
 SU-Net 47.88 29.50 34.07 59.87 31.12 37.96 65.61 31.57 39.49 69.04 31.77 40.30  
 Mamba 47.75 29.69 34.18 59.71 31.31 38.07 65.36 31.75 39.57 68.73 31.94 40.36  
 Bi-MaKAN 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22  
 Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
 

Diginetica

None 31.22 18.52 21.67 42.47 20.02 25.30 49.32 20.56 27.11 54.26 20.84 28.28  
 Transformer 29.80 17.67 20.67 40.84 19.14 24.24 47.82 19.69 26.09 52.84 19.97 27.27  
 GRU 29.65 17.51 20.52 40.76 18.99 24.10 47.52 19.52 25.89 52.35 19.79 27.04  
 Fourier KAN 25.06 14.27 16.94 35.77 15.69 20.39 42.64 16.23 22.21 47.63 16.51 23.39  
 MLP 27.78 16.06 18.96 38.98 17.54 22.57 46.17 18.11 24.47 51.30 18.40 25.69  
 SU-Net 29.56 16.81 19.97 41.04 18.34 23.67 48.29 18.90 25.59 53.43 19.19 26.80  
 Mamba 31.13 18.49 21.62 42.00 19.94 25.13 48.72 20.47 26.91 53.55 20.74 28.05  
 Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51  
 Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
 

Retailrocket

None 56.77 42.86 46.35 63.37 43.75 48.49 66.68 44.01 49.37 68.84 44.14 49.88  
 Transformer 56.56 42.90 46.32 63.03 43.77 48.43 66.30 44.03 49.29 68.44 44.15 49.80  
 GRU 55.96 42.71 46.04 62.21 43.56 48.07 65.26 43.80 48.88 67.39 43.92 49.38  
 Fourier KAN 56.07 42.73 46.08 62.65 43.62 48.21 65.96 43.88 49.09 68.21 44.01 49.62  
 MLP 55.20 41.83 45.18 61.97 42.74 47.38 65.46 43.02 48.30 67.82 43.15 48.86  
 SU-Net 57.00 42.99 46.51 63.13 43.82 48.50 66.25 44.07 49.33 68.22 44.18 49.80  
 Mamba 57.21 43.48 46.93 63.39 44.31 48.94 66.46 44.56 49.75 68.56 44.68 50.25  
 Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39  
 Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Table 8
Evaluation of alternative networks as the backbone. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.
 Dataset Backbone @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 

Yoochoose
1/64 

Transformer 46.76 28.84 33.29 58.68 30.44 37.16 64.27 30.88 38.65 67.82 31.08 39.48  
 GRU 47.23 29.26 33.73 59.18 30.87 37.61 64.86 31.32 39.11 68.22 31.51 39.91  
 Fourier KAN 4.34 2.23 2.75 7.08 2.60 3.64 8.74 2.72 4.07 10.85 2.84 4.57  
 MLP 4.28 2.20 2.71 7.08 2.57 3.62 8.88 2.71 4.09 10.71 2.81 4.52  
 SU-Net 48.13 29.48 34.12 60.11 31.09 38.01 65.70 31.54 39.49 69.05 31.73 40.28  
 Mamba 4.03 1.98 2.49 6.55 2.32 3.31 8.49 2.47 3.82 10.46 2.58 4.28  
 Bi-MaKAN 47.46 29.50 33.97 59.53 31.13 37.89 65.36 31.60 39.44 68.68 31.78 40.22  
 Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
 

Diginetica

Transformer 28.34 16.66 19.55 39.08 18.09 23.02 46.03 18.64 24.86 50.98 18.91 26.03  
 GRU 30.31 17.94 21.00 41.19 19.39 24.52 47.93 19.92 26.30 52.68 20.18 27.42  
 Fourier KAN 0.33 0.16 0.20 0.64 0.20 0.30 0.83 0.22 0.35 1.00 0.23 0.39  
 MLP 0.35 0.16 0.20 0.60 0.19 0.28 0.85 0.21 0.35 1.05 0.22 0.40  
 SU-Net 31.39 18.50 21.70 42.10 19.93 25.16 48.76 20.46 26.92 53.53 20.72 28.05  
 Mamba 29.75 17.56 20.58 40.74 19.02 24.13 47.56 19.56 25.93 52.45 19.84 27.09  
 Bi-MaKAN 30.17 17.77 20.84 41.44 19.27 24.48 48.42 19.82 26.33 53.42 20.10 27.51  
 Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
 

Retailrocket

Transformer 54.97 41.73 45.05 61.58 42.62 47.19 64.96 42.89 48.09 67.20 43.01 48.62  
 GRU 56.52 42.94 46.35 62.75 43.78 48.37 65.82 44.02 49.19 67.89 44.14 49.68  
 Fourier KAN 1.47 1.11 1.20 1.86 1.16 1.33 2.16 1.19 1.41 2.41 1.20 1.47  
 MLP 1.44 1.07 1.16 1.89 1.13 1.31 2.16 1.15 1.38 2.41 1.16 1.44  
 SU-Net 56.41 42.59 46.06 62.47 43.41 48.04 65.59 43.66 48.86 67.65 43.78 49.35  
 Mamba 56.76 43.29 46.68 63.02 44.14 48.71 66.10 44.39 49.53 68.22 44.51 50.03  
 Bi-MaKAN 57.52 43.47 47.00 63.80 44.32 49.04 67.02 44.57 49.89 69.15 44.69 50.39  
 Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
12 
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Table 9
Effects of the simple linear preference fusion method. For the experimental results on each dataset, the bold-faced number is the best score and the underlined
number is the second best score.
 Dataset Model @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Yoochoose
1/64 

MLP-fusion 1.25 0.72 0.85 2.51 0.88 1.25 3.77 0.98 1.58 4.95 1.04 1.86  
 Hadamard-fusion 46.58 28.61 33.08 58.23 30.19 36.87 63.90 30.64 38.37 67.48 30.84 39.22  
 Dimos (Ours) 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
 
Diginetica

MLP-fusion 0.03 0.01 0.02 0.10 0.02 0.04 0.21 0.03 0.07 0.29 0.03 0.09  
 Hadamard-fusion 29.16 17.28 20.22 39.63 18.67 23.60 46.25 19.19 25.35 51.00 19.46 26.48  
 Dimos (Ours) 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
 
Retailrocket

MLP-fusion 0.01 0.01 0.01 0.08 0.01 0.03 0.12 0.02 0.04 0.18 0.02 0.05  
 Hadamard-fusion 56.40 42.69 46.13 62.42 43.50 48.09 65.43 43.74 48.89 67.44 43.85 49.36  
 Dimos (Ours) 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Fig. 3. Performance of Dimos with varying loss weight on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
0.7 on Yoochoose 1/64, 0.6 on Diginetica, and 0.5 on Retailrocket. In 
terms of the preference weight, as shown in Fig.  4, we observe that our 
Dimos fails to achieve competitive performance with 𝜌 = 0, it achieves 
the promising performance with 𝜌 = 1 across all the three datasets. 
Specifically, the optimal preference weight is 1 on Yoochoose 1/64, 0.9 
on Diginetica, and 0.8 on Retailrocket.

Analysis of the loss weight and the preference weight reveals the 
collaborative effect between exploit branch and explore branch. Specif-
ically, we assume that the explore branch expands coverage of implicit 
preferences, while the exploit branch captures explicit preferences to 
sharpen decision boundaries for critical recommendations (Choi et al., 
2023; Lobashev et al., 2025). Moreover, the dataset scale modulates 
the collaboration, aligning with the insights on discriminative and 
generative learning paradigms (Ng and Jordan, 2001; Zheng et al., 
2023). The exploit branch, as a discriminative model, directly learns 
the decision boundary for next-item prediction from the data. Its per-
formance is highly dependent on data volume: more data provides a 
richer and more diverse set of user–item interactions, allowing the 
13 
model to overcome sparsity, refine its attention mechanisms, and cap-
ture more robust explicit patterns. In contrast, the generative explore 
branch excels at capturing the underlying data distribution, making it 
particularly valuable when observable signals are sparse.

4.5. Hyperparameter sensitivity

To address RQ4, we investigate the impact of the key hyperpa-
rameters on performance, including the Bi-MaKAN stacking layers and 
the noise strength. Specifically, the Bi-MaKAN stacking layers and the 
noise strength are adjusted within the range of {1, 2, 3, 4} and {1e-
2, 1e-3, 1e-4, 1e-5, 1e-6}. Furthermore, we investigate the impact of 
different noise schedules, including the sqrt noise scheduler, the cosine 
noise scheduler, the truncated cosine noise scheduler, and the truncated 
linear noise scheduler.
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Fig. 4. Performance of Dimos with varying preference weight on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
Fig. 5. Performance of Dimos with varying Bi-MaKAN layer number on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
As shown in Fig.  5, we observe that just one layer can achieve the 
best performance on the three datasets, demonstrating the strong rep-
resentation learning capacity of our Bi-MaKAN. Specifically, the bidi-
rectional Mamba blocks facilitate more comprehensive context mod-
eling, while the parameter sharing ensures consistent feature learn-
ing. Additionally, the KAN-based feature fusion method improves the 
learning process for high-frequency features compared to traditional 
MLP. Furthermore, stacking more layers can lead to a decrease in 
14 
performance due to overfitting, while the introduction of excessive 
parameters results in lower training efficiency.

Regarding the noise strength parameter 𝛿, Fig.  6 demonstrates 
that our proposed Dimos achieves strong performance with a small 
𝛿, i.e., 1e-5. However, performance degrades significantly when 𝛿
increases to 1e-1. Recall that 𝛿 controls the mean and variance of the 
sampling distribution for 𝜆, which regulates the discriminative power 
of item representations. As 𝛿 grows, 𝜆 tends to take larger values. 
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Fig. 6. Performance of Dimos with varying noise strength on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
Fig. 7. Performance of Dimos with varying noise scheduler on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).
Unfortunately, an excessively large 𝜆 introduces substantial noise into 
the historical interaction sequences, corrupting the original interactions 
and impairing the capacity to precisely infer user preferences.

Regarding the noise scheduler, as shown in Fig.  7, the performance 
differences between various noise schedulers are slight, which aligns 
with recent empirical findings (Niu et al., 2025; Du et al., 2023). 
Specifically, the truncated linear noise scheduler performs well on the 
Yoochoose 1/64 and RetailRocket datasets, while the cosine linear 
noise scheduler outperforms other noise schedulers on the Diginetica 
dataset.
15 
4.6. User group study

The user group study addresses RQ5, demonstrating that Dimos 
can deliver effective recommendations for users with varying levels of 
activity. Specifically, we categorize the users in the Diginetica dataset 
into three groups based on their activity levels: cold-start users (session 
length of 5 or fewer), common users (session length of 5 to 15), and 
active users (session length greater than 15). The dataset statistics are 
presented in Table  10, which indicate that 71.03% of the users are 
classified as cold-start users, 26.94% as common users, and 2.03% as 
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Table 10
Statistics of three user groups derived from Diginetica.
 Dataset # Sessions # Items # Interactions Avg.session length Avg. action per item Sparsity 
 Cold-start group 144939 40782 444678 3.07 10.90 99.99%  
 Common group 54984 41011 462360 8.41 11.27 99.98%  
 Active group 4141 23071 82166 19.85 3.56 99.91%  
Table 11
Model performance on the three user groups.
 Model Cold-start group Common group Active group
 @10 @20 @10 @20 @10 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 CMGNN 38.10 18.93 23.47 47.17 19.56 25.76 35.62 15.61 20.30 47.31 16.41 23.25 28.55 13.12 16.76 36.50 13.67 18.77   GSAU 34.08 15.27 19.68 45.09 16.03 22.46 35.03 15.48 20.05 47.37 16.33 23.17 24.52 9.96 13.35 34.18 10.62 15.78   SS4Rec 35.32 17.24 21.50 45.10 17.92 23.97 34.80 15.89 20.32 46.09 16.67 23.17 25.22 11.91 15.04 32.10 12.38 16.77   DiffuRec 32.61 16.68 20.44 40.46 17.23 22.43 34.29 15.65 20.02 45.14 16.40 22.76 2.44 2.33 2.36 2.56 2.34 2.39   DiffRec 6.14 4.34 4.77 6.71 4.38 4.92 14.17 6.53 8.32 18.87 6.85 9.50 21.64 10.55 13.15 29.30 11.07 15.08   PreferDiff 4.48 2.78 3.18 5.32 2.84 3.39 0.46 0.14 0.21 0.80 0.16 0.30 0.46 0.15 0.22 0.77 0.17 0.29  
 Bi-MaKAN as denoiser 0.74 0.26 0.37 1.33 0.30 0.52 0.50 0.16 0.24 0.90 0.19 0.34 25.92 12.66 15.78 32.61 13.12 17.46   Dual Bi-MaKAN 36.65 18.54 22.82 45.14 19.13 24.97 36.64 16.54 21.25 48.28 17.35 24.19 24.18 11.57 14.55 31.30 12.07 16.36   Dimos (Ours) 39.30 20.20 24.49 48.20 20.75 26.49 37.85 17.32 22.14 49.16 18.11 25.00 29.46 14.12 17.50 36.98 14.63 19.38 
active users. This distribution reveals that most real-world sessions are 
short, making it challenging to capture user behavioral patterns due to 
limited contextual information. Subsequently, we explore the perfor-
mance of our Dimos and six representative baseline models, including 
three explicit preference modeling methods, i.e., CM-GNN (Wang et al., 
2023a), GSAU (Cao et al., 2025), and SS4Rec (Xiao et al., 2025), and 
three implicit preference modeling methods, i.e., DiffuRec (Li et al., 
2024c), DiffRec (Wang et al., 2023b), and PreferDiff (Liu et al., 2025a). 
To further valid the effectiveness of our framework, we evaluate two 
variants: (1) Bi-MaKAN as denoiser, and (2) Dual Bi-MaKAN. Specifi-
cally, the Bi-MaKAN as denoiser only replaces the denoising network 
of DiffuRec with Bi-MaKAN, while the Dual Bi-MaKAN excluding the 
implicit preference learning module from Dimos.

Our experimental results across three user groups reveal several 
findings regarding recommendation performance under different activ-
ity levels. As shown in Table  11, most baseline models achieve the 
best performance on the cold-start group, while performs poorly on 
the active group. One reason is that the long session length in the 
active group makes it particularly challenging to capture genuine user 
preferences.

Among baseline models, three explicit preference modeling meth-
ods consistently outperform three implicit preference modeling meth-
ods across the three user groups. Moreover, two exceptional cases 
warrant special discussion. First, DiffRec shows an inverse perfor-
mance trend, where it performs well on the active group and fails 
to achieve promising performance on the cold-start group. Second, 
DiffuRec demonstrates reasonable performance on cold-start and com-
mon groups, while collapsing dramatically in the active group. These 
observations suggest the potential limitations of the MLP-based and 
Transformer-based denoising network. Furthermore, the failure of these 
generative methods highlights the effectiveness of the forward feature 
encoder, which is overlooked by most existing diffusion-based SBRSs, in 
capturing accurate user preferences. Notably, Dual Bi-MaKAN demon-
strates its superiority over the three generative baseline models, as 
its Bi-MaKAN-based forward feature encoder effectively facilitates the 
learning of the representative underlying distribution.

Although Dual Bi-MaKAN outperforms most baseline model in most 
cases, it fails to achieve the best performance on the cold-start and 
active groups. Our proposed Dimos demonstrates superior performance 
across all user groups, achieving the best results in every metric. The 
consistent superiority of Dimos highlights the effectiveness of combin-
ing explicit preference modeling with implicit preference modeling.
16 
4.7. Impact of session length

To address RQ6, we conduct two sets of experiments aimed at 
evaluating how session length influences the performance of Dimos. 
We first evaluate Dimos and six representative baseline models on the 
KuaiRand-Pure dataset, which features a significantly longer average 
session length (44.51) compared to the three datasets in Section 4.2, 
i.e., Yoochoose 1/64 (4.24), Diginetica (4.85), and Retailrocket (4.30). 
KuaiRand-Pure is an emerging recommendation dataset collected from 
the recommendation logs of the video-sharing mobile app Kuaishou, 
providing a distinct domain.5 The overall performance comparison is 
summarized in Table  12. In most cases, our Dimos achieves the best per-
formance compared to the baseline models, indicating its effectiveness 
of preference learning from long sessions. Notably, on the two ranking 
metrics MRR and NDCG, Dimos shows its consistent advantage over all 
baselines at all recommendation list lengths. This suggests that Dimos 
not only retrieves relevant items but also ranks them more accurately 
at the top of the list.

To further investigate how the maximum session length affects per-
formance, we tune the maximum session length among {5, 10, 20, 50, 
100 }. The results are presented in Fig.  8. We observe that performance 
generally improves as the maximum session length increases from 5 
to 20, with the best overall results achieved at 20. However, when 
the maximum session length is extended further to 50 or 100, perfor-
mance slightly declines. One reason is that setting too large maximum 
session length may introduce noise and irrelevant early interactions, 
diminishing the focus on recent relevant behaviors. In summary, our 
Dimos benefits from appropriately longer session contexts, highlighting 
its parameter efficiency and robustness across a reasonable range of 
session lengths.

4.8. Model efficiency

To address RQ7, we first evaluate the overall efficiency of our 
Dimos and six representative baseline models on three datasets, includ-
ing three non-diffusion methods, i.e., CM-GNN (Wang et al., 2023a), 
GSAU (Cao et al., 2025), and SS4Rec (Xiao et al., 2025), and three 
diffusion-based methods, i.e., DiffuRec (Li et al., 2024c), DiffRec (Wang 
et al., 2023b), and PreferDiff (Liu et al., 2025a). Additionally, we 
investigate the impact of diffusion steps to demonstrate why our model 
is so efficient.

5 https://kuairand.com/

https://kuairand.com/
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Table 12
The performance of the examined models on the KuaiRand-Pure dataset.
 Models @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 CMGNN 5.70 3.31 3.90 9.40 3.80 5.08 12.67 4.05 5.95 15.71 4.22 6.67  
 GSAU 5.79 3.29 3.90 9.42 3.76 5.06 12.56 4.01 5.89 15.37 4.17 6.56  
 SS4Rec 6.36 3.38 4.11 10.63 3.93 5.48 13.88 4.19 6.33 17.05 4.37 7.08  
 DiffuRec 5.60 3.06 3.68 9.20 3.53 4.83 12.22 3.76 5.63 14.89 3.91 6.26  
 DiffRec 5.94 2.96 3.69 10.02 3.49 4.99 13.19 3.74 5.83 15.84 3.89 6.46  
 PreferDiff 2.73 1.40 1.73 3.56 1.52 2.00 4.67 1.60 2.29 5.41 1.65 2.47  
 Dimos (Ours) 6.62* 3.92* 4.59* 10.58 4.44* 5.86* 14.01* 4.71* 6.76* 17.02 4.88* 7.47*  
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Fig. 8. Performance of Dimos with varying maximum session length on KuaiRand-Pure.
4.8.1. Overall efficiency
All experiments were conducted on a server equipped with an 

Intel(R) Xeon(R) Gold 6426Y CPU and a single NVIDIA GeForce RTX 
4090 GPU. To ensure a fair and consistent comparison of training 
and inference efficiency, all models were trained and evaluated under 
an identical software environment: Python 3.8.10, PyTorch 2.0.0, and 
CUDA 11.8. The embedding dimension and batch size are consistently 
set to 100 throughout the training process. For each diffusion-based 
model, we adopted the optimal number of diffusion steps as reported 
in their respective original works. Specifically, the diffusion steps were 
set to 32 for DiffuRec, 5 for DiffRec, and 20 for PreferDiff. For our 
proposed Dimos, following the results of parameter sensitivity analysis, 
we set the diffusion steps to 2 on the Yoochoose 1/64 dataset, 5 on the 
Diginetica dataset, and 10 on the Retailrocket dataset. For each epoch, 
we evaluate the computational costs, including GPU memory usage, 
training duration, inference time, floating point operations (FLOPs), 
and the number of model parameters, as summarized in Tables  13 and
14.

Our observations are as follows. First, models based on implicit 
preference learning generally exhibit greater efficiency in terms of GPU 
memory utilization and training time compared to explicit preference 
learning models. Notably, Dimos requires only 7.3% of the GPU mem-
ory and 33.7% of the training time of CMGNN on average across all 
datasets. However, this training efficiency often comes at the expense 
of longer inference durations—for instance, DiffRec requires over ten 
times the inference time of the second-slowest model. Second, Dimos 
demonstrates a balanced efficiency in both spatial and temporal dimen-
sions. It maintains GPU memory usage and training time comparable to 
diffusion-based models, while achieving inference speeds competitive 
with non-diffusion models. This dual advantage stems from the use of 
Bi-MaKAN as the backbone, which replaces computationally expensive 
self-attention with lightweight Mamba blocks to avoid quadratic time 
complexity. Additionally, a parameter-sharing mechanism significantly 
reduces memory requirements by eliminating redundant parameter 
17 
storage. Third, Dimos exhibits strong scalability as dataset size in-
creases. In contrast to DiffRec, whose inference time escalates rapidly 
on larger datasets, Dimos maintains a manageable computational over-
head. This scalability makes Dimos particularly suitable for real-world 
deployment. While PreferDiff is the most efficient in terms of run-
time, it consistently underperforms in recommendation effectiveness, 
highlighting the trade-off between efficiency and accuracy.

For FLOPs and the number of model parameters, our Dimos model 
requires only 0.45M FLOPs, which is dramatically lower than diffusion-
based methods like DiffuRec (156.16M FLOPs) and DiffRec (53.02M 
FLOPs). Meanwhile, the model size of Dimos (2.27M) is comparable to 
most baseline models, suggesting a favorable space complexity.

4.8.2. Impact of diffusion steps
To validate that the high efficiency of Dimos primarily stems from 

its Bi-MaKAN-based denoising network, we evaluate four representative 
methods across varying numbers of diffusion steps: (1) Dimos, (2) 
Dual Bi-MaKAN, which employs Bi-MaKAN as both the forward feature 
encoder and the denoising network, (3) Bi-MaKAN as denoiser only, 
which removes the forward encoder, and (4) DiffuRec, the leading 
generative baseline.

The results are illustrated in Fig.  9 and we draw the following 
observations. First, Dimos and its Bi-MaKAN-based variants consis-
tently outperform DiffuRec even with a small number of diffusion 
steps, demonstrating the effectiveness of Bi-MaKAN as a backbone 
for diffusion-based SBRSs. Second, the superior efficiency of Dimos 
originates from its Bi-MaKAN-based denoising network. Specifically, 
by replacing the Transformer-based denoising network in DiffuRec 
with Bi-MaKAN, Dimos achieves higher performance with significantly 
fewer diffusion steps. Prior studies have highlighted that the number 
of diffusion steps substantially affects the performance of diffusion 
models (Ulhaq et al., 2022; Lin et al., 2024; Yang et al., 2024c; Li et al., 
2025b). On average, Dimos reaches its peak performance with 53.33 
times fewer diffusion steps than DiffuRec. Specifically, Dimos achieves 
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Table 13
Efficiency performance on the three datasets.
 Dataset Method GPU memory (MB) Training time (s) Inference time (s) 
 

Yoochoose
1/64 

CMGNN 13437 506.70 19.05  
 GSAU 1231 206.27 1.80  
 SS4Rec 4127 192.97 6.90  
 DiffuRec 769 159.00 38.10  
 DiffRec 1045 17.19 425.67  
 PreferDiff 747 229.50 5.49  
 Dimos (Ours) 763 170.72 5.10  
 

Diginetica

CMGNN 13455 961.08 46.42  
 GSAU 1719 404.25 4.03  
 SS4Rec 4163 357.01 16.50  
 DiffuRec 1017 299.65 89.20  
 DiffRec 1399 36.98 863.91  
 PreferDiff 975 425.64 12.96  
 Dimos (Ours) 1023 319.03 18.24  
 

Retailrocket

CMGNN 12469 1487.75 45.87  
 GSAU 2401 600.03 4.63  
 SS4Rec 4173 556.22 15.08  
 DiffuRec 1181 456.73 81.79  
 DiffRec 24 085 53.54 904.32  
 PreferDiff 1125 650.56 12.79  
 Dimos (Ours) 1191 505.67 30.71  
Table 14
Floating-point operations and model size of the methods on the Yoochoose 1/64 dataset.
 Method CMGNN GSAU SS4Rec DiffuRec DiffRec PreferDiff Dual Bi-MaKAN Dimos (Ours) 
 FLOPs (M) 3.81 4.84 0.02 156.16 53.02 5.24 0.19 0.45  
 # model parameters (M) 1.90 14.48 1.98 2.14 10.62 1.96 2.20 2.27  
Fig. 9. Performance of Dimos, Dimos’s two variants, and DiffuRec with varying diffusion steps on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket 
(Ret.).
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optimal results at 2 steps on Yoochoose 1/64, 5 steps on Diginetica, and 
10 steps on Retailrocket, while DiffuRec requires 160, 80, and over 640 
steps on the respective datasets—and still fails to outperform Dimos. 
Third, while Dual Bi-MaKAN incorporates Bi-MaKAN for both encoding 
and denoising to enhance distribution learning, it suffers from reduced 
performance stability and even underperforms on Diginetica. Dimos 
further improves upon Dual Bi-MaKAN by introducing an implicit 
preference learning module, which enhances both overall effectiveness 
and robustness across datasets.

This observed convergence acceleration can be attributed to the the-
oretically grounded design of the Bi-MaKAN backbone. The efficiency-
accuracy trade-off in diffusion models is fundamentally tied to the 
representational capacity of the denoising network. Our Bi-MaKAN 
addresses the limitations of common backbones in sequence modeling: 
it provides linear-complexity, long-range dependency modeling via 
Mamba blocks, full bidirectional context via shared-parameter bidirec-
tional processing, and expressive feature fusion via a lightweight KAN. 
Consequently, a single denoising step performed by this more powerful 
network yields a more accurate estimate of the clean data distribution 
than a step performed by a weaker network (e.g., an MLP or a Trans-
former under constrained computational budgets). This higher per-step 
fidelity directly translates to the empirical observation that our model 
requires drastically fewer steps (2–10) to reach peak performance, 
whereas methods with less effective backbones (e.g., DiffuRec) need 
orders of magnitude more steps to compensate, yet still may not achieve 
the same final quality.

4.9. Visualized case study

To address RQ8, we conduct two sets of visualization experiments 
aimed at demonstrating the functions of explicit and implicit pref-
erences, as well as their impact on recommendation lists. First, we 
visualize the representations of explicit and implicit preferences learned 
by the exploit and explore branches, respectively. For each dataset, we 
randomly select a batch of sessions and apply singular value decompo-
sition (SVD) to project the high-dimensional representations of explicit 
and implicit preferences into a two-dimensional feature space.

The resulting visualizations are shown in Fig.  10, from which we 
draw the following observations and insights. First, by comparing 
subfigures (a) and (b), (d) and (e), and (g) and (h), we observe that the 
distributions of implicit preferences are more concentrated, whereas 
those of explicit preferences are more dispersed. This suggests that 
users’ implicit behaviors tend to be more homogeneous and exhibit 
shared patterns across sessions, while their explicit feedback reveals 
greater diversity and personalization. Second, the lower-left and upper-
right regions of subfigures (c), (f), and (i) show large areas with light 
coloration, indicating substantial discrepancies between the prefer-
ence representations learned by the exploit and explore branches. This 
finding supports the idea that each branch captures distinct aspects 
of user preferences: the explore branch uncovers broad, underlying 
behavioral patterns, while the exploit branch focuses on identifying 
session-specific or personalized preferences. Additionally, the upper-left 
and lower-right regions of the same subfigures also display considerable 
light-colored areas, suggesting notable variation within both implicit 
and explicit preferences. This intra-preference variability reflects the 
complexity and multi-faceted nature of user motivations, even within 
the same type of preference.

In the second case study, we compare the recommendation results 
from Dimos and its two variants, i.e., w/o explore branch and w/o 
exploit branch. We randomly select a session (ID: 104669) from the 
Yoochoose 1/64 dataset. For this session, we generate the top-5 recom-
mended items along with their corresponding prediction probabilities 
for the three models. The results are shown in Fig.  11.

We observe that three items (IDs: 16034, 16064, and 16071) con-
sistently appear in the top-5 recommendations across all three model 
configurations. This convergence indicates a strong consensus signal, 
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suggesting these items are highly relevant to the user’s immediate 
session context and are reliably captured by both explicit and im-
plicit modeling approaches. Furthermore, we observe that w/o explore 
branch uniquely recommends items 16054 and 14723. This implies 
these items exhibit a strong, direct correlation with the observed se-
quence of user actions, reflecting short-term and session-specific pat-
terns. Additionally, w/o exploit branch uniquely recommends items 
16056 and 16028. This highlights the branch’s capacity for exploratory 
discovery, capturing implicit preferences beyond the historical inter-
actions. Finally, our Dimos synthesizes these perspectives into a more 
comprehensive recommendation list. It retains the three consensus 
items while introducing two unique items (IDs: 16035 and 15953). The 
two unique items likely represent a synergistic balance where Dimos 
resolves inconsistencies between the immediate session context and 
latent preferences. Consequently, the final ranking reflects a calibrated 
trade-off: it maintains grounding in the observed context while promot-
ing a balanced set of candidates that bridges short-term relevance and 
broader user interest.

In summary, these visualizations highlight the complementary
strengths of the exploit and explore branches in modeling user prefer-
ences. Their combined use offers a more comprehensive understanding 
of user behavior, thereby enhancing the effectiveness of session-based 
recommendation systems.

5. Related work

This section reviews key related works to contextualize the place-
ment and contribution of Dimos within the broader literature. It begins 
with an overview of recent research trends in discriminative and gen-
erative SBRSs, followed by a discussion on the emerging use of Mamba 
and diffusion models in the recommender systems domain.

5.1. Session-based recommender systems

SBR has emerged as a prominent research direction, aiming to 
capture user preferences by modeling the sequential dependencies and 
temporal patterns within item interaction sequences. Unlike traditional 
sequential recommendation methods that rely on complete historical 
data to build long-term user profiles, SBR emphasizes the current 
session context, making it particularly suitable for scenarios involving 
new users and real-time dynamic recommendations. However, session 
data typically presents unique challenges. The length of sessions—
measured by the number of interactions, is generally short, with the 
median session length falling below six items in most widely used 
public datasets. Moreover, despite the chronological ordering of items 
within sessions, clear sequential behavioral patterns are often lacking. 
To address this, some studies have transformed the inherently sequen-
tial session data into various forms of session graphs to better support 
preference learning. Following dominant paradigms in the field, ex-
isting SBRS approaches can be broadly categorized into two groups, 
as summarized in Table  15: discriminative methods and generative 
methods. To offer a more refined taxonomy, this classification is further 
organized along two key dimensions: (1) the data structure used for 
session representation, and (2) the specific learning strategy adopted 
for modeling user preferences.

5.1.1. Explicit preference modeling methods
As the widely adopted paradigm, discriminative SBRSs aim to learn 

the representations of user preferences from interactions. Similar to 
most sequential recommender systems, sequence learning-based SBRSs 
adopt sequential neural networks as backbone to model behavioral pat-
terns from session sequences. These methods assume that the sequential 
order of user–item interactions reflect the user preferences, while the 
recent interactions are more significant than the older interactions. 
Specifically, as one of the pioneering works, GRU4Rec (Hidasi et al., 
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Fig. 10. Distribution visualizations of explicit preference and implicit preference representations, along with the visualized corresponding preference correlation 
matrices, on Yoochoose 1/64 (Yoo.), Diginetica (Dig.) and Retailrocket (Ret.).

Fig. 11. Impact of the explicit and implicit preferences on the recommendation lists. Darker colors indicate higher normalized recommendation scores.
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Table 15
Overview of representative SBRSs. We summarize them along three dimensions: paradigm, data structure, main approaches.
 Paradigm Model Data structure Main approaches  
 

Discriminative
method 

GRU4Rec (Hidasi et al., 2016) Session sequence GRU  
 NARM (Li et al., 2017) Session sequence GRU, Attention  
 STAMP (Liu et al., 2018) Session sequence MLP, Attention  
 NextItNet (Yuan et al., 2019) Session sequence Dilated CNN  
 PARSRec (Gholami et al., 2022) Session sequence Attention-fused RNN  
 LSIDN (Zhang et al., 2024a) Session sequence GRU, Attention  
 MiaSRec (Choi et al., 2024) Session sequence Sparse attention, Attention  
 SRGNN (Wu et al., 2019) Vanilla session graph,

Session sequence
GGNN, Attention  

 LESSR (Chen and Wong, 2020) Edge-order preserving multigraph,
Shortcut graph, Session sequence

GGNN, GAT, Attention  

 SGNN-HN (Pan et al., 2020) Session star graph, Session sequence GGNN, Attention  
 GCE-GNN (Wang et al., 2020) Vanilla session graph,

Global session graph,
Session sequence

GAT, Attention  

 FGNN (Qiu et al., 2020) Broadly connected session Weighted GAT, Set2Set (Vinyals et al., 2016)  
 CGL (Pan et al., 2022a) Vanilla session graph,

Global session graph,
Session sequence

GGNN, GAT, Attention  

 CMGNN (Wang et al., 2023a) Vanilla session graph,
Global session graph,
Hypergraph,
Session sequence

GAT, Attention, HCNN  

 PosRec (Qiu et al., 2022) Vanilla session graph,
Session sequence

Position-aware GGNN, Attention  

 GCARM (Pan et al., 2022b) Vanilla session graph, Global session graph,
Session sequence

Graph co-attention network  

 H3GNN (Yin et al., 2024) Hierarchical hypergraph,
Global session graph

HCNN, GCN, Attention  

 M^3T (Zhuo et al., 2024) Forward session graph,
Reverse session graph,
Session sequence

GAT, GRU, Attention  

 Wang et al. (2024c) Item Knowledge Graph,
Session sequence

Heterogeneous graphformer, Attention  

 RNMSR (Wang et al., 2024e) Similarity-based item-pairwise session graph MLP-based GNN, MLP  
 MHCL (Guo et al., 2025) Behavior-based global hypergraph,

Local session heterogeneous hypergraph
HCNN, Attention  

 SOFA (Li et al., 2025a) Session sequence Temporal convolutional networks  
 
Generative
method 

CVRM (Wang et al., 2018) Session sequence Variational recurrent model  
 VASER (Zhou et al., 2019) Session sequence Normalizing flows, GRU, Attention  
 DCFGAN (Zhao et al., 2022) Session sequence GAN, GRU  
 PO4ISR (Sun et al., 2024) Session sequence GPT-3.5-turbo, Prompt engineering  
 

Mixed
method 

VASER-DA (Zhong et al., 2020)
VASER-VA (Zhong et al., 2020)

Session sequence Normalizing flows, Variational attention,
Deterministic attention, GRU

 

 MMSBR (Zhang et al., 2024b) Session sequence DALL⋅ E, Wasserstein self-attention, Bert,
Hierarchical pivot transformer, GoogLeNet

 

 LLM-BRec (Jalan et al., 2024) Heterogeneous graph MiniLM-L6-v2, Prompt engineering, Bert, GAT 
 LLMGR (Guo et al., 2024) Vanilla session graph LLaMA2-7B, GGNN, Attention,

Prompt engineering
 

 ALKDRec (Du et al., 2025) Session sequence GPT-4-turbo, Knowledge distillation  
 LLM4SBR (Qiao et al., 2025) Vanilla session graph Qwen-7B-Chat, GGNN, Attention,

Prompt engineering
 

 Dimos (Ours) Session sequence DDPM, Bi-MaKAN, Attention  
CNN denotes convolutional neural network. GRU denotes gate recurrent unit. LSTM denotes long short-term memory network. GCN denotes graph convolutional 
network. GAT denotes graph attention network. GGNN denotes gated graph neural network. HCNN denotes hypergraph CNN. GAN denotes generative adversarial 
network.
2016) constructs session sequences from recent interactions and lever-
ages GRU to capture evolving user preferences. Moreover, by treating 
each batch of session sequences as an image, NextItNet (Yuan et al., 
2019) combines masked filters with 1D dilated CNNs to expand re-
ceptive fields, facilitating long-term user preference learning. Recently, 
MiaSRec (Choi et al., 2024) introduces frequency encoding to reflect 
repeat patterns and adopts sparse attention network to select essential 
user intents.
21 
Although items within sessions are organized chronologically, clear 
order patterns are often absent (Wang et al., 2022a; Li et al., 2025c). 
For instance, shopping sessions are sometimes unordered, as users 
may add a basket of items without following a specific sequence, 
e.g., {bread, milk, eggs}. In such unordered sessions, the dependen-
cies among items are based on co-occurrence rather than sequential 
order, making traditional sequence models unsuitable for capturing 
the hidden relationships. Consequently, some SBRSs first transform 
session sequences into various session graphs to represent complex 
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contextual relationships among items, then adopt random walk and 
graph neural networks to learn item features. Specifically, SRGNN (Wu 
et al., 2019) transforms session sequences into vanilla session graphs 
and adopts GGNN to learn item features. Moreover, M3T (Zhuo et al., 
2024) integrates the sequence-view information and the graph-view 
information of items in a session, highlighting the ambiguity between 
cross-view features. Additionally, RNMSR (Wang et al., 2024e) con-
structs the similarity-based item-pairwise session graph to capture the 
dependencies within the session. Recently, MHCL (Guo et al., 2025) 
leverages graph learning on the session heterogeneous hypergraph 
and the multi-behavior line graph to capture user preferences. Fur-
thermore, SOFA (Li et al., 2025a) designs a session-oriented fairness-
aware algorithm to achieve global-oriented fairness by maximizing 
session-oriented fairness while maintaining high session utilities.

5.1.2. Implicit preference modeling methods
As another paradigm, generative SBRSs adopt variational autoen-

coders, normalizing flows, adversarial learning, and LLMs to learn the 
underlying distribution for preference modeling. Although relatively 
few works have been proposed in this direction, they have demon-
strated promising performance. Specifically, CVRM (Wang et al., 2018) 
employs the stochastic latent variable to capture the knowledge of fre-
quent click patterns and impose variability for the sequential behavior 
modeling. Moreover, VASER (Zhou et al., 2019) integrates normalizing 
flows and variational inference for enhanced probabilistic modeling. 
Additionally, DCFGAN (Zhao et al., 2022) integrates reinforcement 
learning to leverage immediate user feedback and employs adversarial 
training combined with enhanced negative sampling to improve rec-
ommendation performance. Furthermore, PO4ISR (Sun et al., 2024) 
discovers varying numbers of semantic intents hidden in different ses-
sions for more accurate and comprehensible recommendations through 
iterative prompt optimization.

5.1.3. Combining explicit with implicit preference modeling
Despite some progress achieved by existing discriminative and gen-

erative methods, most of them still fall short of delivering significantly 
improved performance. Specifically, discriminative methods are often 
hindered by data sparsity and exposure bias, while generative methods 
suffer from limited representation capacity and training instability (Lin 
et al., 2024). Consequently, some works integrate both paradigms to 
learn preference representations. Specifically, VASER-VA (Zhong et al., 
2020) introduces soft attention as auxiliary latent features to enhance 
the effectiveness of variational inference. Moreover, SessionRec (Huang 
et al., 2025) addresses the fundamental misalignment between conven-
tional next-item prediction paradigm and real-world recommendation 
scenarios. Additionally, MMSBR (Zhang et al., 2024b) models multi-
modal information including descriptive information, i.e., images and 
text, and numerical information, i.e. price, to characterize user pref-
erences. Moreover, ALKDRec (Du et al., 2025) is an active LLM-based 
knowledge distillation Recommendation method for a sustainable and 
effective solution to SBR. Furthermore, LLM4SBR (Qiao et al., 2025) 
integrates semantic and behavioral signals from multiple views. We 
can find that most existing mixed methods strive to unlock the power 
of large pre-trained models for preference learning. While prompt 
engineering offers benefits in efficiency and usability, it also presents 
several limitations. Specifically, its effectiveness is highly contingent on 
the quality of manually crafted prompts, which frequently necessitate 
extensive trial and error (Sahoo et al., 2024). Moreover, compared to 
full training, prompt engineering affords less flexibility, restricting the 
model’s adaptability (Chen et al., 2023).
22 
5.2. Sequential recommendation with Mamba

As a promising sequential neural network, Mamba shows superior 
performance in different areas (Wang et al., 2024a), such as lan-
guage modeling and image restoration. Mamba have recently emerged 
as a powerful backbone for sequential recommender systems. Specif-
ically, Mamba4Rec (Liu et al., 2024) introduces a vanilla Mamba 
block to replace the self-attention component of the standard trans-
former encoder, whereas RecMamba (Yang et al., 2024b) substitutes 
the entire transformer encoder with the vanilla Mamba block. More-
over, EchoMamba4Rec (Wang et al., 2024b) introduces a bidirectional 
Mamba module that integrates both forward and reverse Mamba com-
ponents, enabling the model to utilize information from past and 
future interactions. Additionally, SSD4Rec (Qu et al., 2024) marks 
the variable- and long-length item sequences with sequence registers 
and processes the item representations with bidirectional structured 
state space duality blocks. Furthermore, SIGMA (Liu et al., 2025b) 
introduces a bidirectional, partially flipped Mamba that incorporates 
a well-designed dense selective gate to assign weights to each di-
rection, thereby addressing challenges in context modeling. Recently, 
SS4Rec (Xiao et al., 2025) integrates a time-aware SSM to manage 
irregular time intervals and a relation-aware SSM to capture contex-
tual dependencies. While Mamba has shown promise in discriminative 
settings for sequential recommendation, its capabilities in generative 
paradigms for SBR are yet to be systematically investigated.

5.3. Sequential recommendation with diffusion models

Recently, diffusion models have emerged as the state-of-the-art 
in generative modeling paradigms, demonstrating promising perfor-
mance across various domains such as computer vision (Fuest et al., 
2024), natural language processing (Yang et al., 2024c), and recom-
mender systems (Lin et al., 2024). Compared to VAEs and GANs, 
the denoising process in diffusion models enhances their ability to 
capture multi-grained feature representations and to generate high-
quality samples (Lin et al., 2024). Particularly, Compared to traditional 
approaches, diffusion-based recommender systems effectively address 
challenges related to insufficient collaborative signals, weak latent 
representations, and noisy data (Lin et al., 2024).

Some diffusion-based works focus on designing effective denois-
ing networks to improve recommendation performance. Specifically, 
DiffuRec (Li et al., 2024c) and DiffRec (Du et al., 2023) introduce Trans-
former encoder as denoising network, while T-DiffRec (Zhao et al., 
2024) and MISD (Li et al., 2024a) adopt MLP-based denoising network. 
Moreover, DiffuASR (Liu et al., 2023) treats the sequence dimension as 
the image channel to adapt the U-Net-based denoising network, allow-
ing it to preserve sequential information while effectively predicting 
the added noise. Other works adopt diffusion models to generate high-
quality data for sequential recommendation. Specifically, CaDiRec (Cui 
et al., 2024) employs a context-aware diffusion model to generate 
alternative items for the given positions within a sequence. Addi-
tionally, Diff4Rec (Wu et al., 2023) employs a curriculum-scheduled 
diffusion augmentation method to generate user–item interactive data. 
Recent works focus on applying diffusion models within various latent 
spaces to reduce computational resource requirements while main-
taining their quality and flexibility. Specifically, DiffRIS (Niu et al., 
2024) and IDSRec (Niu et al., 2025) incorporate implicit feature ex-
traction into the diffusion process to resist noisy interactions. Moreover, 
DiQDiff (Mao et al., 2025) quantizes sequences into semantic vectors 
based on a codebook, extracting robust guidance to understand user 
interests. Furthermore, SeeDRec (Ma et al., 2024b) enhances the dif-
fusion objective and maintains low computational costs by elevating 
it from the item level to the sememe level. Despite some success, 
existing diffusion-based sequential recommender systems still rely on 
sub-optimal forward feature encoder and denoising network, hindering 
the ability to achieve full potential in performance.
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6. Discussion and conclusion

This study explores the application of diffusion models in the 
session-based recommendation task, serving as a response to the future 
research directions outlined in DiffuRec (Li et al., 2024c). In this paper, 
we propose a novel framework Dimos, which integrate explicit and 
implicit preference learning to improve recommendation performance. 
Moreover, we tailor Dimos’s backbone as Bi-MaKAN, which adopts a 
pair of bidirectional Mamba blocks with shared parameters to increase 
the receptive field for better item feature learning, while alleviating 
over-fitting. Furthermore, we introduce the KAN-based method to 
fuse the bidirectional features effectively and efficiently. Extensive 
experiments conducted on three real-world datasets demonstrate that 
Dimos can achieve the state-of-the-art performance. Three groups of 
ablation studies validate the effectiveness of the overall framework, the 
structure of Bi-MaKAN, and the preference fusion method, respectively. 
The subsequent three groups of ablation studies confirm the suitability 
of Bi-MaKAN within Dimos. Particularly, based on the results of effi-
ciency experiments, we empirically find that adopting Bi-MaKAN can 
significantly reduce the number of diffusion steps, thereby improving 
the efficiency of Dimos.

We acknowledge several threats to the validity of our findings. First, 
while the present work focuses on session-based recommendation, it is 
worth noting that recent research has expanded into lifelong sequential 
recommendation, which deals with extremely long and evolving user 
histories (Yang et al., 2024b). The architectural design of our model, 
particularly its efficient sequential modeling capability, makes it a 
promising candidate for this challenging setting. To realize this poten-
tial for lifelong sequences, specific modifications would be required 
to address its distinct characteristics. Second, this study focuses on 
sequential IDs, integrating rich side information (e.g., multi-modal 
features, social context) could alter the learning dynamics between 
branches.

The current work opens several avenues for future research. First, 
exploring a more formal theoretical foundation for the proposed model 
constitutes a promising research direction, such as analyzing its con-
vergence properties or representational capacity from the perspec-
tives of dynamical systems or information theory. Second, while the 
current study employs a static, tunable weight for preference fusion 
to ensure interpretability, developing dynamic and context-aware fu-
sion methods, such as those based on gating networks or user profile 
conditioning, presents a promising direction to further enhance the 
23 
model’s adaptability. Finally, to rigorously validate the practical effi-
cacy and business impact of Dimos, performing rigorous A/B testing 
in real-world, large-scale recommendation platforms is a crucial next 
step. This will allow us to assess its performance under dynamic, 
production-environment conditions, including user engagement metrics 
and long-term satisfaction, beyond offline accuracy.
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Appendix. Overall performance compared with baseline models

The performance of Dimos is compared with that of competing 
baseline models on the Yoochoose 1/64, Diginetica, and Retailrocket 
datasets in Tables  A.16, A.17, and A.18, respectively.
Table A.16
Recommendation performance of examined models on the Yoochoose 1/64 dataset.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Pop Non-neural

methods 
5.04 2.69 3.25 7.95 3.09 4.21 10.07 3.26 4.77 12.69 3.40 5.38  

 Item-KNN 26.70 16.83 19.17 35.41 18.01 22.01 39.96 18.37 23.22 42.87 18.53 23.91  
 CORE-ave 44.79 26.60 31.12 57.05 28.25 35.10 63.19 28.74 36.73 66.80 28.95 37.59  
 GRU4Rec Traditional

neural
methods 

45.72 27.93 32.36 57.87 29.57 36.30 63.69 30.03 37.84 67.22 30.23 38.68  
 NextItNet 40.07 23.62 27.70 52.13 25.23 31.61 58.21 25.71 33.22 62.04 25.93 34.12  
 SASRec 47.09 28.96 33.46 59.44 30.62 37.47 65.43 31.10 39.06 69.03 31.30 39.92  
 MSDCCL 44.13 26.36 30.77 56.51 28.02 34.79 62.71 28.52 36.43 66.48 28.73 37.32  
 SRGNN GNN-based

methods 
46.18 28.13 32.61 58.43 29.78 36.59 64.26 30.24 38.14 67.79 30.44 38.97  

 CMGNN 47.73 29.34 33.91 60.01 30.99 37.90 65.70 31.44 39.40 69.22 31.64 40.24  
 GSAU 46.23 28.50 32.91 58.17 30.11 36.79 63.97 30.57 38.32 67.71 30.78 39.21  
 Mamba4Rec

Mamba-based
methods 

46.57 28.31 32.85 58.79 29.96 36.82 64.70 30.43 38.39 68.23 30.63 39.22  
 RecMamba 47.04 28.89 33.40 58.91 30.49 37.26 64.61 30.94 38.77 68.01 31.13 39.57  
 EchoMamba4Rec 45.44 28.25 32.52 56.99 29.82 36.28 62.40 30.25 37.72 65.91 30.44 38.55  
 MLSA4Rec 45.72 28.63 32.88 57.25 30.18 36.62 62.86 30.63 38.11 66.25 30.82 38.91  
 SIGMA 46.48 28.35 32.86 58.69 30.00 36.82 64.58 30.46 38.39 68.15 30.67 39.23  
 SS4Rec 47.18 28.80 33.37 59.30 30.44 37.31 65.23 30.91 38.88 68.80 31.11 39.72  
 (continued on next page)
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Table A.16 (continued).
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 ACVAE Traditional

generative
methods 

14.36 3.12 4.19 15.27 3.67 6.00 15.58 3.98 7.07 15.74 4.20 7.94  
 ContrastVAE 3.26 1.97 2.29 5.08 2.19 2.86 6.73 2.31 3.29 7.86 2.38 3.55  
 SparseEnNet 22.83 13.60 15.89 29.97 14.55 18.20 34.25 14.89 19.33 37.24 15.06 20.03  
 DiffuRec

Diffusion-
based
methods 

43.38 26.68 30.83 55.02 28.25 34.61 60.94 28.72 36.18 64.55 28.92 37.03  
 DiffRec 30.52 24.13 25.72 35.23 24.76 27.24 37.80 24.96 27.92 39.66 25.06 28.36  
 L-DiffRec 19.13 13.07 14.56 24.74 13.81 16.37 28.79 14.13 17.44 31.56 14.29 18.09  
 CaDiRec 22.12 13.10 15.33 29.54 14.09 17.73 34.07 14.45 18.94 37.13 14.62 19.66  
 PreferDiff 34.57 26.16 28.26 39.01 26.77 29.71 41.17 26.94 30.28 42.46 27.02 30.59  
 Dimos (Ours) Hybrid method 48.37* 30.07* 34.62* 60.34* 31.69* 38.51* 65.92* 32.13* 39.99* 69.34* 32.32* 40.80* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Table A.17
Recommendation performance of examined models on the Diginetica dataset.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Non-neural

methods 
0.52 0.23 0.30 0.95 0.29 0.44 1.29 0.32 0.53 1.59 0.33 0.60  

 Item-KNN 19.27 11.05 13.01 28.34 12.25 15.94 34.48 12.73 17.56 38.99 12.98 18.63  
 CORE-ave 30.65 18.27 21.34 41.39 19.70 24.81 48.21 20.23 26.61 53.02 20.51 27.75  
 GRU4Rec Traditional

neural
methods 

26.98 15.57 18.39 37.98 17.03 21.94 45.00 17.58 23.80 50.14 17.87 25.01  
 NextItNet 20.11 11.10 13.33 29.74 12.38 16.43 36.16 12.89 18.13 40.92 13.15 19.25  
 SASRec 28.76 16.91 19.85 39.93 18.40 23.45 47.04 18.96 25.33 52.23 19.25 26.56  
 MSDCCL 19.53 10.67 12.86 29.31 11.96 16.01 36.07 12.49 17.79 41.35 12.79 19.04  
 SRGNN GNN-based

methods 
27.85 16.23 19.10 38.91 17.70 22.67 45.93 18.25 24.53 51.10 18.54 25.75  

 CMGNN 29.34 17.06 20.10 40.63 18.56 23.75 47.65 19.12 25.60 52.73 19.40 26.80  
 GSAU 27.55 16.08 18.92 38.48 17.53 22.45 45.62 18.09 24.34 50.79 18.39 25.56  
 Mamba4Rec

Mamba-based
methods 

28.31 16.46 19.39 39.43 17.94 22.98 46.36 18.48 24.81 51.44 18.77 26.01  
 RecMamba 30.07 17.71 20.77 41.17 19.18 24.35 48.19 19.73 26.21 53.12 20.01 27.37  
 EchoMamba4Rec 29.49 17.67 20.60 40.03 19.07 24.00 46.62 19.59 25.74 51.38 19.85 26.87  
 MLSA4Rec 28.62 16.86 19.77 39.37 18.29 23.24 46.11 18.82 25.03 50.94 19.09 26.17  
 SIGMA 27.05 15.88 18.64 37.84 17.31 22.12 44.92 17.87 23.99 50.03 18.15 25.20  
 SS4Rec 29.29 17.60 20.50 40.05 19.03 23.97 46.81 19.56 25.76 51.84 19.84 26.94  
 ACVAE Traditional

generative
methods 

8.02 5.42 7.35 12.68 7.01 8.33 16.02 7.95 8.74 18.58 8.60 8.97  
 ContrastVAE 0.34 0.17 0.21 0.54 0.19 0.27 0.74 0.21 0.33 0.93 0.22 0.37  
 SparseEnNet 11.22 5.78 7.12 17.80 6.65 9.24 22.94 7.05 10.60 27.11 7.29 11.58  
 DiffuRec

Diffusion-
based
methods 

28.17 16.60 19.46 38.78 18.01 22.89 45.57 18.54 24.68 50.49 18.82 25.85  
 DiffRec 6.15 3.77 4.36 8.44 4.07 5.09 9.90 4.19 5.48 10.97 4.25 5.73  
 L-DiffRec 17.13 12.10 13.35 22.04 12.75 14.92 25.48 13.02 15.83 28.10 13.16 16.45  
 CaDiRec 11.35 5.90 7.24 18.16 6.80 9.43 23.37 7.20 10.81 27.36 7.43 11.75  
 PreferDiff 20.19 15.84 16.93 22.49 16.15 17.68 23.85 16.26 18.04 24.95 16.32 18.30  
 Dimos (Ours) Hybrid method 31.42* 18.64* 21.81* 42.52* 20.12* 25.39* 49.51* 20.67* 27.24* 54.39* 20.94* 28.39* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Table A.18
Recommendation performance of examined models on the Retailrocket dataset.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Pop Non-neural

methods 
0.44 0.23 0.28 0.72 0.27 0.37 0.90 0.29 0.42 1.24 0.31 0.50  

 Item-KNN 9.75 6.36 7.08 13.35 6.83 8.22 15.53 7.00 8.80 17.05 7.09 9.15  
 CORE-ave 54.60 40.49 44.03 61.92 41.48 46.40 65.73 41.78 47.41 68.22 41.92 48.00  
 GRU4Rec Traditional

neural
methods 

54.44 41.17 44.50 61.14 42.08 46.67 64.58 42.35 47.59 66.89 42.48 48.13  
 NextItNet 45.36 33.61 36.54 52.45 34.56 38.84 56.27 34.86 39.85 58.79 35.00 40.45  
 SASRec 53.18 41.11 44.12 60.45 42.08 46.48 64.37 42.40 47.52 67.02 42.54 48.15  
 MSDCCL 43.18 31.82 34.65 50.41 32.79 36.99 54.55 33.11 38.09 57.38 33.27 38.76  
 SRGNN GNN-based

methods 
54.65 40.90 44.35 61.56 41.84 46.60 65.05 42.11 47.52 67.40 42.25 48.07  

 CMGNN 55.46 41.14 44.73 62.40 42.07 46.98 65.92 42.35 47.91 68.30 42.48 48.47  
 GSAU 49.97 37.95 40.95 57.47 38.96 43.38 61.45 39.27 44.43 64.14 39.43 45.07  
 (continued on next page)
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Table A.18 (continued).
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Mamba4Rec

Mamba-based
methods 

55.80 42.27 45.66 62.26 43.14 47.76 65.66 43.41 48.66 67.87 43.54 49.18  
 RecMamba 56.65 43.17 46.55 63.11 44.05 48.65 66.37 44.31 49.52 68.55 44.43 50.03  
 EchoMamba4Rec 55.51 42.77 45.97 61.26 43.54 47.83 64.24 43.78 48.63 66.19 43.89 49.09  
 MLSA4Rec 55.70 42.43 45.76 61.91 43.27 47.78 65.04 43.52 48.61 67.14 43.63 49.10  
 SIGMA 55.25 41.77 45.15 61.87 42.66 47.30 65.31 42.93 48.21 67.55 43.06 48.74  
 SS4Rec 56.03 42.43 45.84 62.72 43.33 48.01 66.12 43.60 48.91 68.34 43.72 49.44  
 ACVAE Traditional

generative
methods 

3.38 2.43 3.67 4.89 2.95 4.03 5.92 3.25 4.17 6.67 3.44 4.25  
 ContrastVAE 0.15 0.08 0.10 0.26 0.09 0.13 0.31 0.09 0.14 0.40 0.10 0.16  
 SparseEnNet 6.27 3.47 4.16 9.08 3.85 5.07 10.98 4.00 5.57 12.42 4.08 5.91  
 DiffuRec

Diffusion-
based
methods 

48.89 40.01 42.26 51.92 40.42 43.24 53.48 40.54 43.66 54.59 40.61 43.92  
 DiffRec 2.86 2.10 2.29 3.37 2.17 2.46 3.71 2.20 2.54 3.95 2.21 2.60  
 L-DiffRec 1.86 1.31 1.45 2.50 1.40 1.66 3.00 1.44 1.79 3.52 1.47 1.91  
 CaDiRec 4.97 2.76 3.31 7.25 3.06 4.04 8.89 3.19 4.47 10.03 3.26 4.74  
 PreferDiff 35.85 35.14 35.32 36.30 35.20 35.46 36.61 35.22 35.54 36.85 35.24 35.60  
 Dimos (Ours) Hybrid method 57.70* 43.83* 47.31* 63.99* 44.68* 49.36* 67.17* 44.93* 50.20* 69.25* 45.05* 50.69* 
For each column, the best performance and the second best performance methods are denoted in bold and underlined fonts respectively.
* Indicates that the improvement over the strongest baseline is statistically significant (𝑝 < 0.05) based on a paired t-test.
Data availability

Data will be made available on request.
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