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a b s t r a c t

Advertisement (abbreviated ad) options are a recent development in online advertising. Simply, an ad
option is a first look contract in which a publisher or search engine grants an advertiser a right but
not obligation to enter into transactions to purchase impressions or clicks from a specific ad slot at a
pre-specified price on a specific delivery date. Such a structure provides advertisers with more flexibility
of their guaranteed deliveries. The valuation of ad options is an important topic and previous studies on
ad options pricing have been mostly restricted to the situations where the underlying prices follow a
geometric Brownian motion (GBM). This assumption is reasonable for sponsored search; however, some
studies have also indicated that it is not valid for display advertising. In this paper, we address this issue
by employing a stochastic volatility (SV) model and discuss a lattice framework to approximate the pro-
posed SV model in option pricing. Our developments are validated by experiments with real advertising
data: (i) we find that the SV model has a better fitness over the GBM model; (ii) we validate the proposed
lattice model via two sequential Monte Carlo simulation methods; (iii) we demonstrate that advertisers
are able to flexibly manage their guaranteed deliveries by using the proposed options, and publishers can
have an increased revenue when some of their inventories are sold via ad options.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

Options have been widely used in many fields: financial options
are an important derivative when speculating profits as well as
hedging risk (Wilmott 2006); real options are an effective
decision-making tool for business projects valuation and corporate
risk management (Boer 2002). Recently, options have been intro-
duced into the field of online advertising to solve the so called
non-guaranteed delivery problem as well as to provide advertisers
with greater flexibility in purchasing premium ad inventories.
Moon and Kwon (2010) proposed an ad option for advertisers to
make a flexible choice of payment at either cost-per-mille (CPM)
or cost-per-click (CPC). They are two popular online advertising
payment schemes: the former allows an advertiser to pay when
his ad is displayed 1000 times to online users while with the latter
an advertiser pays only when his ad is clicked by an online user.
The proposal of Moon and Kwon (2010) was similar to an option
paying the worst and cash (Zhang 1998) because the option payoff
depends on the minimum difference between CPM and CPC.
Wang and Chen (2012) proposed a simple European ad option

between buying and non-buying the impressions that will be cre-
ated in the future, and discussed the option pricing based on the
one-step binomial lattice method (Sharpe 1978). Their ad option
was priced from the perspective of a risk-averse publisher who
wants to hedge the expected revenue in the next step. Chen et al.
(2015) investigated a special option for sponsored search whereby
an advertiser can target a set of keywords for a certain number of
total clicks in the future. Each candidate keyword can be specified
with a fixed payment price and the option buyer can exercise the
option multiple times at any time prior to or on the contract expi-
ration date. Their design was a generalization of the dual-strike call
option (Zhang 1998) and the multi-exercise option (Marshall 2012).

In this paper, we discuss an ad option that gives an advertiser a
right but not obligation to purchase the future impressions or
clicks from a specific ad slot (or user tag or keyword) at a
pre-specified price. The pre-specified price is also called the strike
price, which can be same or different to the payment scheme of
its underlying ad format. For example, the underlying price (i.e.,
the winning payment price) of a display impression from
real-time bidding (RTB) is usually measured by CPM while the pro-
posed ad option can be specified with a strike price in terms of CPC
for this impression. The publisher or search engine who grants this
right in exchange for a certain amount of upfront fee, is called the
option price. Obviously, ad options are more flexible than
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guaranteed contracts (Bharadwaj et al. 2010) as on the delivery
date. If the advertiser thinks that the spot market is more benefi-
cial, he can join RTB as a bidder and his cost of not using an ad
option is only the option price. A contract with a such structure
is also called a first look at inventory (shortly first look) contract
or tactic (Interactive Advertising Bureau of Canada 2015). It means
that an advertiser is given the opportunity to buy inventories
which a publisher offers to him, and if he has no use for it, it can
be sold onto another ad network. The ad options proposed by
our this study and Wang and Chen (2012), and Chen et al. (2015)
are first look contracts while the ad option studied by Moon and
Kwon (2010) is not a first look contract.

When pricing an ad option, the previous research is mostly
restricted in their usage to those situations where the underlying
price follows a geometric Brownian motion (GBM) Samuelson
1965. According to Yuan et al. (2013, 2014) and Chen et al.
(2014), there is only a very small number of ad inventories whose
CPM or CPC satisfies this assumption. Therefore, the previous
studies fail to provide an effective unified framework that covers
general situations. In this paper, we address the issue and provide
a more general pricing framework. We use a stochastic volatility
(SV) model to describe the underlying price movement for cases
where the GBM assumption is not valid. Based on the SV model,
a censored binomial lattice is then constructed for option pricing.
We also examine several previous binomial and trinomial lattice
methods to price an ad option whose underlying inventory prices
follow a GBM model, and deduce the close-form solutions to exam-
ine their convergence performance. Our developments are vali-
dated by experiments using real advertising data. We examine
the fitness of the underlying model, valid the proposed option pric-
ing method, and illustrate that the options provide a more flexible
way of selling and buying ads. In particular, we show that an
advertiser can have better deliveries in a bull market (where the
underlying price increases). On the other hand, a publisher or
search engine is able to reduce the revenue volatility over time.
In a bear market (where the underlying price decreases), there is
a growth in total revenue. To our best knowledge, this is the first
work that discusses lattice methods for the ad option evaluation.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the preliminaries of lattice
methods for pricing an ad options with the GBM underlying model.
Section 4 discusses our lattice method to price an ad option with
the SV underlying model. Section 5 presents our experimental
results. Section 6 concludes the paper.

2. Literature review

The ad options discussed in this paper are closely connected to
financial options, whose evaluation can be traced back to Bachelier
(1900), who proposed to use a continuous-time random walk as
the underlying process to price an option written on a stock.
Samuelson (1965) then replaced the Bachelier’s assumption with
a geometric form, called the geometric Brownian motion (GBM).
Based on the GBM, Black and Scholes (1973) and Merton (1973)
discussed a risk-neutral option pricing method independently,
called the Black–Scholes–Merton (BSM) model, opening the flood-
gates to option pricing. Various numerical procedures have
appeared in this field, including lattice methods, finite difference
methods, Monte Carlo simulations, etc. These numerical proce-
dures are capable of evaluating more complex options when the
close-form solution does not exist. In our discussion, we focus on
lattice methods.

Sharpe (1978) initiated the concept of pricing a call option writ-
ten on an asset with simple up and down two-state price changes.
We call this the one-step binomial lattice method and use it as a

pedagogical framework to explain the continuous-time option
pricing model without reference to stochastic calculus. Cox et al.
(1979) then developed a multi-step binomial framework, called
the Cox–Ross–Rubinstein (CRR) model, which can converge with
the BSM model if the length of the time step is sufficiently small.
Boyle (1986) proposed a trinomial lattice, whereby the asset price
can either move upwards, downwards, or stay unchanged in a
given time period. Other contributors to one factor lattice methods
include Kamrad and Ritchken (1991), Tian (1993) and Haahtela
(2010). The technical details and differences of these methods
are presented in Table 1, where the movement scale is the ratio of
the price in the next state to the current one, and the transition
probability is the risk-neutral probability that the asset price moves
from the current state to the next one, which is labeled from the
upper state to the lower state. It is also worth noting that all of
these methods adopt Samuelson’s GBM assumption for the under-
lying asset price.

The GBM assumption may not always be valid empirically. This
motivates a general Ornstein–Uhlenbeck (OU) diffusion process for
option pricing. Nelson and Ramaswamy (1990) discussed the con-
ditions under which a sequence of binomial processes converges
weakly to an OU diffusion process and investigated its application
to pricing an option written on an asset with constant volatility.
Primbsa et al. (2007) then proposed a pentanomial lattice method
that incorporates the skewness and kurtosis of the underlying
asset price and found that the limiting distribution is compounded
Poisson. Nelson and Ramaswamy (1990) and Primbsa et al. (2007)
solved the lattice pricing for the non-GBM underlyings which have
constant volatility. Florescu and Viens (2005), Florescu and Viens
(2008) proposed lattice methods that deal with a general SV under-
lying model. However, their method is not very practical in terms
of computational efficiency as the transition probabilities are
restricted by many conditions and need to be estimated indepen-
dently before building up the price lattice. From our point of view,
a direct censor on transition probabilities of each node, as dis-
cussed in Nelson and Ramaswamy (1990), would be more efficient.
Our proposed method in Section 4 is based on this idea.

3. Preliminaries of lattice method

This section introduces the basic settings of the lattice based
option pricing framework in the context of online advertising.
The previous lattice methods introduced in Table 1 are examined.
For the reader’s convenience, the key notations and terminologies
used throughout the paper are described in Table 2. We here dis-
cuss the case where an ad option allows its buyer to pay a fixed
CPC for display impressions. Therefore, the strike price of the
option is the fixed CPC and the underlying price is the uncertain
winning payment CPM from RTB, where each single impression
being auctioned off is paid at the second highest bid (Edelman
et al. 2007, Google 2011). Other ad option cases can be discussed
in the same manner, such as an ad option allows its buyer to pay
a fixed CPM for display impressions, or an ad option allows its
buyer to pay a fixed CPM or CPC for clicks.

Suppose that an advertiser buys an ad option in time 0 which
allows him to purchase several impressions from a publisher’s ad
slot in time 1 at a fixed CPC, denoted by FC . As impressions are
normally auctioned off at a CPM value, the underlying price is
the winning payment CPM from RTB, denoted by Mi; i ¼ 0;1. In
time 1, the underlying price may rise or fall, denoted by Mfug

1 or

Mfdg
1 . Let us consider the upward case. If Mfug

1 =ð1000HÞP FC , the
advertiser will exercise the option; if Mfug

1 =ð1000HÞ < FC , he will
not exercise the option but join RTB instead. Note that H represents
a constant CTR; therefore, the underlying and strike prices can be
compared on the same measurement basis. Mathematically, we
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use the option payoff function Ufug1 to describe the above decision

making, Ufug1 :¼ ðMfug
1 =ð1000HÞ $ FCÞ

þ
. Similarly, if the winning

payment CPM moves downward, the option payoff

Ufdg1 :¼ ðMfdg
1 =ð1000HÞ $ FCÞ

þ
.

We follow a general economic settings and consider that the
advertiser is risk-neutral so that he exercises the ad option only
if the option payoff is maximized (Wilmott 2006). We use the
so-called risk-neutral probability measure for option pricing
(Bjork 2009). In finance, it is defined by the statement that the
expected risky return of an asset is equal to a risk-less bank inter-
est return. In the online advertising environment, the risk-neutral
probability measure Q ¼ ðq;1$ qÞ satisfies the following equation

erM0 & quM0 þ ð1$ qÞdM0; ð1Þ

where er ¼ ð1þ brÞ is the risk-less return over the period from time 0
to time 1; u ¼ Mfug

1 =M0 and d ¼ Mfdg
1 =M0 are the movement scales

of CPM. Therefore, we can obtain the risk-neutral transition proba-
bility q ¼ ðer $ dÞ=ðu$ dÞ. Note that here q equals to q1 in Table 1,
which describes the probability that CPM moves upward in time
1. Since the option value can be considered as a bivariate function
of time and underlying price, the option value at time 0 can be
obtained by discounting the expected option value at time 1 under
Q ¼ ðq;1$ qÞ (Bjork 2009, see Martingale). The option value at time
1 is actually the option payoff; therefore, the option price at time 0
can be obtained by discounting the expected payoff, that is

p0 ¼ er$1EQ½U1( ¼ er$1 qUfug1 þ ð1$ qÞUfdg1

! "
: ð2Þ

This option price p0 is fair because it rules out arbitrage (Varian
1987, Bjork 2009). Arbitrage means that an advertiser can obtain a
profit larger or smaller than the risk-less bank interest rate with
certainty. Consider if the option price is overestimated, i.e.,
p0 > er$1ðqUfug1 þ ð1$ qÞUfdg1 Þ, the advertiser can sell short an ad
option at time 0 and save the money into bank to get the
risk-less profit erp0 $ ðqUfug1 þ ð1$ qÞUfdg1 Þ. Converse strategies can
be used to obtain arbitrage if the option price is underestimated.
Up to this point, we have discussed the option pricing framework
that is the one-step binomial method, initially proposed by
Sharpe (1978). For a multi-step binomial lattice, as shown in
Fig. 1(a), the possible values of CPM and the corresponding
risk-neutral transition probabilities can be estimated directly by
investigating various combinations of each one-step model, so
the option price p0 can be obtained as follows

Table 1
Summary of lattice methods used in pricing a call option written on an asset with the GBM underlying model. Detailed description of notations is provided in Table 2.

Model Movement scales u; d (or u;m; d) Transition probabilities q1; q2; ) ) ) qk

Binomial lattice (one factor)
CRR u ¼ er

ffiffiffiffi
Dt
p

; d ¼ 1=u. q1 ¼ erDt$d
u$d , q2 ¼ 1$ q1.

Tian-BIN
u ¼ cf

2 ðfþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ 2f$ 3

q
Þ, c ¼ erDt , q1 ¼ erDt$d

u$d , q2 ¼ 1$ q1.

d ¼ cf
2 ðfþ 1$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ 2f$ 3

q
Þ, f ¼ er2Dt .

Haahtela-BIN u ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
er2 Dt$1
p

þrDt , d ¼ e$
ffiffiffiffiffiffiffiffiffiffiffiffiffi
er2Dt$1
p

þrDt . q1 ¼ erDt$d
u$d , q2 ¼ 1$ q1.

Trinomial lattice (one factor)
Boyle-TRIN u ¼ ekr

ffiffiffiffi
Dt
p

, q1 ¼
ðfþc2$cÞu$ðc$1Þ
ðu$1Þðu2$1Þ ,

m ¼ 1, q2 ¼ 1$ q1 $ q3; f ¼ e2rDt er2Dt $ 1
! "

,

d ¼ e$kr
ffiffiffiffi
Dt
p

. q3 ¼
ðfþc2$cÞu2$ðc$1Þu3

ðu$1Þðu2$1Þ ; c ¼ erDt .

KR-TRIN u ¼ ekr
ffiffiffiffi
Dt
p

, q1 ¼ 1
2k2 þ

ðr$1
2r

2Þ
ffiffiffiffi
Dt
p

2kr ,
m ¼ 1, q2 ¼ 1$ 1

k2 ,

d ¼ e$kr
ffiffiffiffi
Dt
p

. q3 ¼ 1
2k2 $

ðr$1
2r

2Þ
ffiffiffiffi
Dt
p

2kr .
Tian-TRIN u ¼ -þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-2 $m2
p

, q1 ¼
md$cðmþdÞþc2f
ðu$dÞðu$mÞ ,

m ¼ cf2; c ¼ erDt , f ¼ er2Dt , q2 ¼
cðuþdÞ$ud$c2f
ðu$mÞðm$dÞ ,

d ¼ -$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-2 $m2
p

;- ¼ c
2 ðf

4 þ f3Þ. q3 ¼
um$cðuþmÞþc2f
ðu$dÞðm$dÞ .

Note: CRR (Cox et al. 1979); Tian-BIN and Tian-TRIN (Tian 1993); Haahtela-BIN (Haahtela 2010); Boyle-TRIN (Boyle 1988); and KR-TRIN (Kamrad and Ritchken 1991).

Table 2
Summary of key notations and abbreviations.

Notation Description

T Option expiration date (in terms of year)
n Total number of time steps and the length of each time step is

Dt ¼ T=n
br;er; r Constant risk-less interest rate: br is the discrete-time interest rate

in Dt;er ¼ 1þ br; and r is a continuous-time interest rate where
erDt ¼ er

u;m; d State transition size (or movement scale) in upward, unchanged
and downward movement

q1; . . . ; qn Risk-neutral state transition probability, labeled from the top
node to the bottom node

QfigðtkÞ Risk-neutral probability on node i at time tk

Q Risk-neutral probability measure
P Real-world probability measure
Mi Mi is CPM at time step i; i ¼ 0; . . . ;n
MðtÞ MðtÞ is CPM at time t
Ci Ci is CPC at time step i
CðtÞ CðtÞ is CPC at time t
H Constant CTR
Un Option payoff on the expiration date
FM ; FC Strike price in terms of CPM, CPC
p0 Option price at time 0 (i.e., the time step 0)
N ð)Þ Cumulative distribution function of a standard normal

distribution
Nðx; y2Þ Normal distribution with mean x and standard deviation y, where

x; y 2 R

l Constant drift of the underlying price
r Constant volatility of the underlying price
rðtÞ Stochastic volatility of the underlying price
j; h; d Constant speed, long-term mean, and volatility of the stochastic

volatility model
CPC Cost-per-click
CPM Cost-per-mille (i.e., 1000 impressions)
CTR Click-through rate
E½)( Expectation
stdð)Þ Standard deviation
x ^ y minfx; yg, where x; y 2 R

ð)Þþ maxf0; )g
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p0 ¼ er$n
Xn

j¼0

n
j

$ %
q jð1$ qÞn$j u jdn$jM0

1000H
$ FC

 !þ
: ð3Þ

If for any j P j*; u jdn$jM0=ð1000HÞP FC , then

p0 ¼
M0

1000H

Xn

j¼j*

n
j

$ %
eq jð1$ eqÞn$j $ FCer$n

Xn

j¼j*

n
j

$ %
q jð1$ qÞn$j

¼ M0

1000H
wðj*;n; eqÞ $ FCer$nwðj*;n; qÞ; ð4Þ

where eq ¼ q+ ðu=erÞ. If each time step Dt ¼ T=n is sufficiently small,
a continuous-time closed-form formula for p0 can be obtained as
follows

p0 ¼
M0

1000H
N ð11Þ $ FCe$rTN ð12Þ; ð5Þ

11 ¼
1

r
ffiffiffi
T
p ln

M0

1000HFC

& '
þ r þ 1

2
r2

$ %
T

$ %
; ð6Þ

12 ¼ 11 $ r
ffiffiffi
T
p

; ð7Þ

which is very similar to the BSM model (Black and Scholes 1973,
Merton 1973).

Fig. 1(b) exhibits a trinomial lattice. There are 6 parameters:
u; m; d are state movement scales; q1; q2; q3 are the correspond-
ing risk-neutral transition probabilities. These parameters
uniquely determine the movement of CPM, which then determines
a unique value of an ad option written on CPM. They must be
restricted such that the constructed trinomial lattice converges to
the log-normal distribution of CPM in continuous time (i.e., the
GBM assumption). We use the moment matching technique (Cox
et al. 1979) to define the basic restrictions as follows:

q1 þ q2 þ q3 ¼ 1; ð8Þ

q1uþ q2mþ q3d ¼ c ¼ erDt ; ð9Þ

q1u2 þ q2m2 þ q3d2 ¼ c2f ¼ e2rDter2Dt ð10Þ

where 0 6 q1; q2; q3 6 1. Since there are 6 parameters, 3 additional
equations are necessary to define a unique solution. Here we

examine the additional conditions discussed by previous research
(Boyle 1988, Kamrad and Ritchken 1991, Tian 1993) and use the
same settings to price a display ad option.

Fig. 2 compares the convergence performance of discussed
binomial and trinomial lattice methods for option pricing. Eq. (7)
is used as the golden line to examine how quickly that the
calculated option price from lattice methods approximate to the
closed-form value (because these methods are all based on
the GBM assumption). Fig. 2(a) illustrates the situation when the
option value at time 0 is in the money (i.e., M0=ð1000HÞP FC)
and Fig. 2(b) shows the out of the money case (i.e.,
M0=ð1000HÞ < FC). Several findings are worth mentioning here.
First, the convergence rate of the trinomial lattice is fast than that
of the binomial lattice; however, more nodes need to be computed
for the former, i.e., ðnþ 1Þ2 nodes for the trinomial lattice while
there are only ðnþ 1Þðnþ 2Þ=2 nodes for binomial lattice. Second,
the Tian-TRIN (Tian 1993) model has a better convergence perfor-
mance than the others.

4. Censored binomial lattice for the SV underlying model

When the GBM assumption is not valid empirically, the SV
model can be used to describe the underlying price movement.
Let us extend the case whereby an ad option allows its buyer to
pay a fixed CPC for display impressions. The SV model for the
uncertain winning payment CPM can be expressed as follows:

dMðtÞ ¼ lMðtÞdt þ rðtÞMðtÞdWðtÞ; ð11Þ

drðtÞ ¼ jðh$ rðtÞÞdt þ d
ffiffiffiffiffiffiffiffiffi
rðtÞ

p
dZðtÞ; ð12Þ

where WðtÞ and ZðtÞ are standard Brownian motions under the real
world probability measure P satisfying E½dWðtÞdZðtÞ( ¼ 0, and l and
rðtÞ are the constant drift and volatility of CPM, and j; h; d are the
volatility parameters. The drift factor jðh$ rðtÞÞ ensures the mean
reversion of rðtÞ towards its long-term value h. The volatility factor
d
ffiffiffiffiffiffiffiffiffi
rðtÞ

p
avoids the possibility of negative rðtÞ for all positive values

of j and h. It is worth noting that the proposed model is very similar
to the Heston model (Heston 1993) while the significant difference
is that the hidden layer is driven by drðtÞ rather than drðtÞ2. Let

(a) (b)

Fig. 1. Lattice framework: (a) the binomial lattice for CPM; (b) the trinomial lattice for CPM.
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XðtÞ ¼ lnðMðtÞÞ, Eq. (11) can be re-written as the following
risk-neutral form:

dXðtÞ ¼ r $ r2ðtÞ
2

$ %
dt þ rðtÞdWQðtÞ; ð13Þ

where r is the constant continuous-time risk-less interest rate and
WQ :¼WðtÞ þ

R t
0

l$r
rðsÞ ds is a standard Brownian motion under the

risk-neutral probability measure Q, so E½dWQðtÞdZðtÞ( ¼ 0. The
process XðtÞ can be weakly approximated by a series of binomial
processes, say eXðtiÞ; i ¼ 1; . . . ;n. For more details about the

approximation conditions, see (Nelson and Ramaswamy 1990).
We will briefly verify these conditions in the following discussion.

In Algorithm 1, we present our method of calculating the option
price for a display ad option whose underlying is the SV model.
Simply, a binomial lattice for eXðtiÞ is first constructed to approxi-
mates XðtÞ weakly. The lattice is constructed from time step 0 to
time step n, and at each time step, nodes are calculated from top
to bottom. In the following discussion, the mathematical details
of Steps r–t are introduced.

Step r We start from the first node eX f1gðtkÞ in Fig. 3, whose two
successors can be expressed as follows

(a) (b)

Fig. 2. Comparison of the convergence performance of the binomial and trinomial lattice methods for pricing a display ad option with the GBM underlying: (a) the option
value at time 0 is in the money where M0 ¼ 2; FC ¼ 0:005; CTR ¼ 0:3; r ¼ 0:05; T ¼ 31=365 and r ¼ 0:5; and (b) the option value at time 0 is out of the money where
M0 ¼ 2; FC ¼ 0:075; CTR ¼ 0:3; r ¼ 0:05; T ¼ 31=365 and r ¼ 0:5. Detailed descriptions of notations and terminology are provided in Table 2.

Fig. 3. Censored binomial lattice for the SV underlying. Detailed description of notations is provided in Table 2.
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eX f1;ugðtk þ DtÞ ¼ ðJf1gðtkÞ þ 1Þrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

þ r $
r2ðtk þ DtÞ

2

$ %
Dt; ð14Þ

eX f1;dgðtk þ DtÞ ¼ ðJf1gðtkÞ $ 1Þrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

þ r $ r2ðtk þ DtÞ
2

$ %
Dt; ð15Þ

where Jf1gðtkÞrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

is the point on the grid closest to
eX f1gðtkÞ, given by

Jf1gðtkÞ ¼ inf
J*2N

J*rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ eX f1gðtkÞ
(((

(((: ð16Þ

Eqs. (14) and (15) can be rewritten in terms of their conditional
increments:

eX f1;ugðtk þ DtÞ $ eXf1gðtkÞ ¼ rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ Kf1gðtkÞ

þ r $ r2ðtk þ DtÞ
2

$ %
Dt; ð17Þ

eX f1;dgðtk þ DtÞ $ eXf1gðtkÞ ¼ $rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ Kf1gðtkÞ

þ r $ r2ðtk þ DtÞ
2

$ %
Dt; ð18Þ

where Kf1gðtkÞ is the grid adjusting parameter for the successors of
the first node at time tk. As shown in Fig. 3, the value of
KfigðtkÞ; i ¼ 1;2; . . . ; k, can be either positive or negative, To satisfy
the approximation condition limDt!0jXðtk þ DtÞ $ XðtkÞj ¼ 0, the
following equation holds:

E eX f1gðtk þ DtÞ $ eX f1gðtkÞjF ðtkÞ
h i

¼ r $ r2ðtk þ DtÞ
2

$ %
Dt: ð19Þ

Then, we can obtain a system of equations

rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ Kf1gðtkÞ
! " qf1g1 ðtkÞ

Q f1gðtkÞ

þ $rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ Kf1gðtkÞ
! " qf1g2 ðtÞ

Q f1gðtÞ
¼ 0;

qf1g1 ðtkÞ þ qf1g2 ðtkÞ ¼ Q f1gðtÞ;

where qf1g1 ðtkÞ and qf1g2 ðtkÞ are the risk-neutral probabilities that the
successor of the first node at time tk rises or falls in time tk þ Dt, and
Q f1gðtkÞ is the risk-neutral probability for the first node at time tk.
Solving the above equations then gives

qf1g1 ðtkÞ ¼

Qf1gðtkÞ
2 1þ Kf1gðtkÞ

rðtkþDtÞ
ffiffiffiffi
Dt
p

! "
;

if 0 6 Qf1gðtkÞ
2 1þ Kf1gðtkÞ

rðtkþDtÞ
ffiffiffiffi
Dt
p

! "
6 Q f1gðtkÞ;

0; if Qf1gðtkÞ
2 1þ Kf1gðtkÞ

rðtkþDtÞ
ffiffiffiffi
Dt
p

! "
< 0;

Q f1gðtkÞ; if Qf1gðtkÞ
2 1þ Kf1gðtkÞ

rðtkþDtÞ
ffiffiffiffi
Dt
p

! "
P Q f1gðtkÞ;

8
>>>>>>>>>><

>>>>>>>>>>:

¼ Qf1gðtkÞ ^
Q f1gðtkÞ

2
1þ Kf1gðtkÞ

rðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

 ! !þ
;

ð20Þ

qf1g2 ðtkÞ ¼ Q f1gðtkÞ $ qf1g1 ðtkÞ: ð21Þ

Algorithm 1. Censored binomial lattice method for pricing a
display ad option with the SV underlying model. Detailed descrip-
tion of notations is provided in Table 2.

function
OptionPricingBinSV(M0; r0; j; h; d; H; T; n; r; FC)
Dt  T=n;er  erDt;
for k 0 to n$ 1 do

for i 2 nodes in time step k do
if i ¼ 1 then

Step r;
else

Step s;
end if

end for
end for
p0  Eq. (22) (see Step t);

end function

Eqs. (20) and (21) show that transition probabilities qf1g1 ðtkÞ and
qf1g2 ðtkÞ are censored in the approximation.

Step s The successors of other nodes can be constructed in the
same manner as that of eX f1gðtkÞ. Since the transition probabilities
are censored directly at each node, KfigðtkÞ; JfigðtkÞ and Q figðtkÞ
can be calculated sequentially from top to bottom alongside the
lattice construction for the underlying price. The nodes need to
be kept the recombining pattern; therefore, the following equa-
tions hold for 1 6 i 6 k:

eXfi;dgðtk þ DtÞ

¼ ðJfigðtkÞ $ 1Þrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

þ r $ r2ðtk þ DtÞ
2

$ %
Dt

¼ eXfiþ1;ugðtk þ DtÞ

¼ ðJfiþ1gðtkÞ þ 1Þrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

þ r $ r2ðtk þ DtÞ
2

$ %
Dt;

therefore

Jfiþ1gðtkÞ ¼ JfigðtkÞ $ 2;

Kfiþ1gðtkÞ ¼ Jfiþ1gðtkÞrðtk þ DtÞ
ffiffiffiffiffiffi
Dt
p

$ eX fiþ1gðtkÞ:

The transition probabilities for the node eXfiþ1gðtkÞ can be then esti-
mated by Eqs. (20) and (21). Hence, the rolling risk-neutral proba-
bility distribution Q figðtkÞ for each node can be quickly computed
as follows:

Q figðtk þ DtÞ ¼
qf1g1 ðtkÞ; if i ¼ 1;

qfi$1g
2 ðtkÞ þ qfig1 ðtkÞ; if 1 < i < kþ 1;

qfkþ1g
2 ðtkÞ; if i ¼ kþ 1;

8
>><

>>:

subjected to the initial condition Qðt0Þ ¼ 1.
Step t The binomial lattice can be constructed by steps r–s

for each time step until the contract expiration date. Finally, the
option price can be obtained as follows:

p0 ¼ er$n
Xnþ1

i¼1

Q figðtnÞ
1

1000H
eeX figðtnÞ $ FC

$ %þ
: ð22Þ

Similar to Eq. (4), Eq. (22) is also the discrete form of the
risk-neutral terminal pricing (Bjork 2009).

In the above discussion, we actually followed Florescu and
Viens (2005) to construct the binomial lattice and used variables
KfigðtkÞ and JfigðtkÞ to tune the grid so that the constructed binomial
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framework is recombining. Compared to Florescu and Viens
(2005), our method simplifies the lattice construction process by
censoring the probabilities at each node directly. In the meantime,

the structure satisfies the approximation conditions proposed by
Nelson and Ramaswamy (1990). Fig. 4 presents an empirical exam-
ple of constructing a censored binomial lattice for pricing a display
ad option written on an ad slot from a SSP in the UK. The given
values of the model parameters are estimated from the training
data. Fig. 4(a) shows a censored binomial lattice for the underlying
CPM and Fig. 4(b) illustrates how the option value is calculated
backward iteratively from the expiration date to time 0. For the
sake of comparison, Fig. 5 illustrates the binomial lattices
constructed by the CRR model with the same parameter settings.
Obviously, the changing volatility can be found in Fig. 4(a) while
5(a) exhibits a constant volatility over time. We find that the option
price given by the SV model is slightly smaller than that of the CRR
model. This is because the long-term mean value of volatility is
0:2959, smaller than its initial value 0:8723. Therefore, the drift
drags the volatility downside to its long-term level and the option
value based on the SV model contains less risk than the CRR model.

5. Empirical evaluation

This section presents our experimental results. We examine the
GBM assumption with real advertising data, compare the fitness of

(a) (b)

Fig. 4. Empirical example of binomial lattices for an ad slot from the SSP dataset: (a) the censored binomial lattice for CPM based on the SV model, where
r ¼ 0:05; T ¼ 0:0384; n ¼ 14; CPM ¼ 0:7417; r0 ¼ 0:8723; j ¼ 96:4953; h ¼ 0:2959; d ¼ 14:9874; (b) the censored binomial lattice for the option value. The model
parameters are estimated based on the training data.

(a) (b)

Fig. 5. Example of binomial lattices for the same ad slot in Fig. 4: (a) the CRR binomial lattice for CPM based on the GBM model, where
r ¼ 0:05; T ¼ 0:0384; n ¼ 14; CPM ¼ 0:7417; r0 ¼ 0:8723. Here we use the same parameters’ values in Fig. 4; (b) the CRR binomial lattice for the option value.

Table 3
Summary of datasets for experiments.

Dataset SSP Google AdWords

Period 08/01/2013–14/02/
2013

26/11/2011–14/01/
2013

No. of ad slots or
keywords

31 557

No. of advertisers 374 +
No. of impressions 6646643 +
No. of bids 33043127 +
Winning payment price

p p

Bid quote GBP/CPM GBP/CPC

Table 4
Experimental settings of the SSP dataset.

Training set (31 days) Development & test set (7 days)

08/01/2013–07/02/2013 08/02/2013–14/02/2013
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underlying models, validate the proposed lattice method via
Monte Carlo simulations, analyze if an advertiser can have better
deliveries under a fixed daily budget, and discuss the effects on
the publisher’s (or search engine’s) revenue.

5.1. Datasets and experimental design

Table 3 presents the two datasets used in experiments: a RTB
dataset from a SSP in the UK; and a sponsored search dataset from
Google AdWords. The RTB dataset contains all advertisers’ bids and
the corresponding winning payment CPMs (per transaction). The
Google dataset is obtained by using Google’s Traffic Estimation ser-
vice Yuan and Wang 2012. Tables 4 and 5 illustrates our experi-
mental settings. Each dataset is divided into several experimental

groups and each group is specified with one training, one develop-
ment and one test set. The model parameters are estimated in the
training set. Display ad options are priced in the development set.
The actual bids in the test set are used to examine the priced
options. The default value of CTR is set to be 0:03.

5.2. Fitness of GBM and SV models

The following two conditions hold if the GBM assumption is
valid empirically: (i) the normality of the logarithm ratios of the
winning payment price1; and (ii) the independence of the logarithm
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Fig. 6. Empirical example of testing the GBM conditions of an ad slot from the SSP dataset: (a) the plot of the average daily winning payment CPMs from auctions; (b) the
histogram of the logarithm ratios of the CPM, i.e., lnðMiþ1=MiÞ; i ¼ 1; . . . ;n$ 1; (c) the QQ plot of the logarithm ratios; (d) the plot of the ACFs of the logarithm ratios. The
Shapiro–Wilk test is with p-value 0.0009 and the Ljung–Box test is with p-value 0.1225.

Table 5
Experimental settings of the Google AdWords dataset.

Market Group Training set (31 days) Development & test set (31 days)

US 1 25/01/2012–24/02/2012 24/02/2012–25/03/2012
2 30/03/2012–29/04/2012 29/04/2012–31/05/2012
3 10/06/2012–12/07/2012 12/07/2012–17/08/2012
4 10/11/2012–11/12/2012 11/12/2012–10/01/2013

UK 1 25/01/2012–24/02/2012 24/02/2012–25/03/2012
2 30/03/2012–29/04/2012 29/04/2012–31/05/2012
3 12/06/2012–13/07/2012 13/07/2012–19/08/2012
4 18/10/2012–22/11/2012 22/11/2012–24/12/2012

1 The logarithm ratio of winning payment price Li is defined by Li ¼ lnðMiþ1=MiÞ or
Li ¼ lnðCiþ1=CiÞ.

472 B. Chen, J. Wang / Electronic Commerce Research and Applications 14 (2015) 465–479



ratios from the previous data. Normality can be graphically checked
by a histogram or Q–Q plot, and be statistically verified by the
Shapiro–Wilk test (Shapiro and Wilk 1965); independence can be
tested by the autocorrelation function (ACF) (Tsay 2005) and the Lj

ung–Box statistic (Ljung and Box 1978). It is worth noting that the
above two conditions are necessary conditions while we follow
Marathe and Ryan (2005) and consider the GBM assumption is valid
empirically if they are not rejected by real data.
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Fig. 7. Empirical example of testing the GBM conditions of the keyword ’’canon 5d’’ from the Google AdWords dataset: (a) the plot of average daily winning payment CPCs;
(b) the histogram of logarithm ratios of CPC, i.e., lnðCiþ1=CiÞ; i ¼ 1; . . . ;n$ 1; (c) the QQ plot of the logarithm ratios; (d) the plot of the ACFs of the logarithm ratios. The
Shapiro–Wilk test is with p-value 0.2144 and the Ljung–Box test is with p-value 0.6971.
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Fig. 8. Summary of the GBM conditions test for all keywords in the Google AdWords dataset.
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Fig. 6 presents an empirical example of testing the GBM
assumption for an ad slot from the SSP dataset, where the underly-
ing winning CPM cannot be described accurately as a GBM. In fact,
none of the 31 ad slots in the SSP dataset satisfy the GBM model.
Therefore, we use the SV model for the ad slots in the SSP dataset.

Fig. 7 presents an example of a keyword from the Google dataset.
The keyword’s winning CPC satisfies the GBM assumption. The
log-normality of CPC is validated in Fig. 7(a)–(c) and the indepen-
dence is confirmed by Fig. 7(d). The overview results of the Google
dataset is shown in Fig. 8. There are 14.25% and 17.20% of the
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Fig. 9. Empirical example of comparing the fitness of GBM and SV models for the keyword ’’kinect for xbox 360’’ from the Google AdWords dataset. The training period is
from time steps 1–50, the development and test periods are from time steps 51–150. Plot (a), (c), (e) illustrate three instances of simulated paths from the estimated GBM and
SV, respectively. Plot (b), (d), (f) provide the corresponding smooth pattern and confidence interval of plot (a), (c), (e).
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keywords in the US and UK markets respectively that can be accu-
rately described by the GBM model. We will price the remaining
keywords using the SV model.

Fig. 9 gives an empirical example showing the model fitness for
the situation where the GBM assumption is not valid. Three differ-
ent instances of simulated paths are generated from the GBM and
SV models for the same keyword. Fig. 9(a), (c), (d) compares the
simulations from these two models with the actual winning pay-
ment CPCs in real-time auctions. The smooth movement pattern
of these three instances are also examined in Fig. 9(b), (d), (f). It
is obvious that the SV model has a better fitness to the data. In
addition, the Euclidean distance (also called the L-2 distance) is
used to examine the similarity of the simulated path and the test
data. The overall results of the ad slots and keywords in our
datasets are presented in Tables 6 and 7, which show that the SV
model has a general better fitness to real data.

5.3. Validation of the option pricing model

We now examine the proposed ad option pricing method via
two sequential Monte Carlo simulation methods. By using the
terminal value pricing formula (Bjork 2009), the option price p0

can be estimated as follows:

p0 ¼
Xen

j¼1

er$n 1
1000H

MjðtnÞ $ FC
$ %þ

; ð23Þ

where MjðtnÞ can be generated by either Euler or Milstein
discretisation schemes (Glasserman 2003):

Euler Scheme

Mðti þ DtÞ ¼ MðtiÞeðr$
1
2r

2ðtiÞÞDtþrðtiÞ
ffiffiffiffi
Dt
p

!i ; ð24Þ

rðti þ DtÞ ¼ rðtiÞ þ jðh$ rðtiÞÞDt þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðtiÞDt

p
ei; ð25Þ

Milstein Scheme

MðtiþDtÞ¼MðtiÞeðr$
1
2r

2ðtiÞÞDtþrðtiÞ
ffiffiffiffi
Dt
p

!i ; ð26Þ

rðtiþDtÞ¼rðtiÞþjðh$rðtiÞÞDtþd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðtiÞDt

p
eiþ

1
4

d2Dtðe2
i $1Þ; ð27Þ

where !i , Nð0;1Þ; ei , Nð0;1Þ.
These two methods have been widely used in validating the

pricing models for exotic options in finance. There are two strong

benefits. First, they are developed directly based on the discretisa-
tion forms of the underlying dynamics, easy to implement and
have good convergence performance to the closed-form solution.
Second, they provide a natural criteria for controlling errors.
Consider that the errors are controlled with 95% probability, the
following criteria can be used to test the option price calculated
from our proposed model:

pBinSV
0 2 pMC

0 $1:96
er$nstdðUðMðtnÞÞÞffiffiffiffi

en
p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼pMC;Lower

0

; pMC
0 þ1:96

er$nstdðUðMðtnÞÞÞffiffiffiffi
en
p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼pMC;Upper

0

2

66664

3

77775
;

where pBinSV
0 represents the option price calculated from our pro-

posed censored binomial lattice method, pMC
0 represents the option

price calculated from Monte Carlo simulations, pMC;Lower
0 and

pMC;Upper
0 represent the lower and upper bounds of pMC

0 , respectively.
Fig. 10 provides our model validation test. We price an ad

option using the proposed censored binomial lattice and the dis-
cussed two Monte Carlo simulation methods. The model parame-
ters are changed in certain intervals against each other in order
to investigate the sensitivity of the calculated option price to the
values of parameters. It is not difficult to see that the proposed lat-
tice method is robust and accurate because pBinSV

0 is very close to
pMC

0 and always lies in the confidence interval for different model
parameters’ values.

5.4. Delivery performance for advertiser

Tables 8 and 9 present an empirical example that compares an
advertiser’s delivery performance between RTB and ad options.
Table 8 shows the advertiser’s delivery performance in RTB with
a fixed daily budget. If the supplied impressions are at same levels
and if the average winning payment CPMs increase, the advertiser
will receive fewer impressions. In Table 9, the advertiser buys
several ad options in advance. Consider if he purchases an ad
option with expiration date 08/02/2013, he has the right to secure
impressions that will be created on 08/02/2013 at a fixed CPC. Here
the advertiser is assumed to use his daily budget from the corre-
sponding delivery date to pay the upfront option price. Hence, as
shown in Table 9, the advertiser’s strategy is to purchase as many
options as possible, and the remaining daily budgets will be used

Table 6
Comparing the model fitness for all 31 ad slots in the SSP dataset. L-2 distance is the Euclidean distance, and the number represents the percentage of ad slots which shows that
the SV model has a better fitness (i.e., a smaller L-2 distance).

Training set (31 days) Development & L2 distance of L2 distance of
test set (7 days) simulated paths smoothed simulated paths

08/01/2013–07/02/2013 08/02/2013–14/02/2013 54.8387% 67.7419%

Table 7
Comparing the model fitness for the non-GBM keywords in the Google AdWords dataset. L-2 distance is the Euclidean distance, and the number represents the percentage of non-
GBM keywords which shows that the SV model has a better fitness (i.e., a smaller L-2 distance).

Market Group Training set Development & test
set (31 days)

L2 distance of
simulated paths (%)

L2 distance of smoothed
simulated paths (%)

US 1 25/01/2012–24/02/2012 24/02/2012–25/03/2012 82.8571 80.0000
2 30/03/2012–29/04/2012 29/04/2012–31/05/2012 94.8718 96.1538
3 10/06/2012–12/07/2012 12/07/2012–17/08/2012 64.2857 64.2857
4 10/11/2012–11/12/2012 11/12/2012–10/01/2013 98.1481 100.0000

UK 1 25/01/2012–24/02/2012 24/02/2012–25/03/2012 96.3636 90.9091
2 30/03/2012–29/04/2012 29/04/2012–31/05/2012 98.2456 94.7368
3 12/06/2012–13/07/2012 13/07/2012–19/08/2012 58.0645 67.7419
4 18/10/2012–22/11/2012 22/11/2012–24/12/2012 72.2222 80.5556
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Fig. 10. Example of model validation tests: (a), (c), (e) Euler scheme; (b), (d), (f) Milstein scheme. The initial values and parameters settings are:
Mðt0Þ ¼ 20; FC ¼ 0:633; r ¼ 0:05; rðt0Þ ¼ 0:5; j ¼ 3; h ¼ 0:75; d ¼ 0:35.
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on the corresponding delivery dates. We use the actual bids from
RTB to simulate the real-time feeds of the spot market, so if the
market value of a click is higher than the fixed payment, the
advertiser will use ad options to secure the needed clicks and then
pay the fixed CPCs accordingly. Otherwise, the advertiser will
obtain the equivalent clicks from RTB. Our example shows a ’’bull
market’’ where the average spot CPM in the test set is far higher
than the initial CPM. Therefore, ad options would be actively used
by the advertiser to purchase the clicks. Compared to Table 8, the
advertiser can receive more clicks (increased by 20.92%) in a bull
market via ad options.

Similar experiments are conducted for all ad slots in our data-
sets. The overall results are presented in Tables 10 and 11. For
the SSP dataset, we consider the ad options that allow advertisers
to pay a fixed CPC to purchase impressions of targeted ad slots. For
the Google dataset, we consider the ad options that allow advertis-
ers to pay a fixed CPM to purchase clicks of their targeted key-
words. To summarize, we find that an advertiser’s daily budget
can be used more effectively in a bull market and that his delivery
increases as well. The advertiser’s average cost spent on each
impression or click is reduced. In a bear market (i.e., the underlying
price decreases), the advertiser will use the ad options less (and
sometimes not at all) and the maximum cost is just the option
price. It is worth noting that here we consider the ad options are
in the money at time 0 (i.e., the strike price is less than the current
underlying price). In Table 8, there are 4 ad slots that exhibit some-
what bear markets. However, these 4 ad slots do not receive
enough bids in the test set and the actual winning payment
CPMs are just around its floor reserve level (i.e., the CPM is £0.01
so the per impression price is £0.00001). Since these prices will
seriously bias the results, we do not take them into account in
the situation of a bear market.

5.5. Revenue analysis for publisher and search engine

We also investigate the revenue effects when a certain amount
of future impressions or clicks is sold in advance. Fig. 11 provides
two empirical examples of ad slots from the SSP dataset: one exhi-
bits the bull market while the other shows the bear market. The sell
ratio in the figure represents the percentage of future impressions

Table 8
Empirical example of an advertiser’s delivery of an ad slot from the SSP dataset in RTB (Note: CTR is 0:03 and the non-integer numbers are displayed at 4 digits after the decimal
point while in computing we consider 25-digit scale).

Day 0 1 2 3 4 5 6 7 Total

Date 07/02/2013 08/02/2013 09/02/2013 10/02/2013 11/02/2013 12/02/2013 13/02/2013 14/02/2013
Average payment CPM 0.7427 0.9585 0.9770 0.9666 0.8754 0.8513 0.8294 0.9903
No. of total impressions generated 8298 8277 8190 7971 8097 8201 3812 52846

Budget 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 35.0000
No. of impressions received 5210 5113 5166 5711 5867 6028 3812 36907
No. of clicks received 156 153 154 171 176 180 114 1104
Used budget 5.0000 5.0000 5.0000 4.9830 5.0000 4.9926 3.7748 33.7504

Table 9
Empirical example of an advertiser’s delivery of buying ad options for an advertisement slot in the SSP dataset (Note: CTR is 0:03 and the non-integer numbers are displayed at 4
digits after the decimal point while in computing we consider 25-digit scale).

Day Date Average No. of total Budget Remaining No. of Expiration Option Strike No. of No. of No. of Used
payment impressions budget options date price price options impressions clicks budget
CPM generated CPC exercised received received

0 07/02/2013 0.7427 201 08/02/2013 0.0025 0.0223 0.4982
0.7427 201 09/02/2013 0.0025 0.0223 0.4988
0.7427 201 10/02/2013 0.0025 0.0223 0.5117
0.7427 201 11/02/2013 0.0026 0.0223 0.5192
0.7427 200 12/02/2013 0.0026 0.0223 0.5271
0.7427 200 13/02/2013 0.0027 0.0223 0.5379
0.7427 199 14/02/2013 0.0027 0.0223 0.5427

1 08/02/2013 0.9585 8298 5.0000 4.5018 201 08/02/2013 0.0022 0.0223 201 6816 204 4.5013
2 09/02/2013 0.9770 8277 5.0000 4.5012 201 09/02/2013 0.0021 0.0223 201 6770 203 4.5011
3 10/02/2013 0.9666 8190 5.0000 4.4883 201 10/02/2013 0.0019 0.0223 201 6742 202 4.4878
4 11/02/2013 0.8754 7971 5.0000 4.4808 201 11/02/2013 0.0019 0.0223 199 6836 205 4.4298
5 12/02/2013 0.8513 8097 5.0000 4.4729 200 12/02/2013 0.0018 0.0223 200 6776 203 4.4727
6 13/02/2013 0.8294 8201 5.0000 4.4621 200 13/02/2013 0.0017 0.0223 197 6792 204 4.4616
7 14/02/2013 0.9903 3812 5.0000 4.4573 199 14/02/2013 0.0017 0.0223 114 3812 114 2.5463

Total 52846 35.0000 44544 1335 33.0362

Table 10
Overview of the improvement in delivery performance by using ad options for all ad
slots in the SSP dataset.

Bull market Bear market

Change on used budget (%) $8.7878 –
Change on delivery of impressions (%) 6.1781 –

Table 11
Overview of the improvement in delivery performance by using ad options for
keywords in the Google AdWords dataset.

Market Group Change in used budget (%) Change in delivery of
impressions (%)

Bull market Bear market Bull market Bear market

US 1 0.3447 2.3438 9.3050 $0.1122
2 1.7748 3.9687 2.3153 $2.6285
3 0.5372 4.8567 44.3735 $0.0940
4 5.6288 29.3626 1.6433 $1.0993

UK 1 21.4285 6.8940 3.0717 $0.2523
2 5.4426 0.0000 0.4419 0.0000
3 10.9285 3.8474 28.7706 $2.1066
4 6.7155 0.1552 16.6955 $2.1550
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that are sold in advance via ad options; therefore, when the sell
ratio equals zero, the publisher auctions off all of the future impres-
sions in RTB. Fig. 11(a) suggests that the publisher should sell less
future impressions in advance if the future market is bull. This is
because ad options will be exercised by advertisers in the future
and the obtained revenues from the fixed payment are less than
these impressions’ market values. Of course, the publisher can
choose a certain percentage of future impressions to sell according
to his level of risk tolerance or to meet other business objectives.
For example, the publisher may be willing to sacrifice some rev-
enues in order to increase the advertisers’ engagement in the long
run. Conversely, in a bear market, as shown in Fig. 11(b), the pub-
lisher is advised to sell more future impressions in advance because
there is more upfront income if more display ad options are sold,
and in the future advertisers will not exercise the sold options.
Therefore, the increased revenue comes from the option price.

Based on the above analysis, we examine the revenue effects
across all ad slots and keywords in our datasets. In the experi-
ments, the display ad options in a bull market are priced in the
money while in a bear market they are priced out of the money.
The sell ratio is set at 0.20 in a bull market while it is set at 0.80
in a bear market. The overall results are presented in Tables 12
and 13, which further confirm our analysis in the empirical exam-
ples. The average revenue is reduced in the bull market as well as
the standard deviation (i.e., one kind of revenue risk). However, as
described, the publisher (or search engine) may be willing to sac-
rifice some revenue to establish a long-term relationship with
advertisers. In a bear market, the average revenue increases signif-
icantly. This is because fewer display ad options are exercised.
Many premium advertisers join RTB so that the market equilibrium
is almost as same as that in an environment with only auctions.
Finally, the publisher (or search engine) earns the upfront payment
without providing guaranteed deliveries.

6. Concluding remarks

This paper described a new ad option tailored to the unique
environment of display advertising. A binomial lattice framework
with censored probabilities was proposed to price the ad option
where the underlying prices follow a SV model. We also reviewed
and examined several lattice methods for pricing the ad option
with the GBM underlying model. Our developments were exam-
ined and validated by experiments using real advertising data.

We believe that the proposed ad options will soon be welcomed
by display advertising market. Several similar but different devel-
opments appeared are able to support our point of view. They are:

09/2013 AOL’s Programmatic Upfront.2

03/2013 OpenX Programmatic Guarantee.3

10/2012 Adslot Media’s Programmatic Direct Media Buying.4

10/2012 Shiny Ads Direct’s End-to-end Programmatic Direct
Advertising Platform.5

10/2012 iSOCKET’s Programmatic Direct.6
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Fig. 11. Empirical examples of the publisher’s revenue: (a) from an ad slot in the bull market; and (b) from an ad slot in the bear market. The sell ratio represents the
percentage of future daily impressions that are sold in advance via display ad options. Note that here the ad slot in the bear market does not receive enough bids in the test
set, so we randomly simulate some underlying prices for the bear market.

Table 12
Overview of the improvement in revenue by selling display ad options for ad slots in
the SSP dataset.

Bull market Bear market

Change on mean (%) $7.1283 726.3085
Change on standard deviation (%) $2.7041 196.0547

Table 13
Overview of the improvement in revenue by selling display ad options for ad slots in
the Google AdWords dataset.

Market Group Change in mean (%) Change in standard
deviation (%)

Bull market Bear market Bull market Bear market

US 1 $20.5880 22.3898 $0.6507 9.3291
2 $23.2971 17.1898 $17.6508 9.4175
3 $32.8388 69.9113 $21.9468 $2.1065
4 $24.4710 8.9650 $10.6024 95.4868

UK 1 $8.5463 15.4155 4.5617 10.4116
2 $20.0632 4.3816 $16.0239 6.8847
3 $16.9050 30.7737 $11.4811 $19.4625
4 $21.8142 7.6342 $19.4368 0.3877

2 www.aolplatforms.com.
3 www.openx.com.
4 www.automatedguaranteed.com.
5 www.shinyads.com.
6 www.isocket.com.
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Our work differs to the above developments in many aspects. First,
the proposed ad options provide flexible guaranteed deliveries
(e.g., no obligation of exercise, choosing the fixed payment that is
different to the underlying inventory measurement model) while
other recent developments do not provide such features. Second,
we proposed a generalized pricing model which can deal with
those situations when the GBM model fails.

There are three major limitations of the study in this paper,
which can be further explored for future research. Firstly, we did
not explicitly consider the capacity issue in option pricing.
Therefore, there may exist the situations that a publisher or search
engine can not guarantee the delivery of impressions or clicks sold
by options. In our current study, we consider the seller has a good
estimation of the inventories that will be created in the future and
rationally sells the future inventories in advance via options. If the
seller over sells the future inventories, we also assume that he can
buy some similar inventories on the spot market once the option
buyers request to exercise the options. In such case, the revenues
of the seller will decrease. The capacity issue is an interesting topic
to further discuss in details because it has two challenges. The first
challenge is to price an ad option with explicitly considering the
estimation of future supply and demand of inventories, where
the latter two variables can be described to be static (Wang and
Chen 2012) or dynamic like the Poisson process (Gallego and van
Ryzin 1994). The second challenge is considering the penalty into
option pricing. If the seller fails to deliver inventories requested
by option holders, the seller should pay a certain amount of pen-
alty fee (Chen et al. 2014). However, with the penalty setting, some
advertisers who only pursue the penalty may game the system
(Constantin et al. 2009), which will further affect the calculated
option price, and such effect will also generate some scenarios like
the implied volatility in financial market. The second limitation is
that the proposed model can not capture the jumps and volatility
clusters of underlying inventory prices. It might be of interest to
discuss these stylized facts in ad option pricing. The third limita-
tion is the zero correlation of the two standard Brownian motions
in our proposed dynamics. If their correlation is not zero, the
option pricing would be more sophisticated under the lattice
framework. Heston (1993) proposed a good solution in the
continuous-time settings, which can also be extended to solve
our problem in online advertising.
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