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This supplementary material is to provide some mathematical preliminaries and details for the discussion
in Section 3 and Eq.(13) in Section 4.

1 Equivalence of the option prices from a risk-neutral advertiser
and a risk-averse publisher under the one-step binomial lattice

Under the one-step binomial lattice, we now derive the option pricing formula from the perspective of a
publisher who wants to hedge the revenue risk incurred from price changes. The derived option price is
equal to the one that is calculated from the perspective of a risk-neutral advertiser in the paper.

Consider the case where an ad option allows its buyer to pay a fixed CPC for display impressions.
Therefore, the strike price of the option is the fixed CPC and the underlying price is the uncertain winning
payment CPM in online auctions. Suppose that there is a deterministic total number of future impressions
to sell, denoted by SM . If the CPM in time 1 goes up, the publisher’s revenue can be expressed as

R
{u}
1 =

{
(1− α)SM/1000M

{u}
1 + αSMHFM , if M{u}1 ≥ FC ,

(1− α)SM/1000M
{u}
1 + αSM/1000M

{u}
1 , if M{u}1 < FC ,

(1)

where α is the percentage of estimated total impressions to sell via ad options. Eq. (1) shows that
the publisher’s revenue is a combination of guaranteed and non-guaranteed impressions. Eq. (1) can be
rewritten as R{u}1 = SM/1000M

{u}
1 − αSMHΦ

{u}
1 , where Φ

{u}
1 is the option payoff function, defined by

max{M{u}1 /(1000H) − FC , 0}, and the superscript notation {u} represents the upward movement. Simi-
larly, if CPM in time 1 goes down, the publisher’s revenue is R{d}1 = SM/1000M

{d}
1 − αSMHΦ

{d}
1 , where

Φ
{d}
1 = max{M{d}1 /(1000H)− FC , 0}.
Since the publisher uses α to control the revenue in bull and bear markets, there exists a value α∗ such

that R{u}1 (α∗) = R
{d}
1 (α∗), then α∗ = (M

{u}
1 −M{d}1 )/(Φ

{u}
1 − Φ

{d}
1 ). As described, the publisher’s least

requirement on the valuation is that his expected future revenue (including the upfront income in terms of
option prices) should be equal to the current revenue level from auctions alone, so the following equation
holds:

R0 =
α∗SM

1000
π0 + r̃−1R

{u}
1 (α∗) =

α∗SM

1000
π0 + r̃−1R

{d}
1 (α∗).
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The option price π0 can then be calculated by

π0 = r̃−1

(
r̃M0 −M{d}1

M
{u}
1 −M{d}1

Φ
{u}
1 +

M
{u}
1 − r̃M0

M
{u}
1 −M{d}1

Φ
{d}
1

)

= r̃−1

(
r̃ − d
u− d

Φ
{u}
1 +

u− r̃
u− d

Φ
{d}
1

)
,

where u = M
{u}
1 /M0, d = M

{u}
1 /M0. Up to this point, we have proved that the calculated option price π0 is

no-arbitrage and hedges the revenue for the publisher.

2 Convergence of the Binomial lattice option pricing model to the
Black-Scholes-Merton model

Consider the case where an ad option allows its buyer to pay a fixed CPC for display impressions. Hence,
the strike price of the option is the fixed CPC and the underlying price is the uncertain winning payment
CPM in online auctions. Let ∆t = T/n, u = eσ

√
∆t > 1, d = 1/u < 1, where σ is the volatility of CPM. Let

r be the constant continuous-time risk-less interest rate and let M(t) be the continuous-time CPM at time
t. Under the risk-neutral probability measure Q, the GBM underlying can be expressed as

dM(t) = rM(t)dt+ σM(t)dWQ(t),

where WQ(t) is a standard Brownian motion under Q.
As described, for j ≥ j∗, j = 1, 2, . . . , n, j∗ = 1, 2, . . . , n, the advertiser will exercise the option to buy the

targeted impressions, so we have the following inequality:

M0

1000H
uj

∗−1dn−j
∗+1 < FC ≤ M0

1000H
uj

∗
dn−j

∗
,

then (
u

d

)j∗−1

≤ 1000HFC

M0dn
≤
(
u

d

)j∗
,

and, taking logarithms and dividing by ln(u/d) and subtracting nq from each side gives

j∗ − 1− nq√
n

≤ ln(1000HFC/M0)− ln(unqdn(1−q))√
n(ln(u)− ln(d))

≤ j∗ − nq√
n

.

Since limn→∞
j∗−nq√

n
− j∗−1−nq√

n
= 0, then

ln(1000HFC/M0)− ln(unqdn(1−q))√
n(ln(u)− ln(d))

≈ j∗ − nq√
n

.

Hence, we can obtain

ψ(j∗, n, q) = P(j ≥ j∗, j ∈ {1, . . . , n}) = P

[
j − nq√
nq(1− q)

≥ j∗ − nq√
nq(1− q)

]

=1−N

[
j∗ − nq√
nq(1− q)

]
= N

[
nq − j∗√
nq(1− q)

]

= N

[
ln(M0/(1000HF c)) + ln(unqdn(1−q))
√
n(ln(u)− ln(d))

√
q(1− q)

]
,

where N [·] is the cumulative distribution function of a standard normal distribution.
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If n→∞ (or ∆t→ 0), the following convergence results can be obtained:

√
n ln(u) = lim

n→∞

√
n ln eσ

√
∆t = σ

√
T ,

√
n ln(d) = lim

n→∞

√
n ln e−σ

√
∆t = −σ

√
T ,

q =
r̃ − d
u− d

= lim
∆t→0

er∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t
= lim

∆t→0

σ + (r − 1
2σ

2)
√

∆t+ o(∆3/2)

2σ + o(∆t)
=

1

2
,

lim
∆t→0

2q − 1√
∆t

= lim
∆t→0

2√
∆t

er∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t
=
r

σ
− σ

2
,

and then

ln(unqdn(1−q)) = nq ln(u) + n(1− q) ln(d) = nqσ
√

∆t− n(1− q)σ
√

∆t = 2nqσ
√

∆t− nσ
√

∆t

≈ 2nσ
√

∆t lim
∆t→0

σ + (r − 1
2σ

2)
√

∆t+ o(∆t)

2σ + o(∆t)
− lim

∆→0
nσ
√

∆t

≈ lim
∆t→0

nσ
√

∆t+ (r − 1

2
σ2)T − lim

∆t→0
nσ
√

∆t = (r − 1

2
σ2)T.

Therefore,

ψ(j∗, n, q) = N

[
ln(M0/(1000HFC)) + (r − 1

2σ
2)T

σ
√
T

]
.

As described q̃ = qu/r̃, then

ln(unq̃dn(1−q̃))− ln(unqdn(1−q))

= ln(un(q̃−q)dn(q−q̃)) = n(q̃ − q) ln(u) + n(q − q̃) ln(d) = n(q̃ − q)σ
√

∆t− n(q − q̃)σ
√

∆t

= 2n(q̃ − q)σ
√

∆t = 2nq
u− r̃
r̃

σ
√

∆t = 2qσ
T√
∆t

eσ
√

∆t − er∆t

er∆t
≈ lim

∆t→0
2qσT

σ − r∆t
1 + r∆t

= σ2T.

Similarly, q̃ = lim∆t→0
1+σ
√

∆

1+∆̃t

σ+(r− 1
2σ

2)
√

∆t)

2σ = 1
2 , then

ψ(j∗, n, q̃) = N

[
ln(M0/(1000HFC)) + ln(unq̃dn(1−q̃))
√
n(ln(u)− ln(d))

√
q̃(1− q̃)

]

= N

[
ln(M0/(1000HFC)) + ln(unqdn(1−q)) +

(
ln(unq̃dn(1−q̃))− ln(unqdn(1−q))

)
√
n(ln(u)− ln(d))

√
q̃(1− q̃)

]

= N

[
ln(M0/(1000HFC)) + (r + 1

2σ
2)T

σ
√
T

]
.

The continuous-time option pricing formula can be then obtained:

π0 =
M0

1000H
N [ς1]− FCe−rTN [ς2],

ς1 =
1

σ
√
T

(
ln

(
M0

1000HFC

)
+ (r +

1

2
σ2)T

)
,

ς2 = ς1 − σ
√
T .

Hence, if the GBM assumption is valid empirically, one can use the closed-form solution to calculate the
option price. However, as described, lattice methods provide an alternative way to calculate the option price
and, in general, are simpler in terms of calculation.
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3 Pricing an ad option with the geometric Brownian motion un-
derlying using a trinomial lattice

Below the algorithm simply shows how to calculate the option price of a display ad option with the GBM
underlying over a trinomial lattice. Here we consider the case where an ad option allows its buyer to pay the
fixed CPC for display impressions. Hence, the strike price of the option is the fixed CPC and the underlying
price is the uncertain winning payment CPM from online auctions. One can slightly modify the algorithm
and calculate the option price over a binomial lattice.

1: function OPTIONPRICINGTRINOMIALLATTICE(M0, σ,H, T, n, r, F
C)

2: # Initialization:
3: ∆t← T/n; r̃ ← er∆t;
4: u,m, d, q1, q2, q3 ← Boyle-TRIN (or KR-TRIN or Tian-TRIN) in Table 1;
5: # Build a (recombining) trinomial lattice for CPM
6: Σ(n+1)×(n+1) ← 0(n+1)×(n+1); Σ(1,1) ←M0;
7: for j ← 2 to n+ 1 do
8: Σ(1,j) ← u× Σ(1,j−1); Σ(2,j) ← m× Σ(1,j−1); Σ(3,j) ← d× Σ(1,j−1);
9: if 2(j − 1) + 1 > 3 then

10: for k ← 4 to 2(j − 1) + 1 do
11: Σ(k,j) ← d×Σ(k−2,j−1);
12: end for
13: end if
14: end for
15: # Calculate the terminal payoffs and the option value backward recursively
16: Σ̃(n+1)×(n+1) ← 0(n+1)×(n+1); Σ̃(:,n+1) ← max{Σ(:,n+1)/(1000H)− FC , 0};
17: for j ← n to 1 do
18: for k ← 1 to 2(j − 1) + 1 do
19: if k = 1 then
20: Σ̃(k,j) ← r̃−1(q1Σ̃(k,j+1) + q2Σ̃(k,j+1) + q3Σ̃(k,j+1));
21: else if k ≥ 2 then
22: Σ̃(k,j) ← r̃−1(q1Σ̃(k−1,j+1) + q2Σ̃(k,j+1) + q3Σ̃(k+1,j+1));
23: end if
24: end for
25: end for
26: return π0 ← Σ̃(1,1)

27: end function

4 Risk-neutral probability measure for the SV model

For the stochastic volatility model:

dM(t) = µM(t)dt+ σ(t)M(t)dW (t), (2)

dσ(t) = κ(θ − σ(t))dt+ δ
√
σ(t)dZ(t), (3)

where W (t) and Z(t) are standard Brownian motions under the real world probability measure P satisfying
E[dW (t)dZ(t)] = 0, and µ and σ(t) are the constant drift and volatility of CPM, and κ, θ, δ are the volatility
parameters. The drift factor κ(θ − σ(t)) ensures the mean reversion of σ(t) towards its long-term value θ.
The volatility factor δ

√
σ(t) avoids the possibility of negative σ(t) for all positive values of κ and θ.

4



By applying the Itô Lemma to Eq. (2), we obtain

M(t) = M(0) exp

{∫ t

0

(µ− 1

2
σ2(t))ds+

∫ t

0

σ(s)dW (s)

}
.

Consider a discount process D(t) = e−rt, where r is a constant risk-less interest rate. Then dD(t) =

−rD(t)dt. Therefore, the discounted CPM process is

D(t)M(t) = M(0) exp

{∫ t

0

(µ− rD(t)− 1

2
σ2(t))ds+

∫ t

0

σ(s)dW (s)

}
,

and its differential is

d
(
D(t)M(t)

)
= M(t)dD(t) +D(t)dM(t)

= − rD(t)M(t)dt+D(t)(µM(t)dt+ σ(t)M(t)dW (t))

= σ(t)D(t)M(t)

(
µ− r
σ(t)

dt+ dW (t)

)
= σ(t)D(t)M(t)dWQ(t),

where WQ(t) = W (t) +
∫ t

0
µ−r
σ(s)ds. According to the Girsanov Theorem, if choosing the process τ(t) = µ−r

σ(t) ,
then WQ(t) is a standard Brownian motion under a new probability measure Q. We know that Q is risk-
neutral because it renders D(t)M(t) into a martingale. The risk-neutral formulation of Eq. (2) is then

dM(t) = rM(t)dt+ σ(t)M(t)dWQ(t).

Hence dX(t) = (r − σ2(t)/2)dt+ σ(t)dWQ(t) if X(t) = ln{M(t)} (see Eq. (13) in Section 4).
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