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a b s t r a c t 

One trend in the recent healthcare transformations is people are encouraged to monitor and manage their 

health based on their daily diets and physical activity habits. However, much attention of the use of oper- 

ational research and analytical models in healthcare has been paid to the systematic level such as country 

or regional policy making or organisational issues. This paper proposes a model concerned with health- 

care analytics at the individual level, which can predict human physical activity status from sequential 

lifelogging data collected from wearable sensors. The model has a two-stage hybrid structure (in short, 

MOGP-HMM) – a multi-objective genetic programming (MOGP) algorithm in the first stage to reduce the 

dimensions of lifelogging data and a hidden Markov model (HMM) in the second stage for activity status 

prediction over time. It can be used as a decision support tool to provide real-time monitoring, statistical 

analysis and personalized advice to individuals, encouraging positive attitudes towards healthy lifestyles. 

We validate the model with the real data collected from a group of participants in the UK, and compare 

it with other popular two-stage hybrid models. Our experimental results show that the MOGP-HMM can 

achieve comparable performance. To the best of our knowledge, this is the very first study that uses the 

MOGP in the hybrid two-stage structure for individuals’ activity status prediction. It fits seamlessly with 

the current trend in the UK healthcare transformation of patient empowerment as well as contributing 

to a strategic development for more efficient and cost-effective provision of healthcare. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the significant development of technologies and the rad-

ical changes of socio-economic environment, the management

planning and decision-making faced by businesses have become

more and more complex, requiring the use of sophisticated an-

alytical tools. Operational research techniques (e.g., optimisation,

forecasting, simulation) together with other quantitative disciplines

(e.g., probability theory, statistics, machine learning, data min-

ing) are particularly useful to solve these challenges ( Chen, Kim,

Oztekin, & Sundaramoorthi, 2018; Grünig & Kühn, 2013; Hindle

& Vidgen, 2018 ). Therefore, even though the contributions of the

above techniques and models themselves are well-documented,

the term business analytics has been established over the past
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ecade ( Doumpos & Zopounidis, 2016 ). Business analytics, or sim-

ly analytics, uses data, information technology, statistical analy-

is, mathematical models, optimisation techniques and computer-

ased simulations to gain improved insight about business op-

rations and make better, fact-based decisions ( Evans, 2017 ). In

ther words, business analytics is a new multidisciplinary subject

hich combines the fields of operational research, machine learn-

ng, data mining, statistics, big data, and so on Mortenson, Doherty,

 Robinson, 2015 . It highlights the growing need to use of quan-

itative approaches for management planning and decision mak-

ng in a broader context encompassing data, processes, and sys-

ems through the integration of traditional problem structuring

nd solving paradigms with data management and reporting tools,

n a way that facilitates learning and action planning in an opera-

ional framework ( Doumpos & Zopounidis, 2016 ). 

Healthcare is one of the world’s largest industries, with many

eople involved either as employees in healthcare systems or

s consumers of healthcare services. Four decades ago, scholars

tarted to use operational research techniques to design health-

are systems and to improve healthcare service delivery ( Fries,

976; Krischer, 1980 ). The European Working Group on Operational

https://doi.org/10.1016/j.ejor.2019.05.035
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esearch Applied to Health Services (ORAHS) has been organis-

ng annual meetings since 1975. Many of the operational research

tudies in healthcare have been focused on the application of sys-

ematic analysis ( Brailsford & Vissers, 2011 ) such as national or

egional policy making and organisational issues. Over the years,

echnology has revolutionised the way we live, learn and work. It

as also been one of the forces driving healthcare transformation.

ne trend is that people are encouraged to monitor and manage

heir health based on their daily eating and their physical activ-

ty habits based on people-centred healthcare and patient empow-

rment ( World Health Organization, 2014b ). For example, Rudner,

cDougall, Sailam, Smith, and Sacchetti (2016) reported a case

n which a doctor suggested that a patient who had a history of

eizures should wear a Fitbit. 2 This device is a wearable sensor that

an track the patient’s pulse rate and record it through a mobile

hone application. The doctor then used the lifelogging data col-

ected from the Fitbit to successfully determine an irregular heart

eat that coincided with a grand mal seizure that had occurred

hree hours earlier. This is a successful application of business an-

lytics in healthcare (sometimes called healthcare analytics ) at the

ndividual level. 

In this paper, we propose a new model concerned with indi-

idual healthcare analytcs. Our model can predict human physical

ctivity status from sequential lifelogging data collected from

ortable devices such as mobile phones and wearable sensors.

hysical activity refers to any bodily movement produced by

keletal muscles that requires energy expenditure, including ac-

ivities undertaken while working, playing, travelling, carrying

ut household tasks and engaging in recreational pursuits ( World

ealth Organization, 2017 ). According to World Health Organi-

ation (2014a) , “Insufficient physical activity is one of the 10

eading risk factors for global mortality, causing some 3.2 million

eaths each year. In 2010, insufficient physical activity caused 69.3

illion disability-adjusted life years (DALYs) – 2.8% of the total –

lobally”. As regular physical activity for adults can reduce the risk

f cardiovascular disease, diabetes, cancer and all-cause mortality,

he World Health Organization has set a global target to reduce

y 10% the prevalence of insufficient physical activity by 2025.

eaching this target requires multisectoral collaboration among

overnment departments and organisations. On an individual level,

arly disease detection and timely treatment are an effective and

conomic approach. The use of wearable sensors such as mobile

hones, smart watches and fitness trackers to recognise and mon-

tor human activities has recently been investigated for individual

ealth self-management, and it has become an emerging topic in

ealthcare analytics. 

Many conventional studies employ descriptive statistics to

ummarise lifelogging data and to determine certain thresholds

s minimum requirements in terms of daily or weekly walk-

ng steps or other metrics to estimate human physical activity

tatus ( Caspersen, Powell, & Christenson, 1985; Choi, Pak, Choi,

 Choi, 2007; Pate et al., 1995 ). However, there are two major

imitations of those studies. First, human physical activity sta-

us in many conventional studies is usually classified into two

tates, active or inactive, which has limited insights and prevents

roader applications. Fine-grained classification can be further

nvestigated to measure physical activity status. The second limi-

ation is that many conventional studies only illustrate the static

haracteristics of data without considering historical information.

his limitation is particularly evident in the case of individual

ealth self-management. The pattern of physical activity from one

erson to the next is different. Therefore, when high dimensional

equential lifelogging data is collected from wearable sensors,
2 https://www.fitbit.com . 

t  

a  

c

t is worth considering individuals’ sequential activities and the

ffects of previous activities on the current activity status ( Gurrin,

meaton, & Doherty, 2014; Zhou & Gurrin, 2012 ). 

Our proposed model has a two-stage hybrid structure (in short,

OGP-HMM). It contains a multi-objective genetic programming

MOGP) algorithm in the first stage and a hidden Markov model

HMM) in the second stage. The MOGP alleviates the first limita-

ion mentioned above. It is a multi-class classifier that transforms

 high-dimensional feature space of the collected lifelogging data

nto a new discrete class space which represents activity observa-

ion. The HMM in the second stage addresses the second limita-

ion. It is a chain-structured Bayesian network which can be used

o exploit the sequential patterns from observations. Simply put,

n individual’s physical activity status at a time is described by a

atent variable. Latent variables over time are connected through a

arkov process rather than being independent of each other. Since

coring systems have been widely used in assessing quality of life

QoL) such as QoL questionnaire VF-14 ( Terwee, Gerding, Dekker,

rummel, & Wiersinga, 1998 ) and SF-12 ( Gandek et al., 1998 ), ob-

ervation and physical activity status in our study are both ex-

ressed in terms of a measurement score ranging from the inac-

ive state to the highly active state. Given a time series of observa-

ions, the HMM can predict an individual’s activity status accord-

ngly. We validate the model with the real lifelogging data col-

ected from a group of participants in the UK, and conduct ex-

eriments in a supervised learning setting ( Bishop, 2007 ) where

he scores (or states) of activity status are labelled based on the

K national health guidelines ( UK National Health Service, 2015 ).

e also compare our model with another popular hybrid model

VM-HMM which combines a support vector machine (SVM) with

 HMM. Our experimental results show that the MOGP-HMM can

chieve comparable performance as the SVM-HMM. However, Un-

ike SVMs, our MOGP-HMM model is not sensitive to the choice of

ernel functions and thus provides more robust and discriminative

epresentations of sparse data. 

The research of this paper is multidisciplinary, which con-

ributes to the recent use of operational research, machine learn-

ng, data mining, big data and the Internet of things in healthcare

nalytics. Firstly, this is one of the few studies which discuss

he implementation of operational research in healthcare at the

ndividual level ( Royston, 1998 ). In the meantime, lifelogging data

s truly a big data problem because it is multidimensional, it con-

ains many different features in terms of different formats, and it

an be retrieved continuously from wearable sensors. We develop

 two-stage model to reduce the complexity of lifelogging data

nd then to predict an individual’s physical activity status over

ime. In essence, the proposed model is a personalized data-driven

odel based on the state-of-the-art machine learning algorithms

o it contributes to the applications of machine learning. Further,

ur model can be deployed on a cloud server and can be used as

 decision support tool to provide real-time monitoring, statistical

nalysis and personalized advice to an individual through portable

igital devices. Therefore, it can be a practical application of

he Internet of things in healthcare. Within the field of business

nalytics, our proposed model contains technology, quantitative

ethods and decision making. As indicated by Mortenson et al.

2015) , they are the key elements of business analytics. Similar

o the existing studies ( Dag, Oztekin, Yucel, Bulur, & Megahed,

017; Dag, Topuz, Oztekin, Bulur, & Megahed, 2016; Harris, May,

 Vargas, 2016; Roumani, Roumani, Nwankpa, & Tanniru, 2018;

opuz, Uner, Oztekin, & Yildirim, 2018 ), our proposed model

eals with predictive analytics. From a high-level perspective in

ealthcare, this study fits seamlessly with the current trend in

he UK healthcare for patient empowerment, and contributes to

 strategic development for the provision of more efficient and

ost-effective healthcare. 

https://www.fitbit.com
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3 http://www.shimmersensing.com/products . 
Technology wise, using the MOGP also provides methodological

contributions in the two-stage hybrid modelling for physical activ-

ity prediction. It is a non-parametric optimisation classifier, differ-

ing from many genetic algorithms and machine learning models

where parameters need to be set or trained in advance. It uses

Pareto dominance to optimally select GP tree models considering

the trade-off between the model fitness and complexity. There-

fore, the MOGP is more efficient and robust. Unlike the SVM, it

is not sensitive to the choice of kernel functions and thus provides

more robust and discriminative representation of sparse data. As

lifelogging data is usually sparse and noisy due to the fact that

each individual usually has his or her own activity pattern, the

MOGP algorithm seems more suitable than the SVM in activity

learning. Although GP algorithms have been used to evolve proba-

bilistic trees that search for the optimal topology in bioinformat-

ics ( Won, Hamelryck, Prügel-Bennett, & Krogh, 2007 ) and stock

trading ( Chen, Mabu, Shimada, & Hirasawa, 2009; Ghaddar, Sakr, &

Asiedu, 2016 ), to the best of our knowledge, this is the first work

that a MOGP algorithm has been used as a multi-class classifier to

construct a classification-HMM hybrid model for solving sequential

learning problems. Our model can be of interest and easily adapted

to other relevant domains in business analytics, such as consumer

choice modelling ( Blanchet, Gallego, & Goyal, 2016; Sandıkci, Mail-

lart, Schaefer, Alagoz, & Robert, 2008 ) and high dimensional busi-

ness data classification or dimension reduction ( Debaere, Cousse-

ment, & De Ruyckc, 2018; Ghaddar & Naoum-Sawaya, 2018 ). 

The remainder of the paper is organised as follows.

Section 2 reviews the related literature. Section 3 introduces

our proposed hybrid model. Section 4 describes our data, presents

experimental results and gives an analysis. Section 5 concludes the

paper. 

2. Related work 

Our study touches upon several streams of literature. In the fol-

lowing discussion, we review the related work in both healthcare

and hybrid learning machines. For the former, we first discuss the

recent studies on the use of operational research in healthcare at

the country and organisational levels, and then individual health

monitoring, prediction and self-management using wearable sen-

sors. For the latter, we discuss the basic concepts and settings of

hybrid learning machines and compare the related two-stage hy-

brid models. 

Operational research has been used and developed for health-

care over the years in the hope of improving the healthcare

effectiveness and efficiency as well as controlling or reducing the

costs ( Brailsford & Vissers, 2011; Fries, 1976; Krischer, 1980 ). A

significant proportion of earlier studies has examined healthcare

systems at the country or organisational level ( Brailsford & Vissers,

2008; Kunc, Harper, & Katsikopoulos, 2018 ), such as national

healthcare policy making or management, organisational issues

and service delivery. For example, at the national level, Hindle,

Hindle, and Hindle (2013) proposed a decision support framework

based on geographical modelling for the strategic management of

radical changes in hospital services in Northern Ireland. Denoyel,

Alfandari, and Thiele (2017) designed a structured optimisation

model for bill payers combining reference pricing and tiered net-

work for novel healthcare payment policies in the United States.

Willis, Cave, and Kunc (2018) proposed a multi-methodology

approach for healthcare workforce planning in England. Hejazi,

Badri, and Yang (2019) discussed a reliability-based approach

to measure healthcare system performance for policy makers.

At the organisational level, Tako and Kotiadis (2015) proposed

a framework to support facilitated simulation modelling in

healthcare. Li, Vo, Randhawa, and Fick (2017) designed utilization-

based spatial accessibility decision support systems for patients.
unc et al. (2018) further investigated the importance of human

ehaviour aspects in the application of operational research in

ealthcare at an organisational level by reviewing 130 related

apers. Rouyendegh, Oztekin, Ekong, and Dag (2018) proposed

 data envelopment analysis based fuzzy multi-criteria decision

aking model to enhance the business performance of companies

n the healthcare industry. 

Royston (1998) pointed out that prevention and treatment

ased on each patient’s knowledge and habit are part of the key

hift patterns of using the operational research in healthcare for

he 21st century. Our study in this paper is concerned with health-

are analytics at the individual level. Specifically, we are focused

n individual health monitoring, prediction and self-management

sing wearable sensors. It should be noted that wearable sensors

ere refer to mobile phones, smart watches, fitness trackers, and

d-hoc wearable devices like Shimmer. 3 There are two groups of

elated literature. The first group analyses the vital signs provided

y wearable sensors ( Banaee, Ahmed, & Loutfi, 2013 ) such as elec-

rocardiogram, oxygen saturation, heart rate, photoplethysmogra-

hy, blood glucose, blood pressure and respiratory rate. The sec-

nd group is focused on recognising and monitoring individual hu-

an activities ( Kulev, Pu, & Faltings, 2016; Liao, Fox, & Kautz, 2005;

uque, Casilari, Morón, & Redondo, 2014; Micucci, Mobilio, & Napo-

etano, 2017; Vilarinho et al., 2015 ), which also overlaps with the

elds of computer vision, machine learning and data mining. Our

tudy in this paper is closer to the second group. We use wearable

ensors to collect lifelogging data from a group of participants in

he UK. Further details about our data are discussed in Section 4 .

t is worth mentioning the following two studies in the second

roup. Liao et al. (2005) discussed a general framework for activity

ecognition by building upon and extending relational Markov net-

orks. The model includes a variety of features including temporal

nformation, spatial information and global constraints, so human

ctivity locations (e.g., home, work, shop, dinning, etc.) can then be

redicted. Kulev et al. (2016) proposed a mixture model to under-

tand how the intervention affects daily human activities, whether

hey increase or decrease the amount of physical activities at each

oment during the day. Two types of information are relevant: the

erson’s daily activity pattern before the intervention and their ac-

ivity change pattern after the intervention. The model is used to

nd the latent structure in a heterogeneous population. 

Hybrid models have been widely used in machine learning to

olve different real world problems. In some reference, they are

alled hybrid learning machines ( Abraham, Corchado, & Corchado,

009 ) or intelligent hybrid systems ( Goonatilake & Khebbal, 1995 ).

s hybrid learning machines use different types of models, here

e explain some important concepts and theories. According to

omingos (2015) , there are five major tribes in machine learning

r artificial intelligence in general: symbolists, connectiontists,

volutionaires, Bayesians and analogizers. Symbolists believe all

ntelligence can be reduced to manipulating symbols and they

olve problems using pre-existing knowledge. Many expert sys-

ems use the symbolists’ approaches to solve problems with a set

f rules ( Zhang & Zhang, 2014 ) and fuzzy logic is the attempt of

ymbolists at tackling uncertainties ( Zadeh, 1965 ). Connectiontists

ope to use artificial neural networks to represent manmmalian

eural systems such as deep neural networks ( Goodfellow, Bengio,

 Courville, 2016 ). Evolutionaires are influenced by Darwin’s the-

ry on evolution and believe that all learning arises from natural

election such as genetic programming ( Koza, 1992 ). Bayesians

re concerned above all with uncertainty and their theories are

eavily based on probabilistic inference and Bayes’ theorem such

s the HMM ( Bishop, 2007 ). Analogizers are the least cohesive of

http://www.shimmersensing.com/products
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Fig. 1. Schematic view of the MOGP-HMM. The dotted lines show how the collected 

sequential lifelogging data is processed to predict fine-grained human physical ac- 

tivity status. The model can be deployed on a cloud server and provides real-time 

monitoring and personalized health advice to an individual through portable digital 

devices. 
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he five tribes ( Domingos, 2015 ), recognising similarities between

ituations and thereby inferring other similarities such as the

VM ( Vapnik, 20 0 0 ). A hybrid learning machine can contain at

east two machine learning models from one tribe or different

ribes. It could be called the hybrid neural system ( Wermter & Sun,

0 0 0 ) if all models come from the connectionists’ tribe such as the

ork of Borrajo, Baruque, Ccorchado, Bajo, and Corchado (2011) .

he models in a hybrid learning machine can be used in parallel or

y sequence. For example, Peddabachigari, Abraham, Grosan, and

homas (2007) discussed a hybrid learning machine combining a

ecision tree and an SVM for intrusion detection. The system takes

rediction outputs from two models (for example, votes) and then

ombines them into the final output. This is also called ensemble

earning ( Zhou, 2012 ), in which multiple models (called base

earners ) are strategically combined to create a stronger model to

olve a particular problem. De Caigny, Coussement, and De Bock

2018) designed a hybrid model based on a decision tree in the

rst stage and a logistic regression in the second stage. The output

f the decision tree is the input of the logistic regression, the

utput of which is the system’s final output. In this paper, our

roposed hybrid model MOGP-HMM contains two models used by

equence from two tribes (i.e., the MOGP is from evolutionaires

nd the HMM is from Bayesians). We also compare it with the

enchmarked SVM-HMM. 

From the functional perspective, our proposed hybrid model

OGP-HMM and the benchmark SVM-HMM can be expressed as

he classification-HMM. The MOGP or SVM is used for classifica-

ion in the first stage while the second stage HMM is used in find-

ng and modelling patterns in sequential data, satisfying Marko-

ian property. In the previous studies, SVMs with different ker-

els and the Gaussian mixture model (GMM) have been used in

he classification-HMM structure. For example, the SVM-HMM has

een successfully applied in speech recognition ( Mohameda & Nair,

012; Stadermann & Rigoll, 2004 ), metadata extraction ( Zhang, Yin,

eng, & Yang, 2008 ), and vision based human behaviour recogni-

ion ( Han, Zhang, Li, & Yao, 2014 ). The GMM-HMM has been used

n vision based human motion detection ( Concha, Yi, Xu, Moghad-

am, & Piccardi, 2011; Han et al., 2014 ). According to Han et al.

2014) , the SVM-HMM achieves a better recognition performance

han the GMM-HMM in short video sequences because the SVM

an clearly distinguish the differences between categories in con-

ecutive frames. Although the SVM has shown great success in

he previous studies, it has several limitations. First, choosing an

ppropriate kernel function is always a challenging task as it re-

uires cross validation and it is data and task dependent ( Auria &

oro, 2008 ). Second, the SVM usually needs a long training time

or large datasets. In this study we aim to find an alternative clas-

ifier which is efficient as well as robust. The MOGP has achieved

 wide range of success inclusive of applications to classification

roblems ( Ni & Rockett, 2014; Shao, Liu, & Li, 2014; Zhang & Rock-

tt, 2009 ) but it has not been used in the classification-HMM hy-

rid structure for healthcare applications. Similar to the SVM, the

OGP is a non-parametric model which requires fewer assump-

ions about the data, and consequently performs better in situa-

ions where the true distribution is unknown. However, the mod-

lling process of the MOGP is totally different to the SVM be-

ause it is from the evolutionaires’ tribe. In essence, the MOGP

s a tree-based algorithm, which can provide a better visualisa-

ion graph on the solution. Also, unlike SVMs, it is not sensitive

o the choice of kernel functions and thus provides more robust

nd discriminative representations of sparse data. The evolution-

ry process searches for a richer model space to minimise both 0/1

oss and the size of decision trees using Pareto dominance ( Poli,

angdon, & McPhee, 2008 ). Therefore, in this paper we use the

OGP. Apart from the theoretical comparison between the SVM

nd the MOGP here, we also empirically compare the MOGP-HMM
nd the SVM-HMM (with different kernels) based on our data in

ection 4 . 

. The MOGP-HMM 

The proposed MOGP-HMM contains two stages: (i) a MOGP al-

orithm in the first stage; and (ii) a first-order HMM in the sec-

nd stage. Fig. 1 presents a schematic view of the MOGP-HMM.

he first-order HMM is represented as a chain-structured Bayesian

etwork where Z 1 , . . . , Z N are the latent variables representing the

uman physical activity status over a finite time horizon t 1 , . . . , t N .

nd O 1 , . . . , O N are the observations obtained by the MOGP al-

orithm based on the collected lifelogging data X = [ X 1 , . . . , X N ]

here X n = [ X n, 1 , . . . , X n,d ] for n = 1 , . . . , N and d is the dimension

f the feature space. 

.1. Classifying lifelogging data using the MOGP algorithm 

In the first stage, the MOGP takes an input vector X n of an

ndividual’s lifelogging data at time t n and assigns it to one of

 discrete classes representing observation states. To simplify the

otation, the observation O n takes a value from a set of integers

 O = { 1 , . . . , M} . In the following discussion, we explain what a GP

ree is and we show how it works as a binary classifier. We then

ntroduce how GP trees are built and how the optimal tree models

re determined under multiple objectives. Finally, we discuss the

nsemble method used to create a multi-class classifier. 

GP algorithms use tree-based syntax to present a function

 ( ·) which can transform an input vector X n = [ X n, 1 , . . . , X n,d ] ∈ R 

d 

rom a d -dimensional feature space into a 1-dimensional decision

pace Y ∈ R , where the leaf nodes take the input vector, the internal

odes specify the arithmetic operations and the root node gives the

esponse in the decision space. Therefore, GP trees can be used to

olve binary classification problems. Fig. 2 presents a toy example

f a GP tree, in which each input vector has three features (i.e.,

 n = [ X n, 1 , X n, 2 , X n, 3 ] ) and the GP tree function then gives a re-

ponse y n = f (X n ) = (X n, 1 + X n, 3 ) × X n, 2 . If the training lifelogging

ata has ˜ N input vectors, then 

˜ N responses can be obtained in the

ecision space. Therefore, an optimal response can be found from
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Fig. 2. Illustration of using a GP tree as a binary classifier. The collected lifelogging 

data is highlighted in orange. The GP tree projects the multidimensional lifelogging 

data into one dimensional space Y where the classification is based on the threshold 

value y ∗ and the classified data is highlighted by green and blue colour, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Experimental settings for training the MOGP algorithm. 

Description Setting 

Population size 100 

Initialization Ramped half-and-half method ( Koza, 1992 ) 

Termination criterion 0/1 loss = 0 or 80,0 0 0 evaluations 

Crossover and mutation Point crossover ( Koza, 1992 ) 

Point mutation ( Koza, 1992 ) 

Tree depth = 4 

Node type Unary minus 

Addition 

Subtraction 

Multiplication 

Analytic quotient ( Ni et al., 2013 ) 
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the set of obtained 

˜ N responses and be used as the threshold y ∗ to

classify inputs so that the misclassification error e ∗ is minimised,

as illustrated in Algorithm 1 . 

Algorithm 1 Searching for the threshold y ∗ in a GP tree. 

1: Input: X , L , f (·) � Lifelogging data, label, GP function

2: for n = 1 , . . . , ̃  N do � ˜ N instances

3: y n ← f (X n ) � X = [ X 1 , . . . , X ˜ N ] is a 
˜ N × d matrix

4: end for 

5: for n = 1 , . . . , ̃  N do 

6: y ∗n ← y n 
7: for ̃  n = 1 , . . . , ̃  N do 

8: D n, ̃  n ← I { y ˜ n >y ∗n } 
9: end for 

10: e n ← 

1 ˜ N 

∑ ˜ N ˜ n =1 I { D n, ̃ n � = l ˜ n } � L = [ l 1 , . . . , l ˜ N ] is a 
˜ N × 1 vector

11: end for 

12: e ∗ ← min { e 1 , . . . , e ˜ N } ; n ∗ ← argmin { 1 , ... , ̃  N } { e 1 , . . . , e ˜ N } ; y ∗ ← y ∗n ∗
13: Output: (y ∗, e ∗) 

Similar to other evolutionary algorithms, the individuals in the

initial population are randomly generated in GP algorithms. Here

we adopt the widely used Ramped half-and-half method ( Koza,

1992 ), which generates a full sub-tree on one half of the root and a

random tree with various size and shapes on the other. The exam-

ple tree shown in Fig. 1 is the case where the left half is a full tree

while the right half is not. We also use point crossover and mu-

tation, as illustrated in Fig. 3 . Given two parents, point crossover

randomly selects a crossover point in each parent tree. It then cre-

ates the offspring by replacing the sub-tree rooted at the crossover

point in a copy of the first parent with a copy of the sub-tree

rooted at the crossover point in the second parent. Point mutation

randomly selects a mutation point in a tree and substitutes the

sub-tree rooted there with a randomly generated sub-tree. More

details about our experimental settings of GP trees are summarised

in Table 1 in Section 4 . 

In the evolutionary process, a GP algorithm searches for the

global optima of the specified objective function. If the misclas-

sification error is set as the only objective, the finally selected

tree model may fit the training data excessively and end up over-

fitting. In many machine learning and data mining techniques,
egularization is added to avoid overfitting ( Bishop, 2007 ). How-

ver, this will increase the training efforts. In the paper, we use

n alternative method to reduce overfitting. The tree size (i.e., the

umber of tree nodes) is set as the second objective in the op-

imisation. This can preserve simpler models and improve model

eneralisation. Pareto dominance is employed to compare and

ank vectors of multiple objectives. Let P = [ p 1 , . . . , p W 

] and Q =
 q 1 , . . . , q W 

] be two W -dimensional vectors. Mathematically, P is

aid to (Pareto) dominate Q , denoted by P ≺Q , if the following two

onditions are satisfied: 

p w 

≤ q w 

, ∀ w ∈ { 1 , . . . , W } , (1)

p w 

< q w 

, ∃ w ∈ { 1 , . . . , W } . (2)

n our optimal selection, the highest rank 1 is assigned to a tree

f there are no other trees that dominate it. Trees which are not

ominated by the rank 1 tree are then assigned to rank 1. We ex-

lude all rank 1 trees and repeat the procedure to assign rank 2

o trees which are dominated by each other. Then rank 2 trees are

xcluded and the procedure is repeated until all tree models are

ssigned a rank. For example, we have five 2-dimensional objec-

ive vectors presenting the misclassification error and node count

f five different trees: (0.213, 28), (0.213, 67), (0.197, 85), (0.322,

5), (0.225, 50). In the first round, (0.213, 28) dominates (0.213, 67)

nd (0.225, 50). However, (0.213, 28), (0.197, 85), (0.322, 15) do not

ominate each other, so they are assigned to rank 1 and they form

he Pareto frontier . In the second round, (0.213, 67) and (0.225, 50)

o not dominate each other so both are assigned to rank 2. The

dvantage of using the multi-objective optimisation imposes the

implicity of the models as a form of regularisation in the optimi-

ation procedure and improves the model generalisation. 

The MOGP algorithm discussed so far is a binary classifier. To

olve multi-class classification problems, an ensemble method is

sed to merge a number of binary classifiers. Specifically, as illus-

rated in Fig. 4 , if there are K classes (or states) labelled in the lifel-

gging data, for a class k = 1 , . . . , K, a MOGP tree can be obtained

rom the Pareto frontier with respect to the binary classification

roblem of ‘Class k ’ or ‘Non-class k ’. Therefore, K MOGP trees can

e obtained, and they can be sorted in ascending order based on

heir misclassification errors, denoted by f (1) , . . . , f (K) . It should be

oted that the notation ( k ), k = 1 , . . . , K, represents the index of

he sorted tree model but not the class that the tree solves. For

xample, f (1) can be the tree model that classifies data into ‘Class

’ or ‘Non-class 2’. We start with f (1) and classify the training data

nto either ‘Class (1)’ or ‘Non-class (1)’. The training data of the

ormer is excluded and the rest of data is then classified by f (2) .

his step is repeated until f ( K ) and the data of ‘Non-class ( K )’ is as-

igned to ‘Class 0’. Therefore, lifelogging data can be classified into

 = K + 1 classes (or states) of observations. An advantage of our

ethod is that an additional class is created in the HMM obser-

ations. This gives a finer classification of lifelogging data as well
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Fig. 3. Illustration of point crossover and mutation. 

Fig. 4. Illustration of creating a multi-class MOGP classifier. f 1 , . . . , f K are binary 

MOGP tree models based on the labelled classes (or states); f (1) , . . . , f (K) are the 

sorted binary MOGP tree models in ascending order based on their misclassification 

errors. 
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s avoids the case that the one-to-one mapping of the classes of

bservations and latent variables in the HMM in the second stage. 

.2. Predicting physical activity status using the HMM 

In the second stage, we use a first-order HMM ( Bishop, 2007;

hahramani, 2001 ) to predict an individual’s physical activity
tatus when a sequence of observations is given. As illustrated in

ig. 1 , an individual’s physical activity status at time t n is described

y the latent variable Z n , which takes the value from a set of inte-

ers S Z = { 1 , . . . , K} . Latent variables are connected through a first-

rder Markov chain in which the distribution P (Z n | Z n −1 ) of Z n is

onditioned on the value of the previous value Z n −1 . Since there

re K states, this conditional distribution corresponds to a K × K

atrix that we denote by A , the elements of which are known as

ransition probabilities , i.e, A i, j = P (Z n = j | Z n −1 = i ) where i, j ∈ S Z .
atent variables are not observed directly. However, each latent

ariable Z n determines an observation O n through the conditional

istribution P (O n | Z n ) . As there are M classes of observations, this

onditional distribution corresponds to a K × M matrix B whose el-

ments are called emission probabilities , i.e., B i, j = P (O n = j | Z n = i )

here i ∈ S Z , j ∈ S O . Therefore, the following joint distribution can

xpress the relationship among a sequence of observations: 

 (Z 1: N , O 1: N ) = P (Z 1 ) 

(
N ∏ 

n =2 

P (Z n | Z n −1 ) 

)(
N ∏ 

n =1 

P (O n | Z n ) 
)

, (3)

here Z 1: N represents Z 1 , . . . , Z N , and P (Z 1 ) is the initial latent

tate probability. As there are K states of the latent variable, the

nitial latent state probability can be denoted by a K × 1 vector

= [ π1 , . . . , πK ] . 

The model parameters { π, A , B } can be estimated using

he Baum-Welch algorithm ( Bishop, 2007 ). It is essentially an

xpectation-maximization (EM) algorithm that estimates the val-

es of parameters to maximize P (O ;π, A , B ) . However, the
1: N 
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Fig. 5. Example of the original real data and the synthetic data for a participant: (a) the combination of both data and the tagged classes/states in the synthetic data are 

highlighted by different colours; (b) the histogram and the fitted Gaussian density of both original and synthetic data for the variable step; (c) the histogram and the fitted 

Gaussian density of both original and synthetic data for the variable duration; (d) the histogram and the fitted Gaussian density of both original and synthetic data for the 

variable distance. 
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4 http://www.moves-app.com . 
accuracy of the estimate varies. As the observations are obtained

from the training data in the first stage and the training data has

been labelled, the model parameters can be estimated based on

the ground truth as follows: 

πi = 

#(Z n = i ) ˜ N 

, i ∈ S Z , (4)

A i, j = 

#(Z n −1 = i, Z n = j) 

#(Z n −1 = i ) 
, i, j ∈ S Z , (5)

B i, j = 

#(Z n = i, O n = j) 

#(Z n = i ) 
, i ∈ S Z , j ∈ S O , (6)

where the notation # counts the occurrence number and 

˜ N is the

size of the training data, e.g., the initial latent state probability π i 

is equal to the number of occurrences of state i divided by the size

of the training data. 

Given observations O 1, N and the model { π, A , B }, how do

we find the latent variable sequence Z 1: N that best represents

the observations? This corresponds to finding the most probable

sequence of latent variable states, and this can be solved effi-

ciently using the Viterbi algorithm ( Bishop, 2007 ). Simply put, the

most probable latent variable state at time t can be obtained
N 
y Z ∗
N 

= argmax i ∈S Z δN (i ) , where δn (i ) � max Z 1:(n −1) 
P (Z 1:(n −1) , Z n =

 | O 1: n ) , ∀ n = 1 , . . . , N, and the most probable sequence can be

omputed using traceback. 

. Experiments 

In this section, we introduce the collected lifelogging data, de-

cribe our experimental settings, and give an analysis of the exper-

mental results. 

.1. Data 

Our lifelogging data was collected through the Moves mobile

pplication, 4 which uses accelerometer and GPS sensors in a mo-

ile phone to automatically record any walking, cycling, and run-

ing activities of its user. It contains the activities recorded from

0 different participants in the UK, ranging from 118 to 401 days.

or each activity, the variables (or features) steps, distance, and du-

ation are collected. Based on the UK national health guidance ( UK

ational Health Service, 2015 ), the physical activity status is ex-

licitly labelled as a measurement score ranging from 1 (inactive

http://www.moves-app.com
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Fig. 6. Example of using the MOGP-HMM for a participant: (a) the time series plot of real lifelogging data; (b) the stairstep plot of observations obtained by the MOGP 

algorithm; (c) the stairstep plot of the predicted and labelled physical activity statuses, respectively. 
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tate) to 5 (active state). However, the behavioural characteristics

ary from user to user – some people live an inactive life in which

 highly active pattern is rarely observed while some people moves

 lot every day. To overcome the problem that the states of an in-

ividual’s physical activity status are imbalanced, we generate syn-

hetic data and use them together with the original real data in the

xperiments. Specifically, for each participant, the synthetic data is

nly used for training the MOGP algorithm in the first stage, and

he original real data is used in the second stage for estimating

he HMM and predicting the user’s physical activity status over

ime. 

The following strategy is used to create the synthetic data. Two

ntermediate variables are defined H = Distance/Duration and R =
teps/Duration . Their sample mean and standard deviations can be

btained from the raw data. A new duration value can be sam-

led from the raw data, which can be multiplied by N (μH , σ
2 
H )

nd N (μR , σ
2 
R 
) to create the values of corresponding distance and

tep, where N represents Gaussian distribution. It should be noted

hat the generate values are truncated to be non-negative numbers.

ig. 5 presents an example of the synthetic data and the original

aw data for a participant. The classes of physical activity status
an be clearly identified and each class has a certain amount of

ata. The histogram and the fitted Gaussian density plots of both

riginal and synthetic data for the input variables exhibit similar

nd consistent distributions. It should be noted that our study is

imited to the observations in the real data. Gaussian or Gaussian-

ike distribution is simple and can specify both central tendency

nd dispersion of data with parameters mean and standard devia-

ion. The used left-side truncated Gaussian distribution ( Burkardt,

014 ) is a popular parametric method used to generate synthetic

ata when there is a lack of real data for training models. 

In order to evaluate the robustness of the proposed hybrid

odel, white noise is generated at different levels ranging from

 to 0.2 and is incorporated into the labelling process of lifelog-

ing data. Specifically, we follow the UK medical guidance ( UK Na-

ional Health Service, 2015 ) to label data and add a noise term into

he variables step, distance, and duration based on their standard

eviations, respectively. Therefore, slightly different labels, i.e., the

tates of human physical activity status, are obtained under differ-

nt noise settings. This takes into consideration that doctors may

ave slightly different ratings for a participant’s physical activity

tatus. 
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Table 2 

Test errors (i.e., the numbers in brackets) and relative rankings based on test errors of 

four hybrid models under different noise settings for one participant. 

Noise MOGP-HMM SVM(R)-HMM SVM(P)-HMM SVM(S)-HMM 

0 2 (0.0119) 1 (0.0085) 3 (0.0261) 4 (0.0283) 

0.01 1 (0.0145) 2 (0.0167) 3 (0.0255) 4 (0.0308) 

0.02 1 (0.0205) 2 (0.0227) 3 (0.0308) 4 (0.0368) 

0.03 2 (0.0419) 3 (0.0425) 1 (0.0324) 4 (0.0453) 

0.04 3 (0.0573) 2 (0.0567) 1 (0.0463) 4 (0.0595) 

0.05 2 (0.0607) 3 (0.0652) 1 (0.0548) 4 (0.0680) 

0.06 2 (0.0727) 4 (0.0765) 1 (0.0658) 3 (0.0736) 

0.07 2 (0.0799) 4 (0.0850) 1 (0.0755) 3 (0.0815) 

0.08 2 (0.0894) 4 (0.0935) 1 (0.0840) 3 (0.0900) 

0.09 2 (0.1039) 4 (0.1076) 1 (0.0982) 3 (0.1042) 

0.10 2 (0.1316) 4 (0.1357) 1 (0.1265) 3 (0.1325) 

0.11 2 (0.1615) 4 (0.1706) 1 (0.1593) 3 (0.1678) 

0.12 2 (0.1829) 3 (0.1930) 1 (0.1813) 4 (0.1977) 

0.13 2 (0.1971) 4 (0.2059) 1 (0.1939) 3 (0.1993) 

0.14 2 (0.2030) 4 (0.2125) 1 (0.2015) 3 (0.2049) 

0.15 2 (0.2027) 4 (0.2118) 1 (0.2012) 3 (0.2046) 

0.16 2 (0.2125) 4 (0.2213) 1 (0.2106) 3 (0.2140) 

0.17 1 (0.2147) 4 (0.2216) 2 (0.2150) 3 (0.2156) 

0.18 2 (0.2197) 4 (0.2273) 1 (0.2191) 3 (0.2213) 

0.19 2 (0.2355) 4 (0.2424) 1 (0.2336) 3 (0.2361) 

0.20 3 (0.2521) 4 (0.2572) 1 (0.2503) 2 (0.2509) 

Average 1.8571 (0.1317) 3.4762 (0.1369) 1.3810 (0.1301) 3.2857 (0.1363) 
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4.2. Experimental design 

The SVM-HMM is a popular hybrid model which has been

successfully used in speech recognition and human activity be-

haviour recognition. In the experiments, we compare our proposed

MOGP-HMM with several SVM-HMMs. Specifically, we investi-

gate SVMs using different kernels including radial basis function

(RBF), polynomial and sigmoid kernels, denoted by SVM(R), SVM(P)

and SVM(S), respectively. For further technical details about SVMs

please refer to Cristianini and Shawe-Taylor (20 0 0) . The corre-

sponding hybrid models are denoted by SVM(R)-HMM, SVM(P)-

HMM and SVM(S)-HMM in the following discussion. 

In the first stage, the synthetic data is used. We employ the 5-

fold cross-validation method in training SVMs; and 50% of the data

for training and 50% of data for validation in obtaining the MOGP

algorithm (called the test set method). The training settings of the

MOGP algorithm are summarised in Table 1 . The experiments run

up to 80,0 0 0 tree evaluations, each of which generates a new tree

model. The training terminates when either of the following two

conditions is met: (i) 0/1 loss converges; (ii) the maximum itera-

tion number is achieved. The GP trees are initialised with ramped

half-and-half method ( Koza, 1992 ); point crossover and mutation

are used. The tree depth is set as 4, and the tree node types in-

clude unary minus, addition, subtraction, multiplication, and ana-

lytic quotient ( Ni, Drieberg, & Rockett, 2013 ). It should be noted

that the test set method ( Bishop, 2007 ) ensures the generaliza-

tion capability of the MOGP. Regularization is difficult to imple-

ment for tree-based models as they are heuristic algorithms. In

broader sense, regularization for tree-based models is proceeded

by limiting the maximum depth of trees, ensembling more than

just one tree, or setting stricter stopping criterion on when to split

a node further (e.g. the minimum gain, the number of samples).

Therefore, the above training steps and settings in Table 1 ensure

the MOGP will not be over-fitting. In the second stage, the original

real lifelogging data is firstly processed to obtain the corresponding

observations. We then employ the 10-fold cross-validation method

in training and testing the HMM, where the data is divided into

10 equal folds – 9 folds are used for estimating the parameters

{ π, A , B } of the HMM and the remaining fold is used for predic-

tion and evaluation. In the experiments, we use the HMMlib C++

in the implementation of the HMM ( Sand, Pedersen, Mailund, &

Brask, 2010 ). 
.3. Results and discussion 

Fig. 6 presents an example of using the MOGP-HMM for a

articipant. The time series plot of the original real lifelogging

ata shows the values of steps, duration, and distance over time.

he MOGP algorithm then classifies the collected lifelogging data

nto one of 6 classes (or states) representing the observations.

he HMM then predicts the user’s physical activity status over

ime based on the observations. The proposed MOGP-HMM is

ompared with other three SVM-HMMs for 10 participants un-

er 21 noise levels, which gives 840 performance results in total.

able 2 presents the models’ performance for one user. In machine

earning theory, test error (also known as the generalisation error)

s a measure of how accurately a model is able to predict out-

ome values on a set of data that it has never seen before. Test

rror and overfitting are considered to be closely related. Gener-

lly, the more overfitting occurs, the larger the test error. In each

odel, the test error increases with the increase of the noise. Un-

er different noise settings, test errors of all four models are close.

owever, the SVM(P)-HMM leads the rankings, slightly ahead of

he MOGP-HMM. Both models are significantly ahead of the other

wo models. Fig. 7 provides the results of overall performance for

ll 10 people in our data. The MOGP-HMM can achieve comparable

erformance as SVM-HMMs as it has the second smallest average

est error in all four models. 

We would like to provide some insights on the underlying dif-

erences between the MOGP algorithm and SVMs. From the per-

pective of model generalisation, test error in SVMs is proportional

o the combination of training error and model complexity. Con-

ucted from the structure risk minimisation scheme, a SVM con-

erges to a linear optimal solution. As for the non-linear mod-

ls, a kernel function is employed to non-linearly map the orig-

nal feature space into a kernel space where the linear classifier

s trained. Thus, the optimality of the linear model holds only in

he kernel space that relies on the kernel function. Intuitively, ker-

els incur different non-linearity from one to another. Each op-

imal model from a specific kernel is an effective local optimum

ith respect to the kernel function used. Therefore, different re-

ults can be obtained with SVMs using different kernels. On the

ther hand, the MOGP algorithm minimises empirical 0/1 loss and

he size of the tree simultaneously, leading the evolutionary pro-

ess to minimise test error. Each GP tree represents a discriminant
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Fig. 7. Overall performance of hybrid models for all participants: (a) the boxplot of expected rankings; (b) the cumulative probability distribution of the average ranking. 
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hat maps the training data from the feature space into a decision

pace while using a threshold to separate two classes. Compared

o SVMs, one advantage of GP algorithms is that the discriminant

s a syntax tree providing rich model candidates to search. The

volutionary process is driven by the MOGP algorithm towards a

et of solutions non-dominant to each other in terms of empirical

rror and complexity. The solution set has no quantitative justi-

cation related to the expected risk. As a result the optimisation

rocess is not as solid as SVM. Specifically, the tree size consid-

red as a syntactic complexity measure is not as tightly coupled to

he true complexity as Vapnik-Chervonenkis (VC) dimension em-

loyed in SVM ( Cristianini & Shawe-Taylor, 20 0 0 ). Therefore, the

odel evolved by MOGP is only a close-to-optimum result over a

arger model space. Overall, the MOGP algorithm is a robust choice

n the classification-HMM type hybrid models as no ad-hoc kernels

re required and is underpinned by its flexible non-linearity. 

. Conclusion 

In this paper, we propose a hybrid model MOGP-HMM to pre-

ict human physical activity status from sequential lifelogging data.

he MOGP algorithm transforms the collected lifelogging data into

bservations, which are the input of the HMM. The latter is a

hain-structured Bayesian network where the latent variables rep-

esent an individual’s physical activity status over time. Given a

equence of observations, an individual’s physical activity status

an be predicted. We validate the proposed model with the real

ata collected from a group of participants in the UK, and compare

ur model with several SVM-HMMs in which SVMs use different

ernels. Our experimental results show that the MOGP-HMM can

chieve comparable performance as SVM-HMMs. 

The contribution of our study is multi-fold. It contributes to the

ecent use of operational research, machine learning, data min-

ng, big data and the Internet of things in healthcare. Lifelog-

ing data collection and analysis is a big data problem and the

eveloped model is a personalised data-driven model tailored to

ndividual’s physical activity pattern. We aim to achieve patient-

entred healthcare where patient will play more active roles and

e encouraged positive attitudes towards healthy lifestyles. As il-

ustrated in Fig. 1 , the proposed hybrid model can be used as a de-

ision support tool that provides real-time health monitoring, sta-

istical analysis and personalized advice to an individual through

ortable digital devices. Therefore, the study fits seamlessly with

he current trend in the UK healthcare transformation of patient
mpowerment as well as contributes to a strategic development

or more efficient and cost-effective provision of healthcare. Using

 MOGP algorithm in the two-stage hybrid structure has method-

logical contributions. It is non-parametric and can find an opti-

al trade-off between model fitness and complexity by setting the

ree size. Unlike SVMs, it is not sensitive to the choice of kernel

unctions and thus provides more robust and discriminative repre-

entations of sparse data. To the best of our knowledge, this is the

rst study that uses a MOGP algorithm as a multi-class classifier to

onstruct a classification-HMM hybrid model for solving sequential

earning problems. Our model can be of interest and easily adapted

o other relevant domains in business analytics such as consumer

hoice modelling and high dimensional business data classification

r dimension reduction. 

cknowledgments 

This work was conducted with the support of the EPSRC grant

yLifeHub EP/L023679/1 and European FP7 collaborative project

yHealthAvatar (GA No: 600929). 

eferences 

braham, A. , Corchado, E. , & Corchado, J. (2009). Hybrid learning machines. Neuro-

computing, 72 (13–15), 2729–2730 . 
uria, L., & Moro, R. A. (2008). Support vector machines as a technique for solvency

analysis. Deutsches Institut für Wirtschaftsforschung Technical Report. 
anaee, H. , Ahmed, M. , & Loutfi, A. (2013). Data mining for wearable sensors in

health monitoring systems: a review of recent trends and challenges. Sensors,

13 , 17472–17500 . 
ishop, C. (2007). Pattern recognition and machine learning . Springer . 

lanchet, J. , Gallego, G. , & Goyal, V. (2016). A Markov chain approximation to choice
modeling. Operations Research, 64 (4), 886–905 . 

orrajo, L. , Baruque, B. , Ccorchado, E. , Bajo, J. , & Corchado, J. (2011). Hybrid neu-
ral intelligent system to predict business failure in small-to-medium-size enter-

prises. International Journal of Neural Systems, 21 (4), 277–296 . 

railsford, S. , & Vissers, J. (2008). OR in health. European Journal of Operational Re-
search, 185 (3), 901–904 . 

railsford, S. , & Vissers, J. (2011). OR in healthcare: A European perspective. Euro-
pean Journal of Operational Research, 212 (2), 223–234 . 

urkardt, J. (2014). The truncated normal distribution . Florida State University, De-
partment of Scientific Computing Technical Notes . 

aspersen, C. , Powell, K. , & Christenson, G. (1985). Physical activity, exercise, and
physical fitness: definitions and distinctions for health-related research. Public

Health Reports, 100 (2), 126–131 . 

hen, V. , Kim, S. , Oztekin, A. , & Sundaramoorthi, D. (2018). Preface: data mining and
analytics. Annals of Operations Research, 263 (1–2), 1–3 . 

hen, Y. , Mabu, S. , Shimada, K. , & Hirasawa, K. (2009). A genetic network program-
ming with learning approach for enhanced stock trading model. Expert Systems

with Applications, 36 (10), 12537–12546 . 

http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0011


542 J. Ni, B. Chen and N.M. Allinson et al. / European Journal of Operational Research 281 (2020) 532–542 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M  

 

N  

 

N  

P  

 

 

 

 

P  

R  

 

R  

 

R  

 

 

S  

 

 

S  

 

S  

 

S  

 

 

 

T  

 

T  

 

U  

V  

V  

 

 

W

 

 

W  

 

W  

 

 

W  

Z

 

 

 

 

Z  

 

Choi, B. , Pak, A. , Choi, J. , & Choi, E. (2007). Daily step goal of 10,0 0 0 steps: a litera-
ture review. Clinical & Investigative Medicine, 30 (3), 146–151 . 

Concha, O., Yi, R., Xu, D., Moghaddam, Z., & Piccardi, M. (2011). HMM-MIO: an en-
hanced hidden Markov model for action recognition. Proceedings of the com-

puter vision and pattern recognition workshops. 
Cristianini, N. , & Shawe-Taylor, J. (20 0 0). An introduction to support vector machines

and other Kernel-based learning methods . Cambridge University Press . 
Dag, A . , Oztekin, A . , Yucel, A . , Bulur, S. , & Megahed, F. (2017). Predicting heart trans-

plantation outcomes through data analytics. Decision Support Systems, 94 , 42–

52 . 
Dag, A. , Topuz, K. , Oztekin, A. , Bulur, S. , & Megahed, F. (2016). A probabilistic data–

driven framework for scoring the preoperative recipient-donor heart transplant
survival. Decision Support Systems, 86 , 1–12 . 

De Caigny, A. , Coussement, K. , & De Bock, K. (2018). A new hybrid classification al-
gorithm for customer churn prediction based on logistic regression and decision

trees. European Journal of Operational Research, 269 (2), 760–772 . 

Debaere, S. , Coussement, K. , & De Ruyckc, T. (2018). Multi-label classification of
member participation in online innovation communities. European Journal of

Operational Research, 270 (2), 761–774 . 
Denoyel, V. , Alfandari, L. , & Thiele, A. (2017). Optimizing healthcare network design

under reference pricing and parameter uncertainty. European Journal of Opera-
tional Research, 263 , 996–1006 . 

Domingos, P. (2015). The master Algorithm: How the quest for the ultimate learning

machine will remake our world . Allen Lane . 
Doumpos, M. , & Zopounidis, C. (2016). Editorial to the special issue “business ana-

lytics”. Omega: The International Journal of Management Science, 59 , 1–3 . 
Evans, J. (2017). Business analytics: Methods, models, and decisions (2nd). Pearson . 

Fries, B. (1976). Bibliography of operations research in health care systems. Opera-
tions Research, 24 (5), 801–814 . 

Gandek, B. , Ware, J. , Aaronson, N. , Apolone, G. , Bjorner, J. , Brazier, J. , et al. (1998).

Cross-validation of item selection and scoring for the SF-12 Health Survey in
nine countries: results from the IQOLA Project. Journal of Clinical Epidemiology,

51 (11), 1171–1178 . 
Ghaddar, B. , & Naoum-Sawaya, J. (2018). High dimensional data classification and

feature selection using support vector machines. European Journal of Operational
Research, 265 (3), 993–1104 . 

Ghaddar, B. , Sakr, N. , & Asiedu, Y. (2016). Spare parts stocking analysis using genetic

programming. European Journal of Operational Research, 252 , 136–144 . 
Ghahramani, Z. (2001). An introduction to hidden Markov models and Bayesian net-

works. International Journal of Pattern Recognition and Artificial Intelligence, 15 (1),
9–42 . 

Goodfellow, I. , Bengio, Y. , & Courville, A. (2016). Deep learning . MIT . 
Goonatilake, S. , & Khebbal, S. (1995). Intelligent hybrid systems . John Wiley & Sons . 

Grünig, R. , & Kühn, R. (2013). Successful decision-making: A systematic approach to

complex problems . Springer . 
Gurrin, C. , Smeaton, A. , & Doherty, A. (2014). Lifelogging: Personal big data. Founda-

tions and Trends in Information Retrieval, 8 (1), 1–125 . 
Han, S. , Zhang, M. , Li, P. , & Yao, J. (2014). SVM-HMM based human behavior recog-

nition. In Proceedings of the international conference on human centered com-
puting (pp. 93–103) . 

Harris, S. , May, J. , & Vargas, L. (2016). Predictive analytics model for healthcare plan-
ning and scheduling. European Journal of Operational Research, 253 (1), 121–131 . 

Hejazi, T.-H. , Badri, H. , & Yang, K. (2019). A reliability-based approach for perfor-

mance optimization of service industries: an application to healthcare systems.
European Journal of Operational Research, 273 (3), 1016–1025 . 

Hindle, A. , Hindle, G. , & Hindle, T. (2013). Geographical modelling of patient episode
flows and hospital catchment populations: a case study in Northern Ireland.

Health Systems, 2 (1), 53–60 . 
Hindle, G. , & Vidgen, R. (2018). Developing a business analytics methodology: a case

study in the foodbank sector. European Journal of Operational Research, 268 (3),

836–851 . 
Koza, J. (1992). Genetic programming: On the programming of computers by means of

natural selection . MIT Press . 
Krischer, J. (1980). An annotated bibliography of decision analytic approaches to

health care. Operations Research, 28 (1), 97–113 . 
Kulev, I. , Pu, P. , & Faltings, B. (2016). Discovering persuasion profiles using time se-

ries data. In Proceedings of the neural information processing systems time se-

ries workshop . 
Kunc, M., Harper, P., & Katsikopoulos, K. (2018). A review of implementation of be-

havioural aspects in the application of OR in healthcare. Journal of the Opera-
tional Research Society . doi: 10.1080/01605682.2018.1489355 . 

Li, Y. , Vo, A. , Randhawa, M. , & Fick, G. (2017). Designing utilization-based spatial
healthcare accessibility decision support systems: A case of a regional health

plan. Decision Support Systems, 99 , 51–63 . 

Liao, L. , Fox, D. , & Kautz, H. (2005). Location-based activity recognition using rela-
tional Markov networks. In Proceedings of the 19th international joint conference

on artificial intelligence (pp. 773–778) . 
Luque, R. , Casilari, E. , Morón, M.-J. , & Redondo, G. (2014). Comparison and charac-

terization of android-based fall detection systems. Sensors, 14 (10), 18543–18574 .
Micucci, D. , Mobilio, M. , & Napoletano, P. (2017). UniMiB SHAR: A dataset for

human activity recognition using acceleration data from smartphones. Applied

Sciences, 7 (10) . 
Mohameda, A. , & Nair, R. (2012). HMM/ANN hybrid model for continuous Malay-

alam speech recognition. Procedia Engineering, 30 , 616–622 . 
ortenson, M. , Doherty, N. , & Robinson, S. (2015). Operational research from Tay-
lorism to Terabytes: a research agenda for the analytics age. European Journal of

Operational Research, 241 (3), 583–595 . 
i, J. , Drieberg, R. , & Rockett, P. (2013). The use of an analytic quotient operator

in genetic programming. IEEE Transactions on Evolutionary Computation, 17 (1),
146–152 . 

i, J. , & Rockett, P. (2014). Training genetic programming classifiers by vicinal-risk
minimization. Genetic Programming and Evolvable Machines, 16 (1), 3–25 . 

ate, R. , Pratt, M. , Blair, S. , Haskell, W. , Macera, C. , Bouchard, C. , et al. (1995).

Physical activity and public health: a recommendation from the cen-
ters for disease control and prevention and the American college of

sports medicine. Journal of the American Medical Association, 273 (5), 
402–407 . 

Peddabachigari, S. , Abraham, A. , Grosan, C. , & Thomas, J. (2007). Modeling intrusion
detection system using hybrid intelligent systems. Journal of Network and Com-

puter Applications, 30 (1), 114–132 . 

oli, R., Langdon, W., & McPhee, N. (2008). A field guide to genetic programming.
http://www.gp- field- guide.org.uk . 

oumani, Y. , Roumani, Y. , Nwankpa, J. , & Tanniru, M. (2018). Classifying readmis-
sions to a cardiac intensive care unit. Annals of Operations Research, 263 (1–2),

429–451 . 
ouyendegh, B. , Oztekin, A. , Ekong, J. , & Dag, A. (2018). Measuring the efficiency

of hospitals: a fully-ranking DEA-FAHP approach. Annals of Operations Research,

263 (1–2), 1–18 . 
oyston, G. (1998). Shifting the balance of health care into the 21st century. Euro-

pean Journal of Operational Research, 105 (2), 267–276 . 
Rudner, J. , McDougall, C. , Sailam, V. , Smith, M. , & Sacchetti, A. (2016). Interrogation

of patient smartphone activity tracker to assist arrhythmia management. Annals
of Emergency Medicine, 68 (3), 292–294 . 

and, A. , Pedersen, C. , Mailund, T. , & Brask, A. (2010). HMMlib: a C++ library for

general hidden Markov models exploiting modern CPUs. In Proceedings of the
2nd international workshop on high performance computational system biology

(pp. 126–134) . 
andıkci, B. , Maillart, L. , Schaefer, A. , Alagoz, O. , & Robert, M. (2008). Estimating

the patient’s price of privacy in liver transplantation. Operations Research, 56 (6),
1393–1410 . 

hao, L. , Liu, L. , & Li, X. (2014). Feature learning for image classification via multiob-

jective genetic programming. IEEE Transactions on Neural Networks and Learning
Systems, 25 (7), 1359–1371 . 

tadermann, J. , & Rigoll, G. (2004). A hybrid SVM/HMM acoustic modeling approach
to automatic speech recognition. In Proceedings of the international conference

on spoken language processing . 
Tako, A. , & Kotiadis, K. (2015). PartiSim: a multi-methodology framework to support

facilitated simulation modelling in healthcare. European Journal of Operational

Research, 244 (2), 555–564 . 
erwee, C. , Gerding, M. , Dekker, F. , Prummel, M. , & Wiersinga, W. (1998). Develop-

ment of a disease specific quality of life questionnaire for patients with Graves’
ophthalmopathy: the GO-QOL. British Journal of Ophthalmology, 82 (7), 773–779 . 

opuz, K. , Uner, H. , Oztekin, A. , & Yildirim, M. (2018). Predicting pediatric clinic
no-shows: a decision analytic framework using elastic net and Bayesian belief

network. Annals of Operations Research, 263 (1–2), 479–499 . 
K National Health Service (2015). Physical activity guidelines for adults. http://

www.nhs.uk/Livewell/fitness/Pages/physical-activity- guidelines- for- adults.aspx . 

apnik, V. (20 0 0). The nature of statistical learning theory. Statistics for engineering
and information science (2nd). New York: Springer . 

ilarinho, T., Farshchian, B., Bajer, D., Dahl, O., Egge, I., Hegdal, S., Lønes, A., Slet-
tevold, J., & Weggersen, S. (2015). A combined smartphone and smartwatch

fall detection system. IEEE International Conference on Computer and Information
Technology . 

ermter, S. , & Sun, R. (20 0 0). Hybrid neural systems . Springer . 

Willis, G. , Cave, S. , & Kunc, M. (2018). Strategic workforce planning in healthcare:
a multi-methodology approach. European Journal of Operational Research, 267 ,

250–263 . 
on, K.-J. , Hamelryck, T. , Prügel-Bennett, A. , & Krogh, A. (2007). An evolutionary

method for learning HMM structure: prediction of protein secondary structure.
BMC Bioinformatics, 8 (1), 357 . 

orld Health Organization (2014a). Global status report on noncommunicable dis-

eases. http://www.who.int . 
World Health Organization (2014b). Transforming health services delivery towards

people-centred health systems. Health Services Delivery Programme Briefing Note .
orld Health Organization (2017). Physical activity. Health Topics . http://www.who.

int/topics/physical _ activity/en/ . 
adeh, L. (1965). Fuzzy sets. Information and Control, 8 (2), 338–353 . 

Zhang, L. , & Zhang, B. (2014). Quotient space based problem solving: A theorectical

foundation of granular computing . Elsevier . 
Zhang, M. , Yin, P. , Deng, Z. , & Yang, D. (2008). SVM+BiHMM: A hybrid statistic model

for metadata extraction. Journal of Software, 19 (2), 358–368 . 
Zhang, Y. , & Rockett, P. (2009). A generic multi-dimensional feature extraction

method using multiobjective genetic programming. Evolutionary Computation,
17 (1), 89–115 . 

hou, L., & Gurrin, C. (2012). A survey on life logging data capturing. SenseCam Sym-

posium . 
Zhou, Z. (2012). Ensemble Methods: Foundations and Algorithms . Chapman and

Hall/CRC . 

http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003a
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003a
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003a
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003a
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0003a
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0037
https://doi.org/10.1080/01605682.2018.1489355
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0047
http://www.gp-field-guide.org.uk
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0058
http://www.nhs.uk/Livewell/fitness/Pages/physical-activity-guidelines-for-adults.aspx
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0062
http://www.who.int
http://www.who.int/topics/physical_activity/en/
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30465-5/sbref0067

	A hybrid model for predicting human physical activity status from lifelogging data
	1 Introduction
	2 Related work
	3 The MOGP-HMM
	3.1 Classifying lifelogging data using the MOGP algorithm
	3.2 Predicting physical activity status using the HMM

	4 Experiments
	4.1 Data
	4.2 Experimental design
	4.3 Results and discussion

	5 Conclusion
	Acknowledgments
	References


