Combining guaranteed and spot markets in display advertising: selling guaranteed page views with stochastic demand¹

Bowei Chen^{†2} Jingmin Huang[†] Yufei Huang[‡] Stefanos Kollias[‡] Shigang Yue[‡]

[†]University of Glasgow [‡]Trinity College Dublin [‡]University of Lincoln

2020

¹In European Journal of Operational Research, 280(3), pp. 1144-1159, 2020 ²bowei.chen@glasgow.ac.uk

Schematic view

- Ad impressions will be created and be real-time auctioned off (i.e., RTB) in [t_N, t_N];
- They can be sold in advance via guaranteed contracts in [t₀, t_N];
- Advertisers' demand of display advertising in $[t_N, t_{\widetilde{N}}]$ arrives sequentially over time in $[t_0, t_N]$;
- The unfulfilled demand will join RTB in $[t_N, t_{\widetilde{N}}]$.

Stochastic demand arrivals and purchase behaviour

Let $f(t_n)$ be the expected number of advertisers arriving in $\Delta t = t_n - t_{n-1}$, which follows a homogeneous Poisson process, then the demand for buying a guaranteed contract at time t_n can be computed as

$$\eta(t_n) = \mathbb{I}_{\{n>0\}} \sum_{i=0}^{n-1} f(t_i) \prod_{j=i}^{n-1} \left[1 - \theta(t_j, p(t_j)) \right] + f(t_n), \tag{1}$$

where $\mathbb{I}_{\{\cdot\}}$ is an indicator function, $\sum_{i=0}^{n-1} f(t_i) \prod_{j=i}^{n-1} (1 - \theta(t_j, p(t_j)))$ computes the unfulfilled demand backlogged from the previous time periods and $\theta(t_n, p(t_n))$ is the proportion of those who want to buy an impression in advance at time t_n and at price $p(t_n)$, defined as

$$\theta(t_n, p(t_n)) = \exp\left\{-\alpha p(t_n) \left(1 + \beta(t_N - t_n)\right)\right\},\tag{2}$$

where α represents the price effect and β represents the time effect.

The expected revenue from RTB can be obtained as

$$\phi(\xi) = \int_{\Omega} x\xi(\xi - 1)g(x) \left[1 - F(x)\right] \left[F(x)\right]^{\xi - 2} dx,\tag{3}$$

where x is an advertiser's bid, Ω is the range of bid, $g(\cdot)$ and $F(\cdot)$ are the density and cumulative distribution functions, respectively. Thus, $\xi(\xi - 1)g(x)[1 - F(x)][F(x)]^{\xi-2}$ represents the probability that if an advertiser who bids at x is the second highest bidder, then one of $\xi - 1$ other advertisers must bid at least as much as he does and all of $\xi - 2$ other advertisers have to bid no more than he does.

The censored upper bound of the guaranteed contract price at time t_n can be characterised as

$$\Phi(t_n) = \min\left\{\underbrace{\phi(\xi(t_n)) + \delta(t_n)\psi(\xi(t_n))}_{:=\chi(t_n,\xi(t_n))}, \pi\right\},\tag{4}$$

where π is the expected maximum value of an impression, $\psi(\xi(t_n))$ is the standard deviation of payment prices in RTB, $\delta(t_n)$ is advertiser's risk preference and $\delta(t_n) = \zeta e^{-vt_n}$.

$$\max R = \left\{ \underbrace{\sum_{n=0}^{N} (1 - \omega \varpi) p(t_n) \theta(t_n, p(t_n)) \eta(t_n)}_{:=R^{PG}} + \underbrace{\left[S - \sum_{n=0}^{N} \theta(t_n, p(t_n)) \eta(t_n)\right] \phi(\xi(t_N))}_{:=R^{RTB}}\right\},$$
s.t. $0 \le p(t_n) \le \Phi(t_n)$, for $n = 0, \cdots, N$, (6)
 $0 \le \sum_{n=0}^{N} \theta(t_n, p(t_n)) \eta(t_n) \le S.$ (7)

$$\sum_{n=0}^{\infty} \theta(t_n, p(t_n)) \eta(t_n) \le S. \tag{7}$$

Solution based on Knapsack problem

• Algorithms 1-2

A dataset from a UK SSP that contains 1,378,971 RTB campaigns for 31 different ad slots over the period from 08 January 2013 to 14 February 2013.

Group	1		2	
Number of ad slots	6		20	
Set	Training	Test	Training	Test
Payment price	0.98 (0.09)	0.99 (0.08)	0.73 (0.46)	0.56 (0.36)
Winning bid	1.13 (0.17)	1.1 (0.1)	2.32 (1.17)	1.84 (1.04)
ξ	8.92 (3.24)	8.15 (1.18)	3.39 (0.59)	3.51 (0.81)
Ratio of payment	88.95%	92.88%	32.2%	37.18%
price to winning bid	(4.54%)	(2.15%)	(9.9%)	(10.58%)

Note: numbers in round brackets are standard deviations

Winning bids vs payment prices

Estimating model parameters

Overall performance

Optimal pricing and allocation

Thank you!

bowei.chen@glasgow.ac.uk https://boweichen.github.io