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Abstract—Display advertising is an important online ad-
vertising type where banner advertisements (shortly ad) on
websites are usually measured by how many times they are
viewed by online users. There are two major channels to
sell ad views. They can be auctioned off in real time or be
directly sold through guaranteed contracts in advance. The
former is also known as real-time bidding (RTB), in which
media buyers come to a common marketplace to compete for
a single ad view and this inventory will be allocated to a
buyer in milliseconds by an auction model. Unlike RTB, buying
and selling guaranteed contracts are not usually programmatic
but through private negotiations as advertisers would like to
customise their requests and purchase ad views in bulk. In
this paper, we propose a simple model that facilitates the
automation of direct sales. In our model, a media seller puts
future ad views on sale and receives buy requests sequentially
over time until the future delivery period. The seller maintains
a hidden yet dynamically changing reserve price in order to
decide whether to accept a buy request or not. The future
supply and demand are assumed to be well estimated and
static, and the model’s revenue management is using inventory
control theory where each computed reverse price is based on
the updated supply and demand, and the unsold future ad
views will be auctioned off in RTB to the meet the unfulfilled
demand. The model has several desirable properties. First, it is
not limited to the demand arrival assumption. Second, it will
not affect the current equilibrium between RTB and direct sales
as there are no posted guaranteed prices. Third, the model uses
the expected revenue from RTB as a lower bound for inventory
control and we show that a publisher can receive expected total
revenue greater than or equal to those from only RTB if she
uses the computed dynamic reserves prices for direct sales.

Keywords-Display advertising; programmatic guarantee; dy-
namic inventory control; risk-aware modelling; reserve prices

I. INTRODUCTION

Display advertising – a type of online advertising that

mainly comes with banner ads to deliver marketing messages

to site visitors – has emerged as a new global industry

as billions of dollars are spent every year for ad views.

Each ad view is also called an impression. According to

eMarketer1, display advertising revenues mainly come from

two channels: RTB and direct sales. The former, as the

1http://www.emarketer.com

name implies, is a real-time, impression-level, auction-based

sales system, in which media buyers come to a common

marketplace like ad exchange to compete with each other

for a single impression from their targeted users. RTB was

initially proposed in 2007 [1], which has brought automa-

tion, integration, and liquidity into selling impressions non-

guaranteedly, changing the landscape of the market. Direct

sales have a longer history, which can be traced back to

1994, when HotWired (today Wired News, part of Lycos)

singed fourteen banner ads with AT&T, Club Med and Coorz

Zima, being considered as the start of display advertising [2].

Guaranteed contracts can customise media buyers’ requests

and provide a way to lock in advertising opportunities in

advance. However, they are still mainly agreed through

private negotiations, which is slow and less efficient in

front of large inventory volumes and rapid market changes.

Both media buyers and sellers are looking to programmatic

technology or automatic system to buy and sell impressions

in advance, bypassing traditional direct sales [3].

Programmatic guarantee (PG) has therefore become a

popular topic recently. It is often synonymous with pro-

grammatic reserved, programmatic upfront and forward [3],

[4]. Essentially, PG is a sales system that helps media

sellers such as publishers and supply-side platforms (SSPs)

to automatically sells future impressions through guaranteed

contracts to media buyers such as advertisers and demand-

side platforms (DSPs). Below are several notable examples

from both buy-side and sell-side markets:

• Google DoubleClick’s Programmatic Guaranteed;

• AOL’s Programmatic Upfront;

• Rubicon Project’s Reserved Premium Media Buys;

• BuySellAds’s Direct Sales;

• ShinyAds’s Programmatic Direct Advertising Platform.

Many PG products or platforms have been developed

since 2013 and there is no widely recognised models for

them. This is different to RTB, where the Second-Price (SP)

auction and the Vickrey-Clarke-Groves (VCG) auction have

been implemented on most of platforms [5]. In addition,

since in RTB each impression is auctioned off, the expected

revenues from SP and VCG are equivalent [6]; therefore,
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Figure 1. Schematic views of transactions (or business models) in RTB,
traditional direct sales, passive PG and active PG.

we usually consider RTB based on SP auctions. Below we

summarise some functionalities and common facts of PG.

First, there is no competition in PG. For each transaction,

there are only one seller and one buyer at a time. Second,

there is no need to model the arrival of supply in PG as

the inventory is the impressions that will be created in

the future period but not now. However, the prediction of

supply in the future period is important. Third, the arrival

of demand needs to be considered, no matter whether it is

considered as a queue or shifting from future prediction.

Fourth, there is no negotiation process in PG. In its design,

either a buyer submits her request or a seller posts the

guaranteed inventory price publicly. In this paper, we call

the former the passive PG and the later the active PG.

A passive PG usually comes with hidden reserve prices

to automatically accept the buyer’s request. Many current

PGs adopt this design. An active PG is similar to an airline

booking system [7], in which media buyers can monitor

the evolution of the guaranteed prices and then adjust their

advertising strategies between RTB and PG. This will also

affect the current balance of the two markets but will

achieve a new equilibrium by using the posted prices to

affect advertisers’ demand. For the reader’s convenience, the

key components of the mentioned display advertising sales

systems are summarised in Fig. 1.

In this paper, we discuss a simple dynamic model for a

passive PG where a publisher allows advertisers to submit

guaranteed buy requests to purchase their targeted future

impressions in advance. The model calculates a hidden

reserve price to decide whether to accept a buy request or

not. To simplify the discussion without loss of generality,

we consider each buy request contains a single impression

and requests arrive one by one over time (as a queue).

The reserve price calculation is based on the updated dual

force of supply and demand, and the unsold impressions

will be auctioned off in RTB to the meet the unfulfilled

demand in the delivery period. The model can be easily

applied to the case of bulk sales. Inventory control theory

has been employed for revenue management and we use

the expected revenue from future RTB as a lower bound.

The model is not optimal while it still has several desirable

properties. Firstly, it is not limited to the demand arrival

assumption because there are not posted prices to affect

demand, and the model also doesn’t need to find a global

optimality for revenue maximisation. Second, it will not

affect the current equilibrium between RTB and direct sales

because the reserve prices are not disclosed. Third, we show

that a seller can receive an increased expected total revenue

compared to RTB if she uses the computed dynamic reserves

prices for her direct sales.

The rest of the paper is organised as follows. Section II

reviews the related literature. In Section III, we formulate the

problem, discuss assumptions and provide a solution. Sec-

tion IV presents the results of our experimental evaluation

and Section V concludes the paper.

II. RELATED WORK

Several recent developments of guaranteed delivery sys-

tems in both display advertising and sponsored search are

reviewed in this section.

The allocation of impressions between guaranteed and

non-guaranteed channels was investigated through various

approaches. Feldman et al. [8] studied an algorithm that

can allocate and match ads for display advertising, in which

the publisher’s objective is not only to fulfil the guaranteed

contracts but also to deliver the well-targeted impressions to

advertisers. The algorithm allows for free disposal so that

advertisers are indifferent to, or prefer being assigned more

than a certain number of impressions without changing the

contract terms. Ghosh et al. [9] considered the publisher as

a bidder to bid for guaranteed contracts so that impressions

would be possible allocated to auctions only if the winning

bids are high enough. Balseiro et al. [10] used stochastic

control theory to model the decision-making in the same

scenario. Roels and Fridgeirsdottir [11] further proposed

several control heuristics in revenue maximisation. Given

static supply and demand, optimal posted guaranteed prices

were recently discussed by Chen et al. [12].

Other related contributions include: a lightweight alloca-

tion framework for guaranteed impressions that simplifies

the computations in optimisation and to let real servers to

allocate ads efficiently and with little overhead [13]; two

contract pricing algorithms to calculate the price of selling

guaranteed impressions in bulk [14]; guaranteed delivery

mechanisms with cancellations (for media seller) [15], [16]

Ad options are a special type of guaranteed delivery

systems worthing to be mentioned [17], [18], [19], [20], in
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Figure 2. A schematic illustration of using risk-aware dynamic reserve
prices to buy and sell guaranteed impressions in display advertising.

which an advertiser is guaranteed a priority buying right

(but not obligation) of her targeted future inventories. She

usually pays a small amount upfront and then can decide

to pay a fixed price to obtain the inventories or not in the

delivery period or contract expiration date. She can join

keyword auctions or RTB in the future if she thinks they are

less expensive. The only cost would be the prepaid option

price. Compared to guaranteed contracts, ad options provide

advertisers with great flexibility.

III. THE MODEL

In display advertising, a publisher may have several

webpages. On a webpage, there exists one or more slots

(or placements) to display banner ads. When an online user

visits a publisher’s webpage, an ad slot can generate a chance

of ad view (i.e, the impression), which is usually auctioned

off in RTB, where advertisers compete in a SP auction and

the winner will be able to have her ad displayed to the

user. This impression can also be sold in advance through

a guaranteed contract and our proposed model brings au-

tomation into selling guaranteed impressions. To simplify the

discussion without loss of generality, we consider a single

publisher, single webpage, single slot, and single impression

at a time in the modelling. It should be noted that guaranteed

impressions are usually sold in bulk in real businesses and

our model can be easily applied to the bulk sales case.

The model can also be used by a SSP for selling premium

impressions and/or from a specific user group.

Fig. 2 presents a simple schematic illustration of our

model. We assume the targeted impressions will be created

in the period [T, T̃ ], and they can also be sold in advance

through guaranteed contracts in the period [0, T ]. Advertisers

can submit buy requests one by one (as a queue) and each

request is for a single impression. The publisher will decide

whether to accept or reject a buy request based on a reserve

price, which is determined by the updated information of

dual force of supply of and demand for impressions in the

period [T, T̃ ]. Finally, the remaining impressions and the

unfulfilled demand will go to RTB in the period [T, T̃ ].
Here we use J1, J2, · · · to denote discrete time periods for

guaranteed buy requests and each period contains only one

accepted buy request.

A. Dynamic Decision Making

Let V (t, s) be the publisher’s value function at time

t, representing the expected total value of s remaining

impressions which will be created and delivered in the future

period [T, T̃ ]. Suppose if an advertiser submits a buy request

to the publisher and proposes a guaranteed price G(t) for

an impression for targeted users, the publisher’s decision

making at time t can be simply expressed as

max
x(t)∈{0,1}

{
R(t)x(t) + V

(
t+ δt, s− x(t)

)}
,

where x(t) is the decision variable with binary outcomes,

R(t) is the expected revenue that can be obtained. Therefore,

given a buy request, the publisher’s decision making will

be based on the maximisation of the sum of the current

expected revenue and the expected revenue of future. As

the publisher may fail to deliver the guaranteed impression

in the future, her expected penalty needs to be considered.

Let ω be the probability that the publisher fails to deliver

the guaranteed impression in the delivery period and let γ
be the size of penalty – if the publisher fails to deliver the

guaranteed impression that is sold at G(t), she needs to pay

γG(t) penalty to the advertiser.

Given time t and s remaining impressions, suppose that

the advertiser proposes a guaranteed price that makes the

publisher’s two decisions indifferent – choosing either will

give her equivalent benefits. We consider this price the lower

bound of reserve price for the guaranteed impression and

denote it by r(t, s) as the price will be affected by both time

and remaining impressions. Mathematically, r(t, s) can be

expressed as

r(t, s) =
1

1− γω

(
V (t+ δt, s)− V (t+ δt, s− 1)

)
. (1)

Then the decision variable x(t) = I{G(t)≥r(t,s)}, where I{·}

is the indicator function. Applying the Bellman’s Principle

of Optimality [7] then gives

V (t, s)

= E

[
max
x(t)

{
r(t, s)(1 − γω)x(t) + V (t+ δt, s− x(t))

}]
= P

[
G(t) ≥ r(t, s)

](
r(t, s)(1 − γω) + V (t+ δt, s− 1)

)
+
(
1− P

[
G(t) ≥ r(t, s)

])
V (t+ δt, s).
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In the same way, V (t+δt, s) can be obtained. By Eq. (1),

r(t + δt, s) is defined, then V (t + δt, s) = V (t + 2δt, s).
Substituting the publisher’s value functions into Eq. (1) gives

r(t+δt, s) = r(t+2δt, s). Same checking can be applied to

multiple steps, and we then find that the publisher’s value

function and the reserve price are both time independent.

For any k ∈ [t, T ], V (t, s) = V (k, s), r(t, s) = r(k, s).
Hence, if the publisher keeps selling impressions at the lower

bounds of reserve prices, her expected marginal revenues

are always equal to her expected marginal costs, and her

expected total value will be keeping at the same level up to

the terminal time T .

B. Terminal Value

Let S and Q be the expected total supply of and demand

for impressions that will be created in the period [T, T̃ ],
respectively. Consider if S − s impressions have been sol-

d in advance through guaranteed contracts in the period

[0, T ] and there are s remaining impressions which will

be auctioned off in RTB in the period [T, T̃ ]. Recall that

the sold impressions have also fulfilled S − s demand and

unfulfilled Q − (S − s) demand will join RTB. The pub-

lisher’s value function at time T , also called terminal value,

can be obtained by V (T, s) = sφ(ξ), where ξ is the per-

impression demand (i.e., the number of advertisers) and φ(·)
is the function which computes the estimated per-impression

payment price in RTB for the given demand level. Since

there are s remaining impressions and Q−(S−s) remaining

demand, then ξ = (Q− S)/s+ 1.

As advertisers usually bid for impressions separately in

RTB [1], it can be considered as a single-item auction where

GSP and VCG auction models have equivalent expected

revenues. Therefore, φ(·) can be obtained as follows

φ(ξ) =

∫
x∈Ω

xξ(ξ − 1)g(x)
(
1− F(x)

)(
F(x)

)ξ−2
dx,

where x is an advertiser’s bid in RTB, g(·) is the density

function, F(·) is the cumulative distribution function, so

ξ(ξ− 1)g(x)(1−F(x))(F(x))ξ−2 represents the probability

that if an advertiser who bids at x is the second highest

bidder, then one of ξ − 1 other advertisers must bid at least

as much as she does and all of ξ − 2 other advertisers have

to bid no more than she does.

Bid distribution can be specified by either probabilistic or

empirical method. In probabilistic way, uniform distribution

and log-normal distribution have been widely discussed for

online advertising auctions [21], [22], [23]. If bid X ∼
U[0, v], where v is the advertiser’s expected value on an

impression, then φ(ξ) = v(ξ − 1)/(ξ + 1). If bid X ∼
LN(μ, σ2), where μ and σ are mean and standard deviation,

then φ(ξ) can be obtained via numerical integration. Proba-

bilistic methods offer many statistical properties while they

are not valid empirically in many situations [12], [24], [20].

In this paper, we learn φ(·) from data empirically by using

the robust locally weighted regression (RLWR) method [12].

Other statistical learning methods can be discussed but we

are not going to further investigate them here.

Up to now, the terminal value V (T, s) has been discussed

in a risk-free setting where the reserve price of a guaranteed

impression is computed based only on the rebalanced supply

of and demand for impressions in the period [T, T̃ ]. Howev-

er, once guaranteed impressions are sold, the publisher take

the risk of payment price movement of impressions and the

guaranteed selling will affect other advertisers in RTB. The

risk externalities can be measured by the standard deviation

of the expected payment with regard to the competition level

ξ, and the terminal value V (T, s) can be then expressed as

V (T, s) =

{
s
(
φ(ξ) + λψ(ξ)

)
, if π(ξ) ≥ φ(ξ) + λψ(ξ),

sπ(ξ), if π(ξ) < φ(ξ) + λψ(ξ),

where ψ(·) and π(·) are functions which compute the

standard deviation of payment and the expected winning

bid for the given ξ, respectively, and λ is the level of risk

aversion of the publisher.

C. Revenue Analysis

In the following discussion, RRTB denotes the expected

total revenue of selling all S impressions in RTB, then

RRTB = Sφ(Q/S),

and RPG+RTB denotes the expected total revenue of selling

some impressions in advance through guaranteed contracts

and selling the remaining impressions in RTB, then

RPG+RTB =
T∑

t=0

R(t)x(t) +
(
S −

T∑
t=0

x(t)
)
φ(ξ∗),

where ξ∗ =
Q−

∑
T

t=0
x(t)

S−
∑

T

t=0
x(t)

.

Let M be a set such that x(t) = 1 for all t ∈ M. If

M = ∅, then RPG+RTB = RRTB; if M �= ∅, then

RPG+RTB

=
∑
t∈M

G(t)(1 − γω)x(t) +
(
S −

T∑
t=0

x(t)
)
φ(ξ∗)

≥
∑
t∈M

r
(
t, S −

∑
k∈[0,t]

x(k)
)
(1− γω) +

(
S −

T∑
t=0

x(t)
)
φ(ξ∗)

=
∑
t∈M

(
V
(
t, S −

∑
k∈[0,t)

x(k)
)
− V

(
t, S −

∑
k∈[0,t]

x(k)
))

+
(
S −

T∑
t=0

x(t)
)
φ(ξ∗)

= Sφ(Q/S) + Sλψ(Q/S)−
(
S −

T∑
t=0

x(t)
)
λψ(ξ∗).

If λ = 0, then RPG+RTB ≥ RRTB. If λ > 0 and z(ς)′ ≥ 0,

then RPG+RTB ≥ RRTB, where z(ς) = ςψ((Q−S+ς)/ς).
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Table I
RTB DATASETS.

Dataset SSP-01 SSP-02 DSP

Market UK UK China
From 08 Jan 2013 01 Jan 2014 19 Oct 2013

To 14 Feb 2013 07 Jan 2014 27 Oct 2013
No. of ad slots 31 14 53571

No. of user tags NA 16600 69
No. of publishers NA 5932 NA
No. of advertisers 374 NA 4

No. of impressions 6646643 7752546 3158171
No. of bids 33043127 7752546 11457419

Bid quote GBP/CPM GBP/CPM CNY/CPM
Bids of each auction

√
NA NA

Reserve price NA
√

NA
Winning bid

√ √ √
Winning payment

√ √ √

2013-01-20 00 2013-01-27 00
Time (hourly scaled)
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Figure 3. An empirical example of RTB campaigns (at hourly time scale)
of an ad slot in the SSP-01 dataset.

Although the model is not optimal, we have shown in

which conditions that RPG+RTB is equal to or higher than

RRTB. Therefore, the publisher’ expected revenue can be

increased. A proper adjusting the publisher’s risk preference

will also encourage the model to increase the expected

revenue to advertiser’s expected value – the upper bound

of any sales model. However, the higher reserve prices may

also reject many buy requests, and encourage advertisers

to join RTB in the delivery period. In essence, the model

won’t affect the demand of guaranteed buy requests directly,

it is revenue management is based on inventory dynamic

allocation.

IV. EXPERIMENTS

In this section, we describe our datasets, investigate RTB

campaigns, discuss the estimation of model parameters, and

evaluate the model’s revenue performance.

A. Data and Experimental Design

Table I briefly summarises the used datasets: two datasets

from a SSP in the UK over the periods from 08 Jan

Table II
EVALUATION STATISTICS OF SURFACE REGRESSION MODELS.

Demand Supply

Model L2 norm L2 norm L2 norm L2 norm
average std. average std.

PNR(5,5) 0.2887 0.2544 0.2235 0.2375
PNR(4,5) 0.1123 0.0824 0.0938 0.0662
PNR(3,5) 0.0875 0.0507 0.0786 0.0503
PNR(2,5) 0.0623 0.0435 0.0482 0.0285
PNR(1,5) 0.0449 0.0309 0.0441 0.0276
PNR(5,4) 0.2979 0.2534 0.2207 0.2379
PNR(4,4) 0.0874 0.0661 0.0605 0.0434
PNR(3,4) 0.0856 0.0494 0.0737 0.0493
PNR(2,4) 0.0597 0.0415 0.0406 0.0234
PNR(1,4) 0.0496 0.0338 0.0431 0.0271
PNR(5,3) 0.3024 0.2538 0.2248 0.2374
PNR(4,3) 0.0877 0.0662 0.0607 0.0433
PNR(3,3) 0.0736 0.0455 0.0735 0.0517
PNR(2,3) 0.0579 0.0394 0.0447 0.0256
PNR(1,3) 0.0476 0.0332 0.0453 0.0280
PNR(5,2) 0.3061 0.2546 0.2346 0.2368
PNR(4,2) 0.0896 0.0674 0.0680 0.0456
PNR(3,2) 0.0789 0.0490 0.0767 0.0534
PNR(2,2) 0.0622 0.0417 0.0462 0.0267
PNR(1,2) 0.0529 0.0369 0.0471 0.0273
PNR(5,1) 0.2807 0.2562 0.2401 0.2340
PNR(4,1) 0.0880 0.0691 0.0651 0.0438
PNR(3,1) 0.0804 0.0483 0.0761 0.0538
PNR(2,1) 0.0672 0.0430 0.0478 0.0310
PNR(1,1) 0.0566 0.0377 0.0480 0.0307

LQR 0.0592 0.0354 0.0546 0.0363

2013 to 14 Feb 2013, and from 01 Jan 2014 to 07 Jan

2014; and a dataset from a DSP in China over the period

from 19 Oct 2013 to 27 Oct 2013. These datasets contain

different information of RTB campaigns; therefore, they are

used differently in experiments. The SSP-01 dataset is used

throughout the whole experiments and other two datasets are

used for further exploring the payment’s statistics in RTB. In

all datasets, bids are expressed as cost-per-mille (CPM) – the

measurement corresponds to the value of 1000 impressions.

The SSP-01 dataset contains 31 ad slots and their transac-

tions cover from 8 days to 20 days. Three ad slots (i.e., Slot-

25, Slot-26 and Slot-28) have only 8 days (172 consecutive

hours) bidding data, and each contains about 58000 auctions.

There are 10 ad slots have 20 days (447 consecutive hours)

bidding data, and each contains about 130000 to 140000

auctions. In experiments, we randomly select a delivery day

for an ad slot so the campaigns reported from that day will be

used as the test set and guaranteed contracts can be requested

and sold 7 days in advance. Therefore, for the slots with only

8 days data, their delivery days are set to be the 8th day.

The prediction of the supply of and demand for impressions

in the delivery period will be discussed next. However, it

should be noted that forecasting is not our primary intention

of this paper. Therefore, we choose a learning period that

is close to the delivery day so that the estimated parameters

will be more accurate for the evaluation purpose.
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Figure 4. Empirical examples of using surface regression models to
predict demand in the delivery day for an ad slot in the SSP-01 dataset:
(a) PNR(5,5); (b) PNR(2,3); (c) LQR.

B. Parameters Estimation

Several parameters of the proposed model, such as Q,

S, ξ and φ(·), whose values can be learned from data.

Fig. 5 presents an empirical example about the evolution of

payment price, supply and demand over time, which is based

on a hourly scale. The time series show obvious periodical

patterns, and we see a high relevance between payment and

the levels of supply and demand. The peak period is between
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Figure 5. An empirical example of estimating φ(ξ) for an ad slot in the
SSP-01 dataset where the resampling rate is 3/2.

8:00 and 14:00 every day. This finding is not surprising

and is not difficult to explain because these hours lie in

the normal working hours and there are a lot of usage of

computers and Internet, and therefore, generating a large

volume of site visits. However, this periodical pattern will

be a little difficult to predict if we only consider a single time

variable because the time series change based on a 24-hour

cycle.

In experiments, we divide the time effect into two com-

ponents: daily effect and hourly effect. Hence, two time

variables are considered for prediction. Fig. 4 illustrates the

surface regressions that we perform on the training data of

an ad slot to predict the next day’s demand. We mainly test

two types of regression models: (1) polynomial regression

(PNR) [25]; local quadratic regression (LQR) [26]. Table II

presents the evaluation results of the surface regression

models on the training data, where PNR(1,5) and PNR(2,4)

perform best for demand and supply prediction, respectively.

To learn φ(·), we use the RLWR model [12]. Fig. 5

illustrates an empirical example of estimating the expected

per-impression payment given the competition level ξ. In

the regression, we resample the data at the rate 3/2. It is

worth noting that: (1) φ(·) and ξ are not linearly correlated;

(2) a higher competition level will give a higher expected

payment price, and this price will converge to a certain level.

However, we can not obtain a monotone curve for φ(·) –

sometimes, a lower competition level will give a slightly

higher expected payment. This is because RTB campaigns

have been contributed by different advertisers and they

have different values on the same impression. The general

payment-demand pattern is consistent with our intuitive

understanding and the auction theory. In experiments, we

learn ψ(·) and π(·) in the same way.
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C. Results

In experiments, the guaranteed buy requests are modelled

by a homogeneous Poisson process at the intensity rate QT .

This rate can be time-dependent. However, as mentioned in

Section III, the demand arrival won’t affect the truth that the

proposed model can increase the publisher’s revenue. The

worst case is that no impression has been sold in advance,

and the publisher will auction off all impressions in RTB

once they are created. Table III shows the payment statistics

of winning advertisers in RTB on three datasets. As the

advertiser’s bid represents her value in the SP auction, the

ratio of payment to value shows how well RTB differentiates

advertisers and if there is any room to increase revenue

through guaranteed contracts. Figs. 6-8 present empirical

examples on how the guaranteed buy requests are accepted

based on the dynamic reserve prices. In Fig. 6, the total

revenue is just slightly increased as only a few impressions

are sold through guaranteed contracts. Figs. 7-8 show the sit-

uations when more buy requests are accepted and how they

affect the evolution of reserve prices. The distance between

the price of buy request and the reserve price is the revenue

increase for an impression. Recall that we have discussed

the non-linearity and non-monotonicity relationship between

φ(·) and ξ, here we can see the reserve prices are not always

increasing or decreasing over time. This is different to active

PG [12] or airline tickets booking [7] where prices over time

have a monotone pattern.

The overall results of revenue performance are sum-

marised in Table IV. Apart from estimating the model

parameters using the training data, we also use data in the

delivery period, for example, using actual bids to estimate

bid distribution, using the actual total supply and demand to

estimate the per-impression demand at the given guaranteed

price. If we use data in the delivery period, the predicted

RTB revenue R
Predict
RTB would be very close to, however, in

our case is slightly smaller than that from real data RRTB.

This shows the variation of the model’s approximation and

there are 4 slots without revenue growth. In other cases, the

revenues are all increasing, validating our revenue analysis.

The prediction of future supply and demand is important for

the model’s performance, which can be further investigated

in future research.

V. CONCLUSION

This paper discusses a computational framework of selling

a publisher’s impressions through guaranteed contracts for

display advertising. An advertiser can submit a guaranteed

buy request and the publisher makes decisions of whether

to sell an impression in advance based on a hidden reserve

price. The model assumes static supply and demand in the

future delivery period, and the decision making at each

request is based on the updated rebalanced supply and

demand. We show that the model can increase the publisher’s

revenue compared to only selling impressions in RTB and
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Figure 6. An empirical example from an ad slot in the SSP-01 dataset
where only a few guaranteed buy requests has been accepted.
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Figure 7. An empirical example from an ad slot in the SSP-01 dataset
where several guaranteed buy requests have been accepted.

10-6 10-5 10-4 10-3 10-2

Time (hourly normalised and logarithmic)

0

0.2

0.4

0.6

0.8

1

P
ric

e 
(n

or
m

al
is

ed
)

Buy request
Reserve price
Accepted request

Figure 8. An empirical example from an ad slot in the SSP-01 dataset
where many guaranteed buy requests have been accepted.

517

Authorized licensed use limited to: University of Glasgow. Downloaded on June 20,2021 at 03:53:50 UTC from IEEE Xplore.  Restrictions apply. 



Table III
PAYMENT STATISTICS OF WINNING ADVERTISERS IN RTB.

Number of Ratio of payment Ratio of reserve
Dataset advertisers to winning bid price to payment

SSP-01 374 51.44% NA
SSP-02 NA 77.09% 0.01%

DSP 4 30.24% NA

Table IV
EXPECTED REVENUES.

Using data in the Learning data in
delivery period the training period

RPredict
PG+RTB

≥ RPredict
RTB

100% 100%

R
Predict
PG+RTB

≥ R
Real
RTB 80.77% 100%

(RPredict
RTB −R

Real
RTB)/R

Real
RTB -0.07 26.17

validate the the model with SSP datasets as well as discuss

in details how to estimate the model parameters.
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