Risk-aware dynamic reserve prices of programmatic guarantee in display advertising

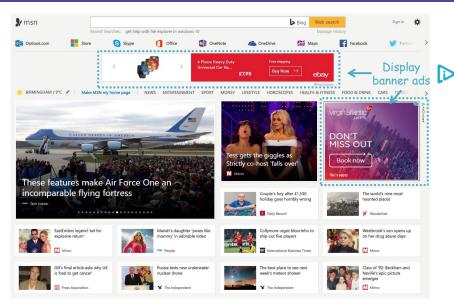
Bowei Chen

University of Lincoln United Kingdom

Data Mining for Service (DMS) Workshop

Background

What is display advertising?



Background

Who are the participants?

- Online user expresses information need by web surfing or searching.
- Media buyer
 - Advertiser wants to deliver marking messages to online users.
 - Demand-side platform (DSP) helps advertisers to purchase ad services.
- Media seller
 - Publisher provides advertising services/inventories.
 - Supply-side platform (SSP) help publishers to sell their ad services.

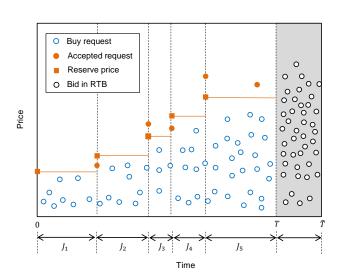
Background

How are display banner ads are sold?

RTB	Traditional Direct Sales
Ad exchange Media buyer	Private negotiation Media seller Media buyer
Online user Media seller	
Passive PG	Active PG
Media seller Media buyer	Posted guaranteed prices Media seller Media buyer

Model

Schematic illustration



At time t, if an advertiser submits a buy request and proposes the guaranteed price G(t) for an impression, the publisher's decision making can be expressed as

$$\max_{x(t) \in \{0,1\}} \bigg\{ R(t)x(t) + V\big(t+\delta t, s-x(t)\big) \bigg\}.$$

- x(t) is the decision variable
- R(t) is the expected revenue if accepting the buy request
- V(t,s) is the publisher's value function at time t, representing the expected total value of s remaining impressions which will be created in $[\mathcal{T},\widetilde{\mathcal{T}}]$

Given time t and remaining impressions s, if there is a guaranteed price that makes the publisher's two decisions **indifferent**, this price is the **lower bound of reserve price** for the guaranteed impression, denoted by r(t,s), then

$$r(t,s) = \frac{1}{1-\omega\gamma} \bigg(V(t+\delta t,s) - V(t+\delta t,s-1) \bigg).$$

Hence, the decision variable $x(t) = \mathbb{I}_{\{G(t) \geq r(t,s)\}}$.

- $oldsymbol{\omega}$ is the probability that the publisher fails to deliver a guaranteed impression
- γ is the size of penalty

By employing the Bellman's Principle of Optimality, we have

$$\begin{split} V(t,s) &= \mathbb{E}\bigg[\max_{x(t)\in\{0,1\}} \Big\{r(t,s)(1-\gamma\omega)x(t) + V(t+\delta t,s-x(t))\Big\}\bigg] \\ &= \mathbb{P}[G(t)\geq r(t,s)]\Big(r(t,s)(1-\gamma\omega) + V(t+\delta t,s-1)\Big) \\ &+ \Big(1-\mathbb{P}[G(t)\geq r(t,s)]\Big)V(t+\delta t,s). \end{split}$$

Time-independent properties

$$V(t,s) = V(k,s), k \in [t, T],$$

 $r(t,s) = r(k,s), k \in [t, T].$

The publisher's value function at time T can be expressed as

$$V(T,s) = \begin{cases} s(\phi(\xi) + \lambda \psi(\xi)), & \text{if } \pi(\xi) \ge \phi(\xi) + \lambda \psi(\xi), \\ s\pi(\xi), & \text{if } \pi(\xi) < \phi(\xi) + \lambda \psi(\xi), \end{cases}$$

- ξ is the per-impression demand in RTB.
- $\phi(\cdot)$ computes the expected per-impression payment in RTB for the given ξ .
- $\psi(\cdot)$ computes the standard deviation of payments in RTB for the given ξ .
- $\pi(\cdot)$ computes the expected winning bid in RTB for the given ξ .
- ullet λ is the level of risk aversion of the publisher.

The total supply of and demand for impressions that will be created in the period $[T, \widetilde{T}]$ are assumed to be static, denoted by S and Q, respectively. If there are s remaining impressions, then there are Q - (S - s) remaining demand, therefore

$$\xi = (Q - S)/s + 1.$$

Estimation of $\phi(\xi)$

Probabilistic method:

$$\phi(\xi) = \int_{x \in \Omega} x \xi(\xi - 1) g(x) \Big(1 - \mathbb{F}(x) \Big) \Big(\mathbb{F}(x) \Big)^{\xi - 2} dx.$$

- If $X \sim \mathbf{U}[0, v]$, $\phi(\xi) = v(\xi 1)/(\xi + 1)$.
- If $X \sim \mathbf{LN}(\mu, \sigma^2)$, $\phi(\xi)$ can be obtained via numerical integration.
- Empirical method: robust locally weighted regression (RLWR) method.

- x is an advertiser's bid in RTB
- $g(\cdot)$ is the density function
- $\mathbb{F}(\cdot)$ is the cumulative distribution function.

Model

Revenue analysis

• Expected total revenue of selling all *S* impressions in RTB:

$$R_{RTB} = S\phi(Q/S)$$
,

 Expected total revenue of selling some impressions in advance through PG and selling the remaining impressions in RTB:

$$\mathbf{R}_{\mathbf{PG}+\mathbf{RTB}} = \sum_{t=0}^{T} R(t)x(t) + \left(S - \sum_{t=0}^{T} x(t)\right)\phi(\xi^*),$$

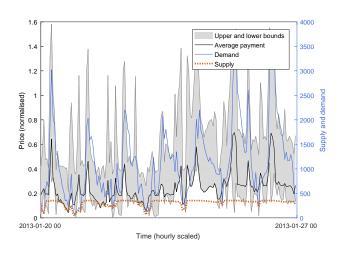
where
$$\xi^* = rac{Q - \sum_{t=0}^T x(t)}{S - \sum_{t=0}^T x(t)}$$
 .

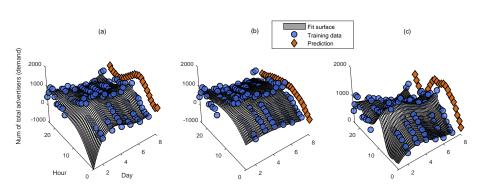
Increased Revenue

$$R_{PG+RTB} \geq R_{RTB}.$$

Dataset	SSP-01	SSP-02	DSP
Market	UK	UK	China
From	08 Jan 2013	01 Jan 2014	19 Oct 2013
То	14 Feb 2013	07 Jan 2014	27 Oct 2013
# of ad slots	31	14	53571
# of user tags	NA	16600	69
# of publishers	NA	5932	NA
# of advertisers	374	NA	4
# of impressions	6646643	7752546	3158171
# of bids	33043127	7752546	11457419
Bid quote	GBP/CPM	GBP/CPM	CNY/CPM
Bids of each campaign	$\sqrt{}$	NA	NA
Reserve price	ΝA	$\sqrt{}$	NA
Winning bid	\checkmark		\checkmark
Winning payment	$\sqrt{}$	V	$\sqrt{}$

Periodical patterns in hourly data



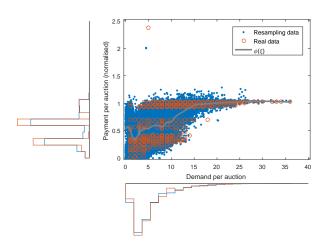


Empirical example of demand regressions: (a) PNR(5,5); (b) PNR(2,3); (c) LQR

Surface regressions for S and Q

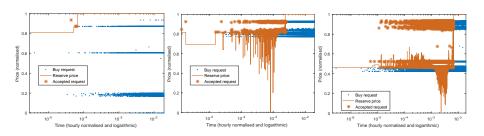
	Demand		Supply	
Model	\mathscr{L}^2 norm avg.	\mathscr{L}^2 norm std.	\mathscr{L}^2 norm avg.	\mathscr{L}^2 norm std.
PNR(5,5)	0.2887	0.2544	0.2235	0.2375
PNR(4,5)	0.1123	0.0824	0.0938	0.0662
PNR(3,5)	0.0875	0.0507	0.0786	0.0503
PNR(2,5)	0.0623	0.0435	0.0482	0.0285
PNR(1,5)	0.0449	0.0309	0.0441	0.0276
PNR(5,4)	0.2979	0.2534	0.2207	0.2379
PNR(4,4)	0.0874	0.0661	0.0605	0.0434
PNR(3,4)	0.0856	0.0494	0.0737	0.0493
PNR(2,4)	0.0597	0.0415	0.0406	0.0234
PNR(1,4)	0.0496	0.0338	0.0431	0.0271
PNR(5,3)	0.3024	0.2538	0.2248	0.2374
PNR(4,3)	0.0877	0.0662	0.0607	0.0433
PNR(3,3)	0.0736	0.0455	0.0735	0.0517
PNR(2,3)	0.0579	0.0394	0.0447	0.0256
PNR(1,3)	0.0476	0.0332	0.0453	0.0280
PNR(5,2)	0.3061	0.2546	0.2346	0.2368
PNR(4,2)	0.0896	0.0674	0.0680	0.0456
PNR(3,2)	0.0789	0.0490	0.0767	0.0534
PNR(2,2)	0.0622	0.0417	0.0462	0.0267
PNR(1,2)	0.0529	0.0369	0.0471	0.0273
PNR(5,1)	0.2807	0.2562	0.2401	0.2340
PNR(4,1)	0.0880	0.0691	0.0651	0.0438
PNR(3,1)	0.0804	0.0483	0.0761	0.0538
PNR(2,1)	0.0672	0.0430	0.0478	0.0310
PNR(1,1)	0.0566	0.0377	0.0480	0.0307
ĹQŔ	0.0592	0.0354	0.0546	0.0363

Estimating $\phi(\xi)$ using the RLWR method*



^{*}Chen et al. A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising. In ADKDD, 2014. Algorithm 1.

Risk-aware dynamic reserve prices



^{*}The arrival of guaranteed buy requests follows a homogeneous Poisson process with the intensity rate QT where T is expressed in terms of year (i.e., #days/365). The proposed guaranteed buy prices are randomly sampled from RTB.

Revenue results

_		Ratio of payment	
Dataset	advertisers	to winning bid	price to payment
SSP-01	374	51.44%	NA
SSP-02	NA	77.09%	0.01%
DSP	4	30.24%	NA

	Using data in the	•
	delivery period	the training period
$R^{Predict}_{PG+RTB} \geq R^{Predict}_{RTB}$	100%	100%
$R_{PG}^{Predict} \geq R_{RTR}^{Real}$	80.77%	100%
$(R_{RTB}^{Predict} - R_{RTB}^{Real})/R_{RTB}^{Real}$	-0.07	26.17

Conclusion

Contributions and future work

- This paper discusses a simple framework for passive PG, which
 - Considers risk into reserve prices
 - Has less limitations on buyer's purchase behaviour
 - ▶ Generates increased revenue compared to only RTB
- Future directions include:
 - Uncertain total supply and demand
 - Optimal passive PG
 - Comparison of active PG and passive PG

Thank you and welcome questions (?_?)

bchen@lincoln.ac.uk