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 A B S T R A C T

Session-based recommendation systems (SBRSs) predict the next item in a session by analyzing 
user interactions. While current methods emphasize sequential item relationships, they often 
overlook temporal information that highlights subtle shifts in user preferences. This gap 
can limit their ability to adapt to dynamic user behavior, and recent advances have yet to 
effectively integrate both sequential and non-sequential item transitions, which may lead to 
biased modeling. To address these limitations, this paper introduces Coase, a novel SBRS model 
that unifies local and global context modeling to capture fine-grained dynamic user preferences. 
Coase transforms session sequences into session star graphs, employing a Bi-Gated Graph 
Self-Attention Network for local context modeling, and introduces SudokuFormer to model time-
aware sequential transitions within a global session context through disentangled attention and 
stable feature fusion. A triple attention mechanism is then utilized to fully integrate local and 
global contextual features. Comprehensive experiments conducted on four publicly available 
datasets demonstrate that Coase improves Recall by 1.71%–1.83%, Mean Reciprocal Rank 
(MRR) by 2.73%–2.80%, and Normalized Discounted Cumulative Gain (NDCG) by 2.32%–2.43% 
across the top 5, 10, 15, and 20 items. Ablation studies validate the framework and components 
of Coase, while additional analyses examine the effect of session length, and visualization studies 
illustrate diverse attention patterns. This research contributes a novel approach to SBRS, offering 
promising advancements in recommendation accuracy and user experience.

. Introduction

Recommender systems play a crucial role in modern information filtering and decision-making by helping to alleviate information 
verload and facilitating efficient navigation on online platforms (Fang et al., 2020; Wu et al., 2023). Their widespread adoption 
cross various platforms underscores their significant business value, particularly in managing and marketing customer relation-
hips (Karimi et al., 2018). For example, Amazon attributes 35% of its product sales to recommendations (Hosanagar et al., 2014), 
hile YouTube reports that 60% of clicks on its home screen are driven by its recommendation system (Davidson et al., 2010). 

∗ Corresponding author at: No. 217 JianShan St., Shahekou District, Dalian, PR China.
E-mail address: zhu_zg@dufe.edu.cn (Z. Zhu).

1 These authors contributed equally to this work.

ttps://doi.org/10.1016/j.ipm.2025.104196
eceived 9 March 2025; Received in revised form 12 April 2025; Accepted 12 April 2025
vailable online 16 May 2025 
306-4573/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/ipm
https://www.elsevier.com/locate/ipm
https://orcid.org/0000-0003-2414-7544
https://orcid.org/0000-0002-8082-985X
https://orcid.org/0000-0003-1272-5538
https://orcid.org/0000-0002-0131-2853
mailto:zhu_zg@dufe.edu.cn
https://doi.org/10.1016/j.ipm.2025.104196
https://doi.org/10.1016/j.ipm.2025.104196


W. Li et al. Information Processing and Management 62 (2025) 104196 
Furthermore, personalized recommendations on Netflix are estimated to generate over $1 billion in annual value (Gomez-Uribe & 
Hunt, 2016).

Significant efforts have been made to design recommender systems across various contexts to provide personalized services, such 
as in point-of-interest recommendation (Zeng et al., 2025) and travel recommendation (Chen et al., 2024). However, many of these 
systems heavily depend on abundant side information to achieve satisfactory performance (Chen et al., 2024; Wei et al., 2024; 
Zeng et al., 2025). Acquiring such diverse side information can be challenging, which limits the scalability of these recommender 
systems. Additionally, many e-commerce recommender systems, especially those run by small retailers, as well as most news and 
media websites, typically do not track user IDs over extended periods to gather long-term interaction histories (Hidasi et al., 2016). 
While cookies and browser fingerprinting can provide some level of user recognition, these technologies are often unreliable and 
raise privacy concerns (Strycharz et al., 2021), leading to a lack of historical data. Furthermore, even when historical data is 
available for certain visitors, user preferences can be quickly influenced by external factors, making this historical data potentially 
unrepresentative of the user’s current interests (Landia et al., 2022). As a result, delivering accurate recommendations during short 
user sessions becomes particularly challenging when both side information and historical data are limited.

To date, many SBRSs have been developed to deliver personalized content based solely on user behaviors within an ongoing 
anonymous session (e.g., recently viewed or purchased items). These systems enhance user satisfaction and engagement by adapting 
to rapidly changing preferences (Wang, Cao, et al., 2022). While existing SBRSs typically focus on understanding user preferences 
through the analysis of item transition sequences, they often overlook the temporal features embedded in the user’s session 
context (Hidasi et al., 2016; Shalaby et al., 2022; Zhang, Xu, Ma, et al., 2024). Time-aware contextual features, such as dwell time 
on each item, serve as strong indicators of user preferences and content relevance (Fang et al., 2020), capturing levels of engagement 
without requiring additional external data. These insights not only enrich the context of a session but also help alleviate scalability 
issues associated with reliance on external data. Moreover, the variability in temporal features can significantly impact the accuracy 
of user modeling due to shifts in preferences (Dang et al., 2023, 2024). Although recent efforts have attempted to integrate temporal 
features into these models (Li et al., 2020; Wang et al., 2022), the methods employed often involve invasive techniques that fail to 
adequately capture the nuanced semantic relationships between items.

Several recent studies have transformed raw session sequences into various session graphs to model the underlying relationships 
between items within session contexts, achieving promising performance improvements (Chen & Wong, 2020; Wu et al., 2019; Xu 
et al., 2019; Yu et al., 2020). In particular, these graph learning-based methods effectively capture union-level and skip-behavior 
patterns, as demonstrated in Tang and Wang (2018), while sequence learning-based SBRSs struggle to identify these patterns. 
However, most graph learning-based SBRSs fail to account for the temporal dynamics of user sessions, specifically the sequence 
of item interactions and how these interactions influence evolving user preferences. Although absolute position encoding has been 
employed to address this issue (Pan et al., 2020), it relies on ineffective bootstrapping methods to combine contextual features 
extracted from both local and global context modeling. This results in a critical shortcoming: essential interactions lose their 
influence in the final recommendation process. Furthermore, users often engage in short sessions with limited interaction (Wang 
et al., 2019), leading to data sparsity in SBRSs. To mitigate this issue, leveraging cross-session data has been shown to improve 
performance (Wang, Chen, et al., 2023; Yu et al., 2023). However, despite the performance gains, these memory-based SBRS 
approaches require substantial memory resources, making them impractical for large-scale deployment in real-world scenarios.

To address the aforementioned challenges, we define a novel taxonomy to categorize existing SBRS research from the perspectives 
of local and global context modeling. Guided by the path modeling framework (Hui et al., 2009), we introduce a collaborative 
local–global contextual feature learning model named Coase, which effectively captures dynamic user preferences from different 
perspectives to tackle the next item prediction task. For local context modeling, we construct a session graph that preserves sequential 
transitions between adjacent items while also considering non-sequential transitions. The central node in each session graph is 
crucial, as it gathers contextual features and facilitates message passing among item nodes. We then employ the Bi-gated Graph 
Self-Attention Network (Bi-Gated GSAN) to learn the representations of both item nodes and the central node. In the realm of 
global context modeling, we incorporate learnable position encoding and time interval encoding to capture temporal dynamics. We 
also introduce the SudokuFormer, which analyzes temporal item transition relationships to account for user preferences. This model 
computes context-sensitive, disentangled attention weights based on item content, position encoding, and time intervals. To enhance 
model stability and effectively leverage temporal information, we have developed a stable, non-invasive fusion method. Additionally, 
our triple attention mechanism is designed to identify session-level preferences by considering the collaborative impact of both local 
and global context learning. This includes a mutual attention mechanism for learning long-term preferences by assigning weights 
to items based on their representations, collaborative impact, and the most recent interactions. Moreover, we employ two holistic 
attention networks to adaptively learn comprehensive preferences for both local and global context learning paths, with each path’s 
preference influenced by long-term preferences, short-term preferences, and the overall collaborative effect.

Our study introduces several significant advancements in SBRSs:

• We propose a novel collaborative framework guided by the path modeling framework (Hui et al., 2009) that integrates graph 
and sequence learning paradigms. This unified approach not only enhances the accuracy of item recommendations but also 
emphasizes the collaborative effects essential for capturing fine-grained session-level user preferences.

• We introduce the Bi-Gated GSAN for the graph learning on the session star graphs, which highlights the feature of the node 
itself to alleviate information overwhelming.

• We present SudokuFormer, a novel approach that effectively analyzes the intricate contextual relationships between items, 
their positions within the session sequence, and the timing of interactions. This leads to more precise and stable attention 
weights.
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• The effectiveness of Coase is rigorously evaluated across four datasets against 25 popular baseline models, consistently 
demonstrating superior performance. Additionally, ablation studies confirm the effectiveness of its framework and individual 
components.

The rest of the paper is organized as follows: Section 2 reviews the related literature; Section 3 presents our research objective 
and formalizes the session-based recommendation problem; Section 4 introduces technical details of the proposed Coase; Section 5 
introduces our experimental setup and presents the results analysis; Section 6 concludes the paper by highlighting the theoretical 
contributions and practical implications of our work, as well as outlining potential future directions for research.

2. Related work

Recommender systems have made substantial progress in mitigating information overload. However, many users lack accessible 
external data, such as profiles or past interactions. To address this, SBRSs have been developed to generate recommendations based 
solely on dynamic, in-session preferences. In this section, we provide a comprehensive review of related SBRS research and outline 
the key insights that have shaped the development of our proposed Coase model.

2.1. Sequential and temporal information in session-based recommendation

The sequential order of user behaviors is crucial for tracking the evolution of user preferences, and existing SBRSs have adopted 
various methods to capture these preferences. For example, RNN-based methods (Hidasi et al., 2016; Li et al., 2017) track user 
preferences through causal learning, while transformer-based methods (Qiu, Huang, Chen, & Yin, 2022; Yin et al., 2024) introduce 
various position encodings to enhance the context-aware capacity. Moreover, GNN-based methods (Pan, Cai, Chen, Chen, & Chen, 
2022; Wan et al., 2024; Wu et al., 2019) transform session sequences into graphs to capture complex item dependencies beyond 
simple sequential patterns. Furthermore, Transformer-based methods (Kang & McAuley, 2018; Xie et al., 2022) rely on explicit 
position encoding to maintain the notion of order (Huang et al., 2020), such as the absolute learnable position encoding (Gehring 
et al., 2017). However, these position-aware methods generally assume that the time intervals between items are the same and 
focus mainly on item sequence and position, without considering the different amounts of time users spend on each item, which 
can signal varying interest levels.

Recently, several time-aware methods have been proposed to capture temporal information from time intervals (Dang et al., 
2023, 2024; Guo, Zhang, et al., 2022; Li et al., 2020; Wang et al., 2022; Wang, Yan, et al., 2023). For example, sequence data is 
augmented by incorporating time intervals (Dang et al., 2023, 2024), while sessions are segmented into specific time slices to capture 
dynamic user preferences (Wang, Yan, et al., 2023). Additionally, sequence positions are dynamically adjusted based on timestamps, 
using sinusoidal transformations to represent both absolute order and relative temporal proximity among points of interest (Wang 
et al., 2022). Compared to position-aware methods that focus solely on the sequential order of items, time-aware methods further 
emphasize the time intervals between those items. These time intervals reinforce the understanding of local user preferences, 
providing deeper insights into how users interact with items over time. However, many of time-aware methods rely on invasive 
and unstable methods for fusing item and temporal features, which can overwhelm the information and reduce training stability. 
Specifically, item features often lose significance when mixed with auxiliary temporal features using methods like summation or 
attention. Furthermore, the large volume of feature inputs can destabilize training, leading to suboptimal performance.

Various methods have been proposed to efficiently incorporate positional and temporal information into transformer mod-
els (Dufter et al., 2022). In this research, we focus on the methods for manipulating attention matrices, which refine attention weight 
calculations and lead to notable performance enhancements. For example, Shaw et al. (2018) split the computation of original 
attention weights to prevent broadcasting relative position representations. Chen, Tsai, et al. (2021) found that adding position 
encoding at the input stage resulted in poorer performance and separated the impact of incorporating relative position features. Dai 
et al. (2019) re-parameterized the four terms decomposed by the vanilla attention score to enhance generalization. Wu et al. (2021) 
employed re-scaled coefficients to adjust the raw attention weights computed by the dot product of query and key. Dufter et al. 
(2020) eliminated word-position terms and substituted the position–position term with a learnable matrix. However, these methods 
either overlook the efficacy of multiple temporal information sources or fail to address the intricate relationship between different 
temporal information and input elements. Different from the above methods, DeBERTa (He et al., 2021) computed attention weights 
among input elements using disentangled matrices based on their content and relative positions. However, it overlooked the critical 
impact of absolute position on self-attention weights.

The above challenges motivates the design of our SudokuFormer. Specifically, recent marketing literature (Ursu et al., 2023) finds 
that consumers may take breaks from information acquisition because of fatigue. Similarly, another study (Li et al., 2024) claims 
that users may be tired of the recommendations that are too similar to content they have been exposed to in a short historical 
period. Therefore, we introduce learnable position encoding to track the subtle changes in user preferences over time. Moreover, 
the time cues, such as dwell time on each item and switching time between item-pairs, may reflect the user’s degree of interest (Fang 
et al., 2020). For example, the more time a user spends on an item, the more likely they are to be satisfied with its contents (Kim 
et al., 2014; Zhang et al., 2014). Additionally, some works believe that items within a close time interval usually have a similar 
user interest involving a smaller interest drift (Tang et al., 2022; Wang, Zeng, et al., 2023). Therefore, we parameterize time cues 
as time interval encoding to capture the user’s unique taste for items. Furthermore, we extend the original disentangled attention 
mechanism to account for complex relations among various inputs. Drawing inspiration from Press et al. (2021), Liu et al. (2021), 
3 
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Table 1
Summary of key techniques of the related literature and our study.
 Orientation Models Backbone Position-aware Time-aware Sequence-based Graph-based 
 

Local

NextItNet (Yuan et al., 2019) CNN �  
 Grec (Yuan et al., 2020) CNN �  
 MIHSG (Guo, Yang, et al., 2022) GNN �  
 FineRec (Zhang, Xu, Wu, et al., 2024) GNN �  
 SRGNN (Wu et al., 2019) GNN + Attention �  
 CGL (Pan, Cai, Chen, Chen, & Chen, 2022) GNN + Attention �  
 GCARM (Pan, Cai, Chen, & Chen, 2022) GNN + Attention �  
 TASER (Ye et al., 2020) GNN + Attention � �  
 

Global

GRU4Rec (Hidasi et al., 2016) RNN �  
 NARM (Li et al., 2017) RNN + Attention �  
 TiSASRec (Li et al., 2020) Attention � � �  
 STiSAN (Wang et al., 2022) Attention � � �  
 RETR (Yao et al., 2024) Attention � �  
 MEGAN (Wang, Zhang, et al., 2024) GNN + Attention �  
 HIDE (Li et al., 2022) GNN + Attention � �  
 

Dual

TARN (Zhang, Cao, et al., 2022) CNN � � �  
 CM-GNN (Wang, Gao, et al., 2023) GNN � �  
 AdaMCT (Jiang et al., 2023) CNN + Attention � �  
 H3GNN (Yin et al., 2024) GNN + Attention � �  
 PTGCN (Huang et al., 2023) GNN + Attention � � �  
 EMBSR (Yuan et al., 2022) GNN + RNN + Attention � � �  
 RESTC (Wan et al., 2024) GNN + Attention � � �  
 GES-SASRec (Zhu et al., 2023) GNN + Attention � � �  
 Coase (Our study) GNN + Attention � � � �  

we combine item encoding with position encoding and time interval encoding as keys and queries, while retaining item encoding 
as values. This method effectively leverage the rich temporal and positional information without increasing parameters or runtime. 
After that, we propose the stable non-invasive feature fusion method to integrate various temporal features without compromising 
the consistency of the item feature space, while the additional normalization enhances training stability.

2.2. Revisiting sequence-based and graph-based SBRSs from a context modeling view

Existing SBRSs have shown promising results but the factors contributing to their performance improvements remain poorly 
understood as current taxonomies based on neural network backbones fail to provide a comprehensive view of the elements 
influencing SBRS performance. Depending on the data structure, SBRSs can be categorized into sequence-based and graph-based 
approaches. Sequence-based SBRSs typically use fixed-length session representations, where longer sessions are truncated and shorter 
ones are padded. These methods are divided into three main groups based on the backbone network: CNN-based, RNN-based, 
and transformer-based. CNN-based methods focus on extracting local context using convolutional layers to hierarchically aggregate 
patterns into a global understanding of user preferences (Tuan & Phuong, 2017; Yuan et al., 2020). RNN-based methods capture 
long-term user preferences by learning sequential dependencies throughout the session (Hidasi et al., 2016; Li et al., 2017), while 
transformer-based methods model global relationships via self-attention and position encoding (Li et al., 2020; Sun et al., 2019). 
Graph-based SBRSs, on the other hand, transform session sequences into session graphs to capture item relationships. These methods 
include vanilla item transition graphs, heterogeneous item transition graphs, and hyper-graphs. Vanilla methods focus on sequential 
item transitions within sessions , while heterogeneous graphs add session nodes for global contextual learning (Pan et al., 2020; 
Yuan et al., 2022). Hyper-graphs go beyond pairwise item relationships to capture complex interactions by aggregating features 
from hyper-nodes to hyper-edges (Xia et al., 2021; Yin et al., 2024).

As summarized in Table  1, we offer a new perspective to explore how context modeling orientation affects the effectiveness 
of SBRSs. Here the term context captures all session information used for recommendations (Wang, Cao, et al., 2022), such as 
item contents and their sequential order. We classify existing work into three categories based on the contexts that different models 
primarily focus on, including local-oriented methods, global-oriented methods, and dual-oriented methods. The local context refers to 
item transitions contained within a session fragment or the neighborhood of a session graph, highlighting the immediate interactions 
and dependencies between items that are closely related in time or interaction sequence. By contrast, the global context encompasses 
item transitions across the entire session, highlighting long-range dependencies and overall patterns that span beyond immediate 
interactions.

Both local-oriented and global-oriented SBRSs aim to discern user preferences, offering distinct perspectives. Local-oriented 
methods excel at extracting detailed user intents from session segments and aggregating them to form a coherent understanding 
of preferences within the current session. However, while they allow for fine-grained analysis, they can suffer from over-reliance 
on local context, potentially missing long-term consistency and stable preferences. In contrast, global-oriented methods focus on 
comprehensive user preferences to guide interactions, adapting to interest drift and prioritizing core needs. However, they often 
struggle to capture the nuances of local context and rapid preference changes. Thus, integrating both approaches offers a more 
4 
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complete and adaptive understanding of user behavior. CM-GNN (Wang, Gao, et al., 2023) and H3GNN (Yin et al., 2024) are 
representative multi-graph methods that learn local item features from vanilla session graphs and global item transitions, refining 
global features using learnable position encoding and hyper-graph set relations. AdaMCT (Jiang et al., 2023), a sequence-based 
method, incorporates locality bias into Transformers by combining global attention with local convolutional filters. GES-SASRec (Zhu 
et al., 2023) integrates local and global context modeling by considering semantic item relations. However, the bootstrapping 
frameworks used by CM-GNN, H3GNN, and GES-SASRec struggle to distinguish independent item relations, while AdaMCT faces 
challenges in separating sequential and non-sequential dependencies due to feature mixture at each layer. Overall, while SBRSs have 
progressed in capturing local and global contexts, challenges remain in effectively integrating contextual features and balancing 
short-term adaptability with long-term consistency.

2.3. Insights for the development of coase

Our review identifies key limitations in existing SBRSs, which often fail to differentiate between local and global item 
dependencies. To address these challenges, we propose the Coase model, drawing on the path modeling framework (Hui et al., 
2009). This framework emphasizes the value of user path data, which in this case refers to non-physical, discrete interactions of 
anonymous users on online platforms. Based on this, Coase adopts a dual-path approach to capture both local and global contextual 
features. The Bi-Gated GSAN module is employed for local context modeling, capturing non-sequential item dependencies within 
session star graphs, while SudokuFormer handles global context by modeling sequential item transitions across sessions. To align 
these perspectives, Coase integrates a triple attention mechanism that harmonizes user preferences across local and global paths, 
considering a wide range of contextual features and their collaborative effects. The path modeling framework also highlights that 
user paths alone may not reliably indicate their true intentions, as users with different goals follow distinct paths (Hui et al., 2009). 
To tackle this issue, Coase employs an end-to-end method that continuously tracks dynamic user preferences by updating user and 
item representations in real-time based on their interactions. This approach avoids the potential biases of self-reported data (de 
Reuver & Bouwman, 2015), allowing the model to adapt to users’ evolving interests more effectively. Finally, the path modeling 
framework underscores the importance of accounting for user heterogeneity to understand fine-grained preferences (Larsen et al., 
2020). Coase addresses this by analyzing several key factors, such as user–item interactions, time cues, and both sequential and 
non-sequential behavior patterns. Notably, while social effects are considered minimal in some cases (Hui et al., 2009), Coase 
focuses solely on user–item interaction data due to the anonymity of users, which aligns with prior research that excludes social 
cues when studying anonymous behavior patterns (Chen, Burke, Hui, & Leykin, 2021; Fisher & Woolley, 2024; Larsen et al., 2020). 
By focusing on these key elements, Coase provides a robust framework for capturing both immediate and evolving user preferences 
in session-based recommender systems.

3. Research objective

The objective of this study is to capture user preferences within a time-sensitive session context to recommend the next item 
aligned with the user’s evolving, fine-grained intentions. To achieve this, we outline a general mathematical framework. The model 
first identifies all unique items, represented as the set 𝑉  with size |𝑉 |, and tracks an anonymous user’s current session as a 
sequence of interacted items 𝑠 with size |𝑠|. Given this session history, our model aims to predict the next item 𝑣𝑠

|𝑠|+1 that the 
user will interact with. To achieve this, our model first creates a numerical representation (embedding) for each item 𝑒𝑖 ∈ R𝑑 , 
where 𝑑 represents the embedding dimension, and refines these embeddings according to session context and item relationships. 
The model further incorporates mutual preference, short-term preference, and long-term preference to refine its understanding 
of user preferences. Ultimately, it recommends items by calculating a score that integrates the user’s comprehensive preferences 
and candidate item representations, presenting the top items with the highest scores as recommendations. Table  2 summarizes the 
fundamental notations, while the subsequently derived notations are omitted.

4. Coase

Fig.  1 illustrates the architecture of the proposed Coase, which includes several key components. The embedding module 
generates initial representations for items, their session positions, and the time intervals between interactions. The local contextual 
feature extractor constructs a session-specific graph and employs a Bi-Gated GSAN to capture item relationships and their 
significance. The global contextual feature extractor models the order of interactions by incorporating learnable position and 
time interval encodings, allowing for a better understanding of how sequence affects user preferences. The SudokuFormer refines 
item representations using a disentangled attention mechanism and a stable, non-invasive feature fusion approach, enhancing the 
understanding of each item’s role. The session-level co-learning module integrates local and global context modeling through a triple 
attention mechanism, capturing comprehensive user preferences by considering short-term, contextual, and long-term preferences. 
Finally, the prediction layer generates scores for candidate items and produces the top items recommendation list. The learning 
process of Coase is summarized in Algorithm 1.
5 
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Table 2
Summary of key notations.
 Notation Description  
 𝑉 , 𝑆 Item set, session sequence set  
 𝑒(⋅), 𝐸(⋅) Item embedding vector, item embedding matrix  
 𝑑 Embedding dimension  
 𝐺𝑠 Session star graph of session 𝑠  
 || The edge number in the session star graph  
 𝑉𝑠 Unique item node set of session 𝑠  
 𝛼(⋅), 𝛽(⋅), 𝛾(⋅), 𝛿(⋅), 𝜇(⋅), 𝜑(⋅), 𝜉(⋅) Attention weight  
 𝜎 Sigmoid activation function  
 [⋅||⋅] Concat operation  
 𝑊 (⋅)

(⋅) Learnable parameter  
 ℎ𝑒𝑎𝑑(⋅)

(⋅) Attention head  
 𝑁 Attention head number  
 𝑐𝑒𝑛𝑡𝑒𝑟(⋅)(⋅) central node feature  
 𝐿(⋅) Stacking layer number  
 𝑃𝑄

𝐴 , 𝑃𝐾
𝐴 Learnable position embedding matrices for queries and keys  

 𝑃𝑄
𝑅 , 𝑃𝐾

𝑅 Learnable time interval embedding matrices for queries and keys  
 𝑡(⋅) Timestamp of interaction with the item  
 𝑠𝑝𝑎𝑛(⋅) Time interval  
 𝑚 The predefined maximum session length  
 𝑢 The number of unique item within the session  
 𝐿𝑁(⋅) Layer normalization  
 𝑀𝐿𝑃 (⋅) Multi-Layer perceptron  
 ℎ(⋅)

𝑠ℎ𝑜𝑟𝑡, ℎ(⋅)
𝑐𝑜𝑛𝑡𝑒𝑥𝑡, ℎ(⋅)

𝑙𝑜𝑛𝑔 Representations of short-term preference, contextual preference, and long-term preference 
 ℎ(⋅)

𝑐𝑜𝑚 Comprehensive preference  
 𝜏 Temperature hyper-parameter  
 𝑦(⋅) The recommendation score for the item  
 𝜆 The hyper-parameter to balance the weights of different losses  

Fig. 1. Schematic view of the proposed Coase, featuring key modules: the embedding module for generating item, session, and time interval representations; 
the context learning modules including local and global contextual feature extractors to capture non-sequential dependencies and sequential transitions among 
items; the session-level co-learning module, which integrates short- and long-term user interests through a triple attention mechanism; and the prediction layer 
that ranks items and outputs the top recommendations.

4.1. Local contextual feature extractor

As shown in Fig.  2, the local contextual feature extractor is designed to learn item representations within the session star graph 
using the Bi-Gated GSAN. This module consists of two main components: session star graph construction and the Bi-Gated GSAN. 
6 
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Algorithm 1 The forward propagation flow of Coase
  Input: The session sequences 𝑆.
  Output: Top-k recommendation items at the next time step.

∕ ∗ Embedding module ∗ ∕
1: Initialize the item embedding matrix 𝐸, two time interval embedding matrices 𝑃𝑄

𝑅  and 𝑃𝐾
𝑅 , and two position embedding matrices 

𝑃𝑄
𝐴  and 𝑃𝐾

𝐴 ;
∕ ∗ Context learning modules ∗ ∕
∕ ∗∗ Local contextual feature extractor ∗∗ ∕

2: Construct session star graph 𝐺𝑠;
3: Initialize the feature of the central node 𝑣𝑠: 𝑐𝑒𝑛𝑡𝑒𝑟𝑔𝑠 = 1

𝑢
∑

𝑣𝑖∈𝑠
𝑒𝑖;

4: for each layer of Bi-Gated GSAN do
5:  for each session sequence 𝑠 ∈ 𝑆 do
6:  Update the features of each item node based on the neighbor item node features with 𝐸𝑞. (1) to 𝐸𝑞. (5);
7:  Update the features of each item node based on the central node features with 𝐸𝑞. (6) and 𝐸𝑞. (7);
8:  Update the central node features based on item node features with 𝐸𝑞. (8) and 𝐸𝑞. (9);
9:  end for
10: end for
11: Summarize all the Bi-Gated GSAN layers to get the local context-aware item features with 𝐸𝑞. (10) and 𝐸𝑞. (11);

∕ ∗∗ Global contextual feature extractor ∗∗ ∕
12: for each layer of SudokuFormer do
13:  for each session sequence 𝑠 ∈ 𝑆 do
14:  Get the three query matrices, the three key matrices, and the value matrix with 𝐸𝑞. (14) to 𝐸𝑞. (16);
15:  Calculate the multi-head disentangled attention weights with 𝐸𝑞. (17) to 𝐸𝑞. (19);
16:  Update the item features with 𝐸𝑞. (20);
17:  end for
18: end for
19: Summarize all the SudokuFormer layers to get the global context-aware item features;

∕ ∗ Session-level co-learning module ∗ ∕
20: for each session sequence 𝑠 ∈ 𝑆 do
21:  Get the short-term preferences: ℎ𝑔𝑠ℎ𝑜𝑟𝑡 = 𝑒𝑔𝑙𝑎𝑠𝑡 and ℎ𝑠𝑒𝑠ℎ𝑜𝑟𝑡 = 𝑒𝑠𝑒𝑙𝑎𝑠𝑡;
22:  Extract the contextual preferences: ℎ𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑔𝑠  and ℎ𝑠𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 1

|𝑆|
∑

𝑣𝑖∈𝑆
𝑒𝑠𝑒𝑖 ;

23:  Calculate the long-term preferences ℎ𝑔𝑙𝑜𝑛𝑔 and ℎ𝑠𝑒𝑙𝑜𝑛𝑔 with 𝐸𝑞. (22) to 𝐸𝑞. (27);
24:  Fuse the various preferences by holistic attention mechanism with 𝐸𝑞. (28) to 𝐸𝑞. (30);
25: end for

∕ ∗ Prediction layer ∗ ∕
26: for each candidate item 𝑣𝑖 ∈ 𝑉  do
27:  Calculate the interaction probability: 𝑦𝑖 ← 𝐸𝑞. (31);
28: end for
29: Get predicted interaction probability list: [�̂�1, �̂�2,…];
30: Select the items with top-K predicted interaction probabilities to form the recommendation list.

Fig. 2. Schematic view of the local contextual feature extractor, in which the session star graph is constructed based on the raw session sequence and the 
additional session center node; the stacking Bi-Gated GSANs are adopted to learn the representations of item nodes; and the readout function is introduced to 
aggregate the features learned by each Bi-Gated GSAN layer.
7 
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The session star graph organizes items into a structured graph, while the Bi-Gated GSAN processes this graph to capture and refine 
item relationships, enhancing each item’s representation in the session context.

4.1.1. Session star graph construction
As shown in the upper left part of Fig.  1, given the current session sequence 𝑠 =

{

𝑣4, 𝑣5, 𝑣2, 𝑣4, 𝑣6, 𝑣1, 𝑣3, 𝑣6, 𝑣4, 𝑣1
}

, the unique 
item node set 𝑉𝑠 =

{

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6
} is derived from the session sequence, while directed edges are created based on the pairwise 

transition relationships between adjacent items. Furthermore, the central node 𝑣𝑠 is introduced to enhance the connectivity of the 
vanilla session graph (Guo et al., 2019). It serves as an intermediary node, facilitating the propagation of information from items 
that do not have a direct connection in a two-hop manner. Specifically, bidirectional edges are added between the central node and 
each item node in the session star graph 𝐺𝑠 to improve connectivity (Pan et al., 2020).

4.1.2. Graph-based item representation learning
After constructing the session star graph, the bi-gated graph self-attention network is adopted to update the representation of the 

item nodes and the central node. Firstly, the item node representation is initialized based on the item embedding, while the dropout 
layer (Srivastava et al., 2014) is performed to alleviate the over-fitting and improve the robustness (Du, Yuan, Zhao, Fang, et al., 
2023; Du, Yuan, Zhao, Qu, et al., 2023). Subsequently, the central node representation is initialized by the average pooling on the 
item nodes. After that, the self-attention mechanism is adopted to compute the influence of the neighbor item nodes as follows: 

𝛼𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
⎛

⎜

⎜

⎝

(

𝑊 𝑔
1 𝑒𝑖

)𝑇 (

𝑊 𝑔
2 𝑒𝑗

)

√

𝑑

⎞

⎟

⎟

⎠

, (1)

where 𝛼𝑖,𝑗 denotes the attention weight of the target item node 𝑣𝑖 and one of its neighbor item nodes 𝑣𝑗 , 𝑊 𝑔
1  and 𝑊 𝑔

2 ∈ R𝑑×𝑑 are 
the trainable matrices. The bias term is omitted for briefly.

Then the first gating network is used to update the representation of the target item node 𝑣𝑖 as follows:

𝑒′𝑖 = 𝛽𝑖𝑊
𝑔
3 𝑒𝑖 +

(

1 − 𝛽𝑖
)

𝑛𝑒𝑖𝑔ℎ𝑖, (2)

𝛽𝑖 = 𝜎
(

𝑊 𝑇
𝛽
[

𝑊 𝑔
3 𝑒𝑖

‖

‖

𝑛𝑒𝑖𝑔ℎ𝑖‖‖𝑊
𝑔
3 𝑒𝑖 − 𝑛𝑒𝑖𝑔ℎ𝑖

]

)

, (3)

𝑛𝑒𝑖𝑔ℎ𝑖 = 𝑊 𝑔
4

∑

𝑗∈𝑁(𝑖)
𝛼𝑖,𝑗𝑒𝑗 , (4)

where 𝜎 denotes the sigmoid activation function, 𝑒′𝑖 denotes the updated representation of the target item node 𝑣𝑖 based on the 
item transition relationships, 

[

⋅||
|

|

|

|

⋅ ||
|

|

|

|

⋅
]

 denotes the concat operation among three tensors, 𝑊 𝑔
3 , 𝑊

𝑔
4 ∈ R𝑑×𝑑 , and 𝑊𝛽 ∈ R3𝑑 are the 

trainable parameters.
Subsequently, the multi-head mechanism is employed to capture the multi-aspect transition relationships among item nodes. For 

brevity, we denote the above process as 𝑒′𝑖 = ℎ𝑒𝑎𝑑𝑔
(

𝑒𝑖, 𝐸𝑛𝑒𝑖𝑔ℎ
)

, where 𝐸𝑛𝑒𝑖𝑔ℎ is the embedding matrix of the neighbor item nodes. 
The multi-head mechanism is defined as follows: 

𝑒𝑖 =
𝑁
∑

𝑛=1
ℎ𝑒𝑎𝑑𝑔𝑛𝑊

𝑔
5 , (5)

where 𝑛 denotes the number of attention heads, 𝑊 𝑔
5 ∈ R𝑑×𝑑 denotes the trainable parameter.

The representation of the target node is further updated based on the central node feature by the second gating network as 
follows:

∼
𝑒
𝑔
𝑖 = 𝛾𝑖𝑊

𝑔
6 𝑒𝑖 +

(

1 − 𝛾𝑖
)

𝑊 𝑔
7 𝑐𝑒𝑛𝑡𝑒𝑟𝑠, (6)

𝛾𝑖 = 𝜎
(

𝑊 𝑇
𝛾

[

𝑊 𝑔
6 𝑒𝑖

‖

‖

‖

𝑊 𝑔
7 𝑐𝑒𝑛𝑡𝑒𝑟𝑠

‖

‖

‖

𝑊 𝑔
6 𝑒𝑖 ⊙𝑊 𝑔

7 𝑐𝑒𝑛𝑡𝑒𝑟𝑠
])

, (7)

where ∼𝑒𝑔𝑖  denotes the local contextual representation of the target item node, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 ∈ R𝑑 denotes the central node feature of the 
session 𝑠, ⊙ denotes the Hadamard product, 𝑊 𝑔

6 , 𝑊
𝑔
7 ∈ R𝑑×𝑑 , and 𝑊𝛾 ∈ R3𝑑 are the trainable parameters.

Next, the central node feature can be updated:

𝑐𝑒𝑛𝑡𝑒𝑟𝑔𝑠 = 1
𝑢
∑

𝑣𝑖∈𝑠
𝛿𝑖,𝑠

∼
𝑒
𝑔
𝑖 , (8)

𝛿𝑖,𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑐𝑒𝑛𝑡𝑒𝑟𝑇𝑠
∼
𝑒
𝑔
𝑖

)

, (9)

where 𝑐𝑒𝑛𝑡𝑒𝑟𝑔𝑠  denotes the updated central node representation, 𝑢 denotes the number of unique item within the session. For brevity, 
we denote the above process as ∼𝑒𝑔𝑖 = 𝐺𝑆𝐴𝑁

(

𝑒𝑖, 𝐸𝑛𝑒𝑖𝑔ℎ, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠
)

. Then, the bi-gated graph self-attention network can be stacked to 
capture the distant item transitions. Finally, we adopt the simple but effective readout function (He et al., 2020) to learn the final 
item node feature:

∼
𝑒
𝑔,(𝑙)

= 𝐺𝑆𝐴𝑁
(

𝑒(𝑙−1), 𝐸(𝑙−1) , 𝑐𝑒𝑛𝑡𝑒𝑟(𝑙−1)
)

, (10)
𝑖 𝑖 𝑛𝑒𝑖𝑔ℎ 𝑠

8 
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Fig. 3. Schematic view of SudokuFormer. Instead of mixing various encodings as input, the proposed SudokuFormer captures the fine-grained correlation between 
any two of the item content, item position, and the time interval based on the disentangled attention weights. Moreover, the dual layer norm method and the 
non-invasive fusion method is introduced to improve the quality of the item representations.

𝑒𝑔𝑖 = 1
𝐿𝑔𝑛𝑛

𝐿𝑔𝑛𝑛
∑

𝑙=1

∼
𝑒
𝑔,(𝑙)
𝑖 , (11)

where 𝑒𝑔,(𝑙)𝑖  denotes the target item node representation involved in 𝑙-order local contextual information.

4.2. Global contextual feature extractor

The global contextual feature extractor is designed to update item representations by incorporating positional and temporal 
information. Specifically, it assumes that interactions with an item are influenced by the item’s content, position in the session, 
and the time cues. These factors are parameterized as learnable item encoding, position encoding, and time interval encoding, 
respectively. Following this, the proposed SudokuFormer works to disentangle the hidden relationships among these factors and 
updates the item representation using a stable, non-invasive fusion method, as illustrated in Fig.  3.

4.2.1. Input encodings provided by embedding module
Let 𝐸𝑠𝑒 ∈ R|𝑆|×𝑑 denotes the embedding matrix of the items involved in the session. The dropout layer (Srivastava et al., 2014) 

is performed to stabilize the training process (Du, Yuan, Zhao, Fang, et al., 2023; Du, Yuan, Zhao, Qu, et al., 2023). Furthermore, 
the learnable position embedding is performed to consider the positional information, which accounts for how the user’s progress 
through the session impacts their interaction with the item. Inspired by Li et al. (2020) and Shaw et al. (2018), two distinct learnable 
position embedding matrices 𝑃𝑄

𝐴 ∈ R𝑚×𝑑 and 𝑃𝐾
𝐴 ∈ R𝑚×𝑑 are adopted for queries and keys in the disentangled attention mechanism 

of the proposed SudokuFormer, respectively. 

𝑃𝑄
𝐴 =

{

𝑝𝑎,𝑞1 , … , 𝑝𝑎,𝑞𝑚
}

, 𝑃𝐾
𝐴 =

{

𝑝𝑎,𝑘1 , … , 𝑝𝑎,𝑘𝑚

}

, (12)

where 𝑚 denotes the predefined maximum session length. Conceptually, the positional encoding gives the model a temporal clue 
or ‘‘bias’’ about how information should be gathered, i.e., where to attend (Dai et al., 2019). Moreover, the learnable time interval 
embedding captures the levels of user engagement on the item by mapping time cues onto a low-dimensional space. Formally, we 
model the time interval 𝑠𝑝𝑎𝑛𝑖,𝑗 = |

|

|

𝑡𝑗 − 𝑡𝑖
|

|

|

 (𝑗 > 𝑖) as the representation of the time cues on the item 𝑣𝑖, where 𝑡𝑖 and 𝑡𝑗 denotes the 
timestamp of the item 𝑣𝑖 and the next interacted item 𝑣𝑗 , respectively.

Although a longer dwell time increases the likelihood of visiting detailed modules such as reading comments and specifica-
tions (Gong & Zhu, 2022), precise dwell time is not useful beyond a certain threshold (Li et al., 2020). Because excessive dwell 
time implies some abnormal behavior such as prolonged inactivity and background usage. Moreover, considering excessive dwell 
time also complicates calculations and introduce unnecessary parameters, which improves the risk of over-fitting. Therefore, the 
maximum time interval between two items is clipped to the specified threshold (Li et al., 2020; Shaw et al., 2018), denoted as 𝑧. 
Formally, the clip operation 𝑠𝑝𝑎𝑛𝑐𝑙𝑖𝑝 = 𝑚𝑖𝑛

(

𝑧, ||𝑡 − 𝑡 ||
)

 is applied to each time interval.
𝑖,𝑗
|

𝑗 𝑖
|

9 
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Next, two distinct learnable time interval embedding matrices 𝑃𝑄
𝑅 ∈ R𝑚×𝑚×𝑑 and 𝑃𝐾

𝑅 ∈ R𝑚×𝑚×𝑑 are similarly adopted for queries 
and keys in the disentangled attention mechanism of the proposed SudokuFormer, respectively. 

𝑃𝑄
𝑅 =

⎡

⎢

⎢

⎢

⎣

𝑝𝑟,𝑞1,1 ⋅ ⋅ ⋅ 𝑝𝑟,𝑞1,𝑚
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑝𝑟,𝑞𝑚,1 ⋅ ⋅ ⋅ 𝑝𝑟,𝑞𝑚,𝑚

⎤

⎥

⎥

⎥

⎦

, 𝑃𝐾
𝑅 =

⎡

⎢

⎢

⎢

⎣

𝑝𝑟,𝑘1,1 ⋅ ⋅ ⋅ 𝑝𝑟,𝑘1,𝑚
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑝𝑟,𝑘𝑚,1 ⋅ ⋅ ⋅ 𝑝𝑟,𝑘𝑚,𝑚

⎤

⎥

⎥

⎥

⎦

. (13)

Subsequently, the embedding matrix of the items 𝐸𝑠, the learnable position and time interval embedding matrices for queries 
and keys, i.e., 𝑃𝑄

𝐴 , 𝑃𝐾
𝐴 , 𝑃

𝑄
𝑅 , and 𝑃𝐾

𝑅 , are adopted as the initial input of proposed SudokuFormer.

4.2.2. Sequence-based item representation learning
Our SudokuFormer is adopted to capture the time-aware sequential item transition patterns based on the item encoding, the 

position encoding, and the time interval encoding. Specifically, the disentangled attention mechanism (Wang, Ma, et al., 2024, 2023) 
is introduced to understand the mutual effect among item content, position, and time interval. Moreover, the dual layer norm is 
employed to improve the stability of the attention mechanism (Wang, Ma, et al., 2024, 2023). Furthermore, the non-invasive fusion 
method (Liu et al., 2021) is adopted to avoid temporal information overwhelms item representation, which maintains the consistency 
of embedding space and updates the item representation more efficiently. Formally,

𝑄𝐶 = 𝐿𝑁
(

𝐸𝑠𝑒
)

𝑊 𝑠𝑒
1 , 𝐾𝐶 = 𝐿𝑁

(

𝐸𝑠𝑒
)

𝑊 𝑠𝑒
2 , 𝑉𝐶 = 𝐿𝑁

(

𝐸𝑠𝑒
)

𝑊 𝑠𝑒
3 , (14)

𝑄𝐴 = 𝐿𝑁
(

𝑃𝑄
𝐴

)

𝑊 𝑠𝑒
4 , 𝐾𝐴 = 𝐿𝑁

(

𝑃𝐾
𝐴
)

𝑊 𝑠𝑒
5 , (15)

𝑄𝑅 = 𝐿𝑁
(

𝑃𝑄
𝑅

)

𝑊 𝑠𝑒
6 , 𝐾𝑅 = 𝐿𝑁

(

𝑃𝐾
𝑅
)

𝑊 𝑠𝑒
7 , (16)

�̂�𝑠𝑒 = 𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑
(

𝑄𝐶 , 𝐾𝐶 , 𝑄𝐴, 𝐾𝐴, 𝑄𝑅, 𝐾𝑅, 𝑉𝐶
)

= 𝑑𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐿𝑁
(

𝑐𝑜𝑛𝑐𝑎𝑡
(

ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑓
)))

𝑊 𝑠
8 , (17)

ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝐴
√

𝑑

)

𝑉𝐶 , (18)

𝐴 =
(

𝑄𝐶 , 𝑄𝐴, 𝑄𝑅
)𝑇 (

𝐾𝑇
𝐶 , 𝐾

𝑇
𝐴 , 𝐾

𝑇
𝑅
)

, (19)

where 𝐿𝑁(⋅) denotes the layer normalization, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(⋅) denotes the dropout (Srivastava et al., 2014), 𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(⋅) denotes the 
multi-head mechanism and the computation of head 𝑖 is denoted as ℎ𝑒𝑎𝑑𝑖. The scale factor 

√

𝑑 is used to avoid large values of the 
inner product. 𝑊 𝑠𝑒

1 , 𝑊 𝑠𝑒
2 , 𝑊 𝑠𝑒

3 , 𝑊 𝑠𝑒
4 , 𝑊 𝑠𝑒

5 , 𝑊 𝑠𝑒
6 , 𝑊 𝑠𝑒

7 ∈ R𝑑×𝑑ℎ𝑒𝑎𝑑 , and 𝑊 𝑠𝑒
8 ∈ R𝑑×𝑑 denote trainable parameters.

Inspired by Dai et al. (2019), each term has its intuitive meaning under the new parameterization: (i) The content-to-content term 
𝑄𝐶𝐾𝑇

𝐶  represents content-based addressing; (ii) The content-to-position term 𝑄𝐶𝐾𝑇
𝐴  captures a position-dependent content bias; (iii) 

The content-to-time interval term 𝑄𝐶𝐾𝑇
𝑅 captures a time interval-dependent content bias; (iv) The position-to-content term 𝑄𝐴𝐾𝑇

𝐶
captures an content-dependent positional bias; (v) The position-to-position term 𝑄𝐴𝐾𝑇

𝐴  represents position-based addressing; (vi) 
The position-to-time interval term 𝑄𝐴𝐾𝑇

𝑅 captures an time interval-dependent positional bias; (vii) The time interval-to-content term 
𝑄𝑅𝐾𝑇

𝐶  captures a content-dependent time interval bias; (viii) The time interval-to-position term 𝑄𝑅𝐾𝑇
𝐴  captures a position-dependent 

time interval bias; (ix) The time interval-to-time interval term 𝑄𝑅𝐾𝑇
𝑅 represents time interval-based addressing.

In comparison, the formulation in Shaw et al. (2018) has terms (i) and (iii); the formulation in Chen, Tsai, et al. (2021) has 
terms (i) and (v); the formulation in Yuan et al. (2022) has terms (i), (iii), and (vii); the formulation in Li et al. (2020) has terms 
(i), (ii), and (iii); the formulation in Dai et al. (2019) has terms (i), (iii), (vii), and (ix); the formulation in Vaswani et al. (2017) has 
terms (i), (ii), (iv), and (v). It can be assumed that the superior performance of self-attention comes from multiplicative interaction 
which provides the powerful inductive bias (Jayakumar et al., 2020). We argue that all the terms are significant since the attention 
weight of item-pairs depend on the involvement of the item content, the positional information, and the time interval. Therefore, 
we keep all the interaction terms among the three types of encoding.

Also, Chen, Tsai, et al. (2021), Shaw et al. (2018), and Li et al. (2020) merge the linear projection 𝑃𝑄
𝑅 𝑊  into a single trainable 

matrix 𝑃𝑄
𝑅 , which eliminated the helpful inductive bias (Dai et al., 2019). However, retaining the inductive bias facilitates the 

learning of robust and transferable patterns during model training, which improves resilience when dealing with novel items and 
noisy data during evaluation. Therefore, we keep all linear projections when computing the query, key, and value.

Similar to the traditional self-attention mechanism, the disentangled attention mechanism in our SudokuFormer remains a 
linear model, lacking the ability to capture non-linear relationships. Therefore, the feed-forward network is considered after 
the self-attention mechanism, which comprises a Multi-Layer Perceptron (MLP) with GELU activation and the dual layer norm 
method (Wang, Ma, et al., 2024, 2023) as follows: 

∼
𝐸𝑠𝑒 = 𝑀𝐿𝑃

(

�̂�𝑠𝑒
)

= 𝑑𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐿𝑁
(

𝐺𝐸𝐿𝑈
(

𝐿𝑁
(

�̂�𝑠𝑒
)

𝑊 𝑠𝑒
9
)))

𝑊 𝑠𝑒
10 , (20)

where 𝑊 𝑠𝑒
9 ∈ R𝑑×4𝑑 and 𝑊 𝑠𝑒

10 ∈ R4𝑑×𝑑 denote the trainable parameters. Subsequently, we stack the attention blocks and adopt the 
similar readout function in Eq. (11) to capture high-order sequential item transition relations. The updated item representation is 
defined as 𝐸 .
𝑠𝑒

10 
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4.3. Session-level co-learning module

After respectively updating the item representations in local and global context modeling paths, the session-level co-learning 
module is adopted to learn the comprehensive preferences. Specifically, for each path, the short-term preference is denoted as the 
last item. Moreover, the central node feature and the average of the item features within the current session are viewed as the 
representations of the contextual preferences for local and global context modeling, respectively. Furthermore, the triple attention 
mechanism is adopted to learn the comprehensive preference of each path. Specifically, the mutual attention mechanism is adopted 
to learn the long-term preference with the consideration of the short-term preference and the collaborative effect. After that, the 
holistic attention mechanism learns the comprehensive preference by integrating collaborative effect, short-term preference, and 
long-term preference.

Following Pan, Cai, Chen, Chen, and Chen (2022) and Pan, Cai, Chen, and Chen (2022), we consider the representation of the 
last item to reflect the short-term preference, i.e., ℎ𝑔𝑠ℎ𝑜𝑟𝑡 = 𝑒𝑔𝑙𝑎𝑠𝑡 and ℎ𝑠𝑒𝑠ℎ𝑜𝑟𝑡 = 𝑒𝑠𝑒𝑙𝑎𝑠𝑡, for graph and sequential learning, respectively. 
Furthermore, the center node representation is considered as the local contextual preference, i.e., ℎ𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑔𝑠 , while the global 
contextual preference ℎ𝑠𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is learned based on averaging the representation of the interacted items as follows: 

ℎ𝑠𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
1
|𝑆|

∑

𝑣𝑖∈𝑆
𝑒𝑠𝑒𝑖 . (21)

The contextual preferences offer a stable perspective for representing a user’s general interests, mitigating the effects of accidental 
behaviors and interest drift. To capture this, we extract the representation of the collaborative effect between the local and global 
context modeling paths, based on these contextual preferences. Following this, a mutual attention mechanism is applied to learn 
long-term preferences while accounting for the collaborative effect:

ℎ𝑔𝑙𝑜𝑛𝑔 =
∑

𝑣𝑖∈𝑆
𝜇𝑖𝑒

𝑔
𝑖 , (22)

𝜇𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊 𝑇
𝜇 𝜎

([

𝑊 𝑙𝑜𝑛𝑔
1 𝑒𝑔𝑖

‖

‖

‖

𝑊 𝑙𝑜𝑛𝑔
2 ℎ𝑚𝑢𝑙

‖

‖

‖

𝑊 𝑙𝑜𝑛𝑔
3 ℎ𝑔𝑠ℎ𝑜𝑟𝑡

]))

, (23)

ℎ𝑠𝑒𝑙𝑜𝑛𝑔 =
∑

𝑣𝑖∈𝑆
𝜑𝑖𝑒

𝑠𝑒
𝑖 , (24)

𝜑𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊 𝑇
𝜑 𝜎

([

𝑊 𝑙𝑜𝑛𝑔
4 𝑒𝑠𝑒𝑖

‖

‖

‖

𝑊 𝑙𝑜𝑛𝑔
5 ℎ𝑚𝑢𝑙

‖

‖

‖

𝑊 𝑙𝑜𝑛𝑔
6 ℎ𝑠𝑒𝑠ℎ𝑜𝑟𝑡

]))

, (25)

ℎ𝑚𝑢𝑙 = 𝜂ℎ𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 + (1 − 𝜂)ℎ𝑠𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡, (26)

𝜂 = 𝜎
(

𝑊 𝑇
𝜂
[

ℎ𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ‖‖ℎ
𝑠𝑒
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

‖

‖

ℎ𝑔𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ⊙ ℎ𝑠𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡
]

)

, (27)

where ℎ𝑚𝑢𝑙 ∈ R𝑑 denotes the mutual preference representation. ℎ𝑔𝑙𝑜𝑛𝑔 ∈ R𝑑 and ℎ𝑠𝑒𝑙𝑜𝑛𝑔 ∈ R𝑑 denote the long-term preferences for graph 
and sequential learning, respectively. 𝑊 𝑙𝑜𝑛𝑔

1 , 𝑊 𝑙𝑜𝑛𝑔
2 , 𝑊 𝑙𝑜𝑛𝑔

3 , 𝑊 𝑙𝑜𝑛𝑔
4 , 𝑊 𝑙𝑜𝑛𝑔

5 , and 𝑊 𝑙𝑜𝑛𝑔
6 ∈ R𝑑×𝑑 denote the trainable parameters. 𝑊 𝑇

𝜇
and 𝑊 𝑇

𝜑 ∈ R3𝑑 denote the trainable vectors. The mutual attention mechanism accentuates complementary information to improve 
the performance, while mitigates the impact of redundant information from local and global context modeling paths.

The comprehensive preference for each path is then learned by adaptive aggregating the short-term, long-term, and collaborative 
effect based on holistic attention mechanism. Here is the example of learning the comprehensive preference for local context 
modeling path, i.e., ℎ𝑔𝑐𝑜𝑚, as follows:

𝐻𝑓𝑒𝑎 = 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝑊 𝑐𝑜𝑚
1 ℎ𝑔𝑠ℎ𝑜𝑟𝑡,𝑊

𝑐𝑜𝑚
2 ℎ𝑚𝑢𝑙 ,𝑊

𝑐𝑜𝑚
3 ℎ𝑔𝑙𝑜𝑛𝑔

)

(28)

𝜉 =𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝐻𝑓𝑒𝑎
)

(29)

ℎ𝑔𝑐𝑜𝑚 =𝑠𝑞𝑢𝑒𝑒𝑧𝑒_𝑠𝑢𝑚
(

𝜉𝐻𝑓𝑒𝑎
)

, (30)

where 𝑠𝑞𝑢𝑒𝑒𝑧𝑒_𝑠𝑢𝑚 (⋅)  denotes a dimension reduction operation based on sum fusion. Unlike traditional fusion methods that use a 
shallow feed-forward network, the holistic attention mechanism dynamically assigns weights to various preferences, reducing the 
risk of over-reliance on any single preference. Similarly, the comprehensive preference for local context modeling is denoted by 
ℎ𝑠𝑒𝑐𝑜𝑚.

4.4. Prediction layer

To predict the next item, the prediction layer provides the recommended score for each candidate item by multiplying the 
representations of user preference and item as follows: 

𝑦𝑖 =
𝑒𝑥𝑝

(

𝑠𝑖𝑚
((

ℎ𝑔𝑐𝑜𝑚 + ℎ𝑠𝑒𝑐𝑜𝑚
)

, 𝑒𝑖
)

∕𝜏
)

∑

𝑣𝑗∈𝑆 𝑒𝑥𝑝
(

𝑠𝑖𝑚
((

ℎ𝑔𝑐𝑜𝑚 + ℎ𝑠𝑒𝑐𝑜𝑚
)

, 𝑒𝑗
)

∕𝜏
) , (31)

where 𝑦𝑖 denotes the recommendation score for item 𝑣𝑖, 𝜏 denotes the temperature hyper-parameter, 𝑠𝑖𝑚(⋅) denotes the similarity 
between the representation of user preference and the candidate item, e.g., cosine similarity.

Considering both tasks provide significant supervised signals for model training, the total loss is 
𝑙𝑜𝑠𝑠 = 1 − 𝜆 𝑙𝑜𝑠𝑠 + 𝜆𝑙𝑜𝑠𝑠 , (32)
( ) 𝑔 𝑠𝑒
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where 𝜆 is a hyper-parameter to balance the weights of different losses, and the losses of local and global context modeling are 
constructed as follows:

𝑙𝑜𝑠𝑠𝑔 = −𝑙𝑜𝑔

{

𝑒𝑥𝑝
(

𝑠𝑖𝑚
(

ℎ𝑔𝑐𝑜𝑚, 𝑒+
)

∕𝜏
)

∑

𝑣𝑗∈𝑆 𝑒𝑥𝑝
(

𝑠𝑖𝑚
(

ℎ𝑔𝑐𝑜𝑚, 𝑒𝑗
)

∕𝜏
)

}

, (33)

𝑙𝑜𝑠𝑠𝑠𝑒 = −𝑙𝑜𝑔

{

𝑒𝑥𝑝
(

𝑠𝑖𝑚
(

ℎ𝑠𝑒𝑐𝑜𝑚, 𝑒+
)

∕𝜏
)

∑

𝑣𝑗∈𝑆 𝑒𝑥𝑝
(

𝑠𝑖𝑚
(

ℎ𝑠𝑒𝑐𝑜𝑚, 𝑒𝑗
)

∕𝜏
)

}

, (34)

and 𝑒+ denotes the representation of ground-truth next item 𝑣+ for session 𝑆. To mitigate overfitting, we apply dropout to candidate 
item encoding (Hou et al., 2022). The normalized temperature-scaled cross-entropy loss (Chen et al., 2020) incorporates cosine 
similarity to enhance feature alignment and uniformity, which helps the model learn more discriminative feature representations. 
The temperature hyperparameter scales similarity between samples, ensuring consistent importance for comparisons across batches.

4.5. Time complexity analysis

The time complexity of the proposed Coase stems from four key components: local contextual feature extractor, global contextual 
feature extractor, session-level co-learning module, and prediction layer. For the local contextual feature extractor, the time 
complexity primarily comes from Bi-gated GSAN. For each layer of Bi-gated GSAN, the time complexity for message passing and node 
feature fusion involving the neighbor nodes and the central nodes are respectively 𝑂(𝑢𝑑2+(𝑁+1)||𝑑) and 𝑂(2| ∥ 𝑆|(𝑑2+𝑑)), where 
|| denotes the edge number in the session star graph and |𝑆| denotes the number of sessions. Therefore, the overall time complexity 
of the local contextual feature extractor is 𝑂(𝐿𝑔𝑛𝑛(2(| ∥ 𝑆| + 𝑢)𝑑2 + ||(2|𝑆| + 𝑁 + 1)𝑑)), where 𝐿𝑔𝑛𝑛 denotes the layer number of 
Bi-gated GSAN. For the global contextual feature extractor, the time complexity primarily comes from SudokuFormer. For each layer 
of SudokuFormer, the time complexity for the linear projections of the query, key, and value is 𝑂(7𝑚𝑑2), while the time complexity 
of attention score calculation is 𝑂(10𝑚2𝑑). For the MLP, the time complexity is 𝑂(8𝑚𝑑2). Therefore, the overall time complexity of 
the global contextual feature extractor is 𝑂(𝐿𝑡𝑟𝑚(15𝑚𝑑2 + 10𝑚2𝑑)), where 𝐿𝑔𝑛𝑛 denotes the layer number of SudokuFormer. For the 
session-level co-learning module, the time complexity of the long-term preference learning for local and global context modeling 
is 𝑂(2(3𝑚𝑑2 + 7𝑚𝑑)), while the time complexity of the preference fusion is 𝑂(10𝑑). Therefore, the time complexity of the whole 
session-level co-learning module is 𝑂(6𝑚𝑑2 + (14𝑚 + 10)𝑑). Moreover, the time complexity of prediction layer is 𝑂(𝑢𝑑). Considering 
all the above modules, the overall time complexity of Coase is 𝑂((2𝐿𝑔𝑛𝑛(| ∥ 𝑆| + 𝑢) + 15𝐿𝑡𝑟𝑚𝑚 + 6𝑚)𝑑2 + (𝐿𝑔𝑛𝑛||(2|𝑆| + 𝑁 + 1) +
10𝐿𝑡𝑟𝑚𝑚2 + (14𝑚 + 10) + 𝑢)𝑑), which remains at an acceptable level.

5. Experiments

In this section, we evaluate the effectiveness of the Coase model by exploring several key research questions: How does Coase 
compare to 20 baseline models across four real-world datasets (RQ1)? What impact does the collaborative parallel framework 
have on performance (RQ2)? How do the components of the local contextual feature extractor and SudokuFormer contribute 
to recommendation performance (RQ3, RQ5)? What effect do temporal elements and hyperparameter settings have on Coase’s 
performance (RQ4, RQ6)? How does Coase perform in sessions of different lengths (RQ7)? How efficient is Coase compared to 
representative baseline models (RQ8)?

5.1. Datasets

Four publicly available datasets are used in our experiments:

• Yoochoose is a dataset from RecSys Challenge 2015.2 It contains a collection of sessions from an online retailer in Europe 
during several months in the year of 2014. Each session is encapsulating the click events that the user performed in the session. 
Due to the large size of Yoochoose, we extracted the most recent 1/64 of the dataset based on the timestamp following Pan 
et al. (2020), Qiu, Huang, Chen, and Yin (2022), Qiu et al. (2020), and Wu et al. (2019).

• Diginetica is a dataset from CIKM Cup 2016.3 The dataset contains user sessions extracted from an e-commerce search engine 
log. The transaction data of the dataset is adopted to conduct our experiments.

• Retailrocket is a dataset from Kaggle Competition 2016.4 It was collected from an e-commerce platform within 4.5 months. 
There are three types of user behaviors in Retailrocket, i.e., view, add to cart, and transaction. The view data of the dataset 
is adopted to conduct our experiments.

• Dressipi is a dataset from RecSys Challenge 2022 focused on fashion recommendation.5 Dressipi contains training data of 1 
million sessions within a month, which is collected from an e-commerce platform.

2 https://recsys.acm.org/recsys15/challenge
3 http://cikm2016.cs.iupui.edu/cikm-cup
4 https://www.kaggle.com/retailrocket/ecommerce-dataset
5 https://www.recsyschallenge.com/2022
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Table 3
Summary of the used datasets.
 Dataset # Sessions # Items # Interactions Avg. session length Avg. action per item Sparsity  
 Yoochoose 1/64 124724 17606 528858 4.24 30.04 99.9759% 
 Diginetica 204062 42172 989204 4.85 23.46 99.9885% 
 Retailrocket 328904 58000 1413976 4.30 24.38 99.9926% 
 Dressipi 691 383 19343 4428574 6.41 228.96 99.9669% 

Following related studies (Chen & Wong, 2020; Hou et al., 2022; Li et al., 2017; Liu et al., 2018; Pan, Cai, Chen, & Chen, 2022; 
Pan et al., 2020; Qiu, Huang, Chen, & Yin, 2022; Qiu et al., 2020; Wu et al., 2019; Xu et al., 2019), sessions longer than 1 and items 
appearing more than 4 times are reserved in all the datasets. Table  3 shows the summary statistics for the used four datasets. For 
fair comparison, the data augment method (Tan et al., 2016) is adopted which generates the sessions and corresponding labels by 
splitting the input session. For example, for an input session 𝑆 =

{

𝑣1,… , 𝑣
|𝑆|

}

, the generated sessions and the corresponding labels 
are ({𝑣1

}

, 𝑣2
)

,
({

𝑣1, 𝑣2
}

, 𝑣3
)

,… ,
({

𝑣1,… , 𝑣
|𝑆|−1

}

, 𝑣
|𝑆|

)

. Moreover, leave-one-out strategy is adopted to split datasets. Specifically, 
we preserve the last and the second last interactions in each session as the testing and validation data, while the rest is taken as the 
training data.

5.2. Evaluation metrics

Three metrics are used to evaluate the performance of the model for the top recommended items, with size 5, 10, 15, and 20 in 
our experiments:

• Recall@N assesses the proportion of cases in which the correct items are recommended within the top item list: 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 = 1
𝑀

𝑀
∑

𝑖=1
ℎ𝑖𝑡(𝑖), (35)

where 𝑀 denotes the number of sessions in test set, ℎ𝑖𝑡(𝑖) denotes whether the candidate item 𝑖 is the correct recommendation 
so ℎ𝑖𝑡(𝑖) = 1 if correct otherwise ℎ𝑖𝑡(𝑖) = 0.

• MRR@N measures the average of the reciprocal ranks of the top-ranked relevant item in the recommendations: 

𝑀𝑅𝑅@𝑁 = 1
𝑀

∑

𝑚∈𝑀

∑

𝑟𝑎𝑛𝑘(𝑖)<𝑁

1
𝑟𝑎𝑛𝑘(𝑖)

, (36)

where 𝑟𝑎𝑛𝑘(𝑖) denotes the position of recommended item 𝑖 in the top item list.
• NDCG@N takes into account both the relevance and the position of the recommended items: 

𝑁𝐷𝐶𝐺@𝑁 = 1
𝑀

∑

𝑚∈𝑀

𝑁
∑

𝑖=1

2𝑟𝑒𝑙(𝑖) − 1
log2(1 + 𝑖)

, (37)

where 𝑟𝑒𝑙(𝑖) denotes the relevance of the recommended item at position 𝑖 in the top item list.

5.3. Baseline models and implementation settings

Table  4 summarizes the baseline models, which can be broadly categorized into four groups: traditional methods, local-oriented 
methods, global-oriented methods, and dual-oriented methods. Our proposed Coase and all the baseline models are implemented 
based on the popular recommendation framework RecBole (Zhao et al., 2021) and its extension RecBole-GNN (Zhao et al., 2022) 
for easy development and reproduction. Following Peintner et al. (2023), and Wu et al. (2019), the embedding dimension and 
batch size is set to 100. The initial learning rate is set to 0.001 and will decay by 10% after each 3 epochs. Following Yang et al. 
(2023), AdamW optimizer (Loshchilov & Hutter, 2019) is adopted to train the parameters. Following Wang and Liu (2021), the 
temperature parameter is set to 0.07. To alleviate the overfitting problem, the dropout strategy with 20% ratio has been applied 
to our model. The max length of session is set to 20. The attention head number of bi-gated graph self-attention network and 
SudokuFormer is searched among {1, 2, 4, 5}, respectively. The stacking layer number of the bi-gated graph self-attention network 
and SudokuFormer is searched among {1, 2, 3, 4}, respectively. The loss weight 𝜆 is searched among {0, 0.3, 0.5, 0.7, 1}. The 
number of time intervals is searched among {8, 16, 32, 64}. For all baseline models, we follow the best parameter settings presented 
in the original papers in most cases. If the parameter configurations are found to be infeasible or unsuitable for our experiment 
environment, e.g., gradient exploding and out-of-memory errors, we tune the parameters to ensure effective performance. The best 
results of all baseline models are recorded. For the reader’s reference, the implementation of our Coase model is publicly shared 
at https://anonymous.4open.science/r/Coase-CA97.
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Table 4
Summary of the baseline models.
 Category Method Description  
 Traditional
methods

POP POP is a non-neural approach recommending the most popular items across the 
entire training set. Despite its simplicity, POP often serves as a formidable 
benchmark.

 

 Item-KNN (Sarwar et al., 2001) Item-KNN recommends items similar to the last session item based on cosine 
similarity between binary item vectors.

 

 
Local
oriented
methods 

NextItNet (Yuan et al., 2019) NextItNet is the CNN-based method that adopts dilated convolutions to increase 
receptive fields instead of suboptimal pooling operation.

 

 SRGNN (Wu et al., 2019) SRGNN transforms session sequences into session graphs and applies graph gated 
neural network to capture pairwise item transition relations.

 

 GCSAN (Xu et al., 2019) GCSAN enhances SRGNN by adopting self-attention for capturing long-range item 
dependencies.

 

 TAGNN (Yu et al., 2020) TAGNN strengthens SRGNN with a target-aware attention network to generate user 
preferences tailored to different candidate items.

 

 LESSR (Chen & Wong, 2020) LESSR addresses information loss in GNN-based SBRSs with lossless edge-order 
preserving aggregation and shortcut graph attention.

 

 

Global
oriented
methods 

GRU4Rec (Hidasi et al., 2016) GRU4Rec stacks multiple gated recurrent unit (GRU) layers to encode the session 
sequence into a final state. It also applies the ranking loss to train the model.

 

 NARM (Li et al., 2017) NARM is the RNN-based method using GRUs for sequential signal capture and 
attention for emphasizing user intent.

 

 STAMP (Liu et al., 2018) STAMP replaces all RNN encoders with attention layers, focusing on the 
representation of the last item in the session. It does not use any kind of positional 
encoding.

 

 STAR (Yeganegi et al., 2024) STAR improves recommendations by leveraging temporal information in session data, 
embedding items based on co-occurrence in sub-sessions, and adjusting item weights 
according to time intervals between events.

 

 RepeatNet (Ren et al., 2019) RepeatNet captures the repeat-explore recommendation intent in a session by 
incorporating a repeat-explore mechanism into RNNs.

 

 CORE (Hou et al., 2022) CORE is a simple yet effective framework for session-based recommendation that 
maintains a consistent representation space throughout encoding and decoding, 
addressing the issue of inconsistent predictions.

 

 SASRec (Kang & McAuley, 2018) SASRec is the self-attention based sequential recommender capturing long-term 
semantic feature.

 

 TiSASRec (Li et al., 2020) TiSASRec improves upon SASRec by incorporating both position information and 
time interval information.

 

 AC-TSR (Zhou et al., 2023) AC-TSR calibrates unreliable attention weights from existing Transformer-based 
models. Here we adopt the TiSASRec-based version.

 

 CL4SRec (Xie et al., 2022) CL4SRec leverages contrastive learning with various data augment methods to 
capture item content-collaborative signal dependencies.

 

 DuoRec (Qiu, Huang, Yin, & Wang, 2022) DuoRec introduces the contrastive regularization to reshape sequence representation 
distributions.

 

 

Dual
oriented
methods 

TCP-SRec (Tian et al., 2022) TCP-SRec segments interaction sequences into coherent subsequences based on 
temporal intervals and defines pretraining objectives accordingly.

 

 COTREC (Xia, Yin, Yu, Shao, et al., 2021) COTREC is a self-supervised graph co-training framework that iteratively selects 
evolving pseudo-labels as informative self-supervision examples for enhancing 
session-based recommendations.

 

 SGNN-HN (Pan et al., 2020) SGNN-HN extends SRGNN by introducing session star graph for long-distance 
information exploration and mitigates over-fitting based on highway networks.

 

 GCEGNN (Wang et al., 2020) GCEGNN proposes a unified model that leverages both global and session-level 
transition patterns between items within global and session graphs.

 

 CMGNN (Wang, Gao, et al., 2023) CMGNN is a novel contrastive multi-level graph neural network that captures 
complex and high-order item transition information.

 

 FEARec (Du, Yuan, Zhao, Qu, et al., 2023) FEARec is the contrastive learning based model adopted time domain attention and 
auto-correlation.

 

 SLIME4Rec (Du, Yuan, Zhao, Fang, et al., 2023) SLIME4Rec proposes the dynamic frequency selection and the static frequency split 
module to capture user dynamic preferences.

 

5.4. Overall performance

Table  5 presents the average results of our proposed Coase and baseline models in terms of Recall, MRR, and NDCG with 
various length of top items recommendation list. For the reader’s reference, details for each dataset are provided in Appendix. 
For significance testing, we used a paired t-test with 𝑝-value < 0.05. To address RQ1, we have the following observations.

Traditional methods, such as Pop and Item-KNN (Sarwar et al., 2001), disregard contextual information within sessions, leading 
to suboptimal performance compared to other groups of methods. The naive patterns captured by these traditional approaches 
are insufficient for representing complex personalized preferences. Furthermore, methods that incorporate temporal information, 
such as GRU4Rec (Hidasi et al., 2016) and SRGNN (Wu et al., 2019), generally outperform those that neglect it, like STAMP (Liu 
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Table 5
Summary of the average performance of examined models across four datasets. The best-performing score in each case is highlighted in bold, while the second-best 
is underlined. A superscript ∗ indicates that Coase significantly outperforms the second-best result, based on a paired t-test with a 𝑝-value < 0.05.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Traditional

methods
1.83 0.97 1.18 2.95 1.13 1.54 3.78 1.20 1.76 4.73 1.25 1.98  

 Item-KNN 17.26 10.55 12.08 24.11 11.46 14.30 28.34 11.80 15.42 31.33 11.97 16.13  
 NextItNet

Local
oriented
methods 

31.31 20.00 22.81 40.36 21.21 25.73 45.64 21.63 27.13 49.31 21.83 28.00  
 SRGNN 37.72 24.65 27.90 47.21 25.92 30.97 52.51 26.34 32.38 56.16 26.54 33.24  
 GCSAN 38.72 25.45 28.76 48.14 26.72 31.81 53.40 27.13 33.20 57.04 27.34 34.06  
 TAGNN 39.32 25.64 29.04 48.85 26.92 32.13 54.15 27.41 33.54 57.76 27.54 34.39  
 LESSR 38.16 24.95 28.24 47.61 26.22 31.29 52.82 26.63 32.68 56.42 26.83 33.53  
 GRU4Rec

Global
oriented
methods 

37.33 24.45 27.65 46.84 25.72 30.73 52.19 26.14 32.15 55.87 26.35 33.02  
 NARM 37.62 24.63 27.86 47.24 25.92 30.97 52.64 26.35 32.41 56.29 26.55 33.27  
 STAMP 35.08 23.57 26.43 43.84 24.75 29.27 48.91 25.15 30.61 52.48 25.35 31.46  
 STAR 36.10 24.90 27.88 43.90 26.19 30.40 48.35 26.54 31.58 51.37 26.71 32.29  
 RepeatNet 37.36 24.80 27.93 45.24 25.86 30.49 49.50 26.19 31.61 52.37 26.36 32.30  
 CORE 37.62 24.31 27.63 47.09 25.58 30.69 52.45 26.01 32.11 56.04 26.21 32.96  
 SASRec 37.65 24.99 28.13 47.31 26.28 31.26 52.83 26.72 32.72 56.62 26.93 33.62  
 TiSASRec 38.87 25.52 28.84 48.46 26.81 31.95 53.90 27.24 33.39 57.62 27.45 34.27  
 AC-TSR 36.93 24.69 27.74 46.40 25.95 30.80 51.85 26.39 32.24 50.84 26.60 33.14  
 CL4SRec 35.71 23.85 26.80 44.76 25.06 29.73 50.11 25.49 31.14 53.81 25.69 32.02  
 DuoRec 36.93 24.71 27.74 46.18 25.94 30.74 51.61 26.37 32.17 55.37 26.58 33.06  
 TCP-SRec

Dual
oriented
methods 

32.65 21.40 24.19 41.51 22.59 27.06 46.69 23.00 28.44 50.30 23.20 29.29  
 COTREC 31.06 24.67 26.27 34.71 25.14 27.42 36.84 25.30 27.96 38.43 25.39 28.32  
 SGNN-HN 38.81 25.09 28.50 48.46 26.39 31.63 53.83 26.81 33.06 57.51 27.02 33.93  
 GCEGNN 39.66 25.80 29.25 49.19 27.08 32.34 54.52 27.50 33.75 58.14 27.71 34.61  
 CMGNN 39.06 25.37 28.77 48.71 26.66 31.90 54.01 27.08 33.30 57.68 27.29 34.17  
 FEARec 37.08 24.76 27.83 46.27 25.99 30.80 51.61 26.41 32.21 55.30 26.62 33.09  
 SLIME4Rec 39.03 25.73 29.04 48.73 27.03 32.18 54.21 27.46 33.63 57.97 27.67 34.52  
 Coase (Ours) 40.35 26.53∗ 29.96∗ 50.09∗ 27.83∗ 33.12∗ 55.49∗ 28.25∗ 34.55∗ 59.13∗ 28.46∗ 35.41∗ 
 Improvement 1.73% 2.80% 2.43% 1.83% 2.77% 2.40% 1.79% 2.73% 2.36% 1.71% 2.73% 2.32%  

et al., 2018) and NextItNet (Yuan et al., 2019). This underscores the importance of temporal information in understanding behavior 
patterns and effectively modeling user preferences within a session.

It has been observed that SRGNN (Wu et al., 2019) outperforms NextItNet (Yuan et al., 2019), indicating that the session 
graph contains more local contextual information than the raw session sequence. Specifically, the session graph provides a unique 
perspective to represent both direct and indirect transition relationships between items, while the session sequence retains only 
simplistic sequential transition relationships. Additionally, most transformer-based methods (Kang & McAuley, 2018; Li et al., 2020) 
consistently outperform RNN-based methods (Hidasi et al., 2016; Li et al., 2017), highlighting the superiority of transformers in 
capturing item dependencies within sequential data. Furthermore, TiSASRec (Li et al., 2020) consistently outperforms SASRec (Kang 
& McAuley, 2018), demonstrating the benefits of incorporating various temporal information. In other words, users’ choices 
regarding items are influenced not only by their long-term and short-term preferences but also by time-sensitive contexts (Wang, 
Cao, et al., 2022). However, the performance of AC-TSR (Zhou et al., 2023), which builds upon TiSASRec (Li et al., 2020), falls 
short compared to its base model. This discrepancy underscores the importance of effectively managing temporal information in 
session-based recommendation tasks.

Most dual-oriented methods outperform the other three groups, demonstrating the effectiveness of integrating both local and 
global context modeling. In particular, our Coase approach exhibits superior performance compared to many baseline methods across 
various metrics. The improvements can be categorized into three key aspects. Firstly, Coase utilizes the session star graph to illustrate 
both direct and indirect transitions among items, effectively addressing the challenge of long-range information propagation. By 
employing a bi-gated graph self-attention network on this graph, Coase enhances its ability to capture local contextual features. 
Secondly, Coase incorporates both positional and time interval information through explicit encoding methods, enriching the 
characterization of user behaviors. Position encoding helps to understand the order of interactions, while time interval encoding 
reveals the level of user interest in items. Additionally, the SudokuFormer architecture accommodates data heterogeneity, providing 
the flexibility and expressive power needed to adaptively learn item representations. It computes disentangled attention weights and 
employs a stable, non-invasive fusion method to capture global contextual information. Lastly, Coase introduces a triple attention 
mechanism to learn diverse session-level representations. This mechanism considers the collaborative effects between local and 
global context modeling, enabling the model to effectively capture comprehensive behavioral patterns.

5.5. Ablation studies

Four groups of ablation studies are conducted to assess the effectiveness of key components in Coase by comparing it with its 
variants. These studies evaluate the unified collaborative parallel framework, the local context modeling components, the impact 
of various encodings for global context modeling, and each component of the proposed SudokuFormer.
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Table 6
Effects of unified collaborative parallel framework. For each dataset, the bold-faced number is the best score.
 Models Graph

learning
Sequential
learning 

Collaborative
effect

@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Yoochoose 1/64  
 Coase � � � 49.05 30.45 35.07 61.25 32.09 39.03 67.12 32.55 40.59 70.50 32.75 41.39 
 w/o local context modeling � � � 48.91 30.33 34.95 60.85 31.94 38.82 66.60 32.39 40.35 70.00 32.58 41.15  
 w/o global context modeling � � � 48.50 30.13 34.70 60.65 31.77 38.64 66.32 32.22 40.15 69.84 32.42 40.98  
 w/o collaborative effect � � � 49.05 30.41 35.05 61.21 32.05 38.99 66.87 32.50 40.50 70.28 32.69 41.30  
 Degenerate learning and fusion � � � 48.76 30.39 34.96 60.73 32.00 38.84 66.37 32.45 40.34 69.77 32.64 41.14  
 Diginetica  
 Coase � � � 31.79 18.75 21.98 43.33 20.29 25.71 50.46 20.85 27.60 55.53 21.14 28.80 
 w/o local context modeling � � � 31.58 18.68 21.87 42.94 20.18 25.54 50.14 20.75 27.45 55.18 21.04 28.64  
 w/o global context modeling � � � 31.06 18.08 21.30 42.50 19.60 24.99 49.57 20.16 26.86 54.67 20.44 28.07  
 w/o collaborative effect � � � 31.58 18.54 21.77 42.93 20.05 25.44 50.08 20.62 27.33 55.17 20.90 28.53  
 Degenerate learning and fusion � � � 29.81 16.66 19.91 41.67 18.24 23.74 49.05 18.82 25.69 54.30 19.11 26.93  
 Retailrocket  
 Coase � � � 56.90 42.91 46.42 63.73 43.83 48.63 67.16 44.10 49.54 69.47 44.23 50.09 
 w/o local context modeling � � � 54.57 40.72 44.19 61.70 41.68 46.50 65.49 41.98 47.50 67.95 42.12 48.09  
 w/o global context modeling � � � 54.89 40.07 43.78 62.49 41.10 46.25 66.51 41.41 47.32 69.15 41.56 47.94  
 w/o collaborative effect � � � 55.06 40.80 44.37 62.53 41.81 46.80 66.34 42.11 47.80 68.96 42.25 48.42  
 Degenerate learning and fusion � � � 55.05 40.72 44.31 62.51 41.73 46.73 66.35 42.04 47.75 68.89 42.18 48.35  
 Dressipi  
 Coase � � � 23.65 13.99 16.38 32.03 15.11 19.09 37.23 15.51 20.46 41.03 15.73 21.36 
 w/o local context modeling � � � 22.21 13.13 15.38 30.31 14.21 18.00 35.38 14.61 19.34 39.10 14.82 20.22  
 w/o global context modeling � � � 21.32 12.39 14.60 29.38 13.46 17.21 34.48 13.87 18.55 38.23 14.08 19.44  
 w/o collaborative effect � � � 20.89 12.21 14.36 28.68 13.25 16.87 33.61 13.63 18.18 37.33 13.84 19.06  
 Degenerate learning and fusion � � � 20.25 12.06 14.09 27.56 13.03 16.45 32.14 13.39 17.66 35.60 13.59 18.48  

5.5.1. Impact of unified collaborative parallel framework
The first group of ablation studies addresses RQ2 and demonstrates the effectiveness of the unified collaborative parallel 

framework in Coase. Specifically, we generate four variants for comparison: (i) w/o local context modeling, which removes the 
session star graph and bi-gated graph self-attention network for local context modeling; (ii) w/o global context modeling, which 
excludes the dual global position encoding and SudokuFormer used for global context modeling; (iii) w/o collaborative effect, which 
learns long-term and comprehensive preferences without considering the collaborative effect; and (iv) Degenerate learning and 
fusion, which learns short-term and long-term preferences similar to SRGNN (Wu et al., 2019), then fuse both preferences by naive 
concat operation. The results, shown in Table  6, consistently indicate a performance drop when any part of the collaborative parallel 
framework is removed, highlighting the importance of local context modeling, global context modeling, and the collaborative effect 
in capturing comprehensive preferences. In particular, the w/o global context modeling variant underperforms Coase, underscoring 
the critical role of SudokuFormer in learning user preferences from a global context. Similarly, the w/o local context modeling variant 
also underperforms, suggesting that non-sequential transitions between items are crucial for capturing user preferences. Notably, the 
performance drop in w/o global context modeling is more pronounced than in w/o local context modeling, demonstrating that global 
contextual features are more significant in session-based recommendation tasks. This finding reveals that user preferences exhibit 
discernible continuity and coherence within sessions, implying that user behaviors in both datasets follow predictable temporal 
patterns. As a result, understanding user preferences through global context modeling proves more advantageous.

Comparing to the w/o collaborative effect variant and the degenerate learning and fusion variant, our Coase achieves better 
performance in the most cases, demonstrating the effectiveness of the preference learning methods and the preference fusion method 
in the session-level co-learning module. We also observe that the w/o collaborative effect variant performs worse than Coase in larger 
datasets (Retailrocket and Dressipi), indicating that the collaborative effect refines user preference representation. However, in the 
two smaller datasets (Yoochoose 1/64 and Diginetica), the coase model only achieved a slight advantage over the w/o collaborative 
effect variant. To demonstrate the effectiveness of our model design, we conduct statistical significance tests by comparing our 
model against the w/o collaborative effect variant in the two smaller datasets. Similar to the settings of the baseline experiments, 
we conducted paired t-tests using five different random seeds to evaluate the statistical significance of our improvements. The results 
of these additional experiments show that Coase significantly outperforms the w/o collaborative effect variant with a 𝑝-value < 0.05. 
It indicates that while the performance advantage of our proposed method is subtle on smaller datasets, it is statistically significant. 
One reason is that the local contextual feature extractor and the global contextual feature extractor tend to learn similar patterns due 
to the limited diversity in user interactions within smaller datasets. Therefore, the simple preference learning method can achieve 
acceptable performance. However, as the dataset size increases, user behavior patterns become more diverse. In these cases, if 
the local and global contextual feature extractors operate independently, they may capture significantly different user behavioral 
patterns. When applied to larger datasets, the simple method leads to feature conflicts, as the differences between locally and globally 
learned features become more pronounced, resulting in a substantial drop in performance.

5.5.2. Impact of local context modeling components
The second group of ablation studies addresses RQ3, demonstrating the effectiveness of the session star graph and the Bi-Gated 

GSAN in local context modeling. We compare four variants: (i) GAT with SG on SSG, which removes the gating network and updates 
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Table 7
Effects of components in local context modeling. For each dataset, the bold-faced number is the best score.
 Models Dual gate Message 

passing
Star session 
graph

@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Yoochoose 1/64  
 Coase � Attention � 49.05 30.45 35.07 61.25 32.09 39.03 67.12 32.55 40.59 70.50 32.75 41.39 
 GAT with SG on SSG � Attention � 48.29 29.82 34.42 60.25 31.43 38.29 66.15 31.90 39.86 69.56 32.09 40.67  
 GGNN with SG on SSG � GRU � 48.67 30.16 34.77 60.82 31.79 38.71 66.50 32.24 40.21 69.98 32.44 41.03  
 GAT with SG on VSG � Attention � 48.38 29.82 34.43 60.67 31.47 38.42 66.56 31.94 39.98 70.03 32.14 40.80  
 GGNN with SG on VSG � GRU � 48.99 30.37 35.00 61.19 32.01 38.96 66.87 32.46 40.47 70.34 32.66 41.29  
 Diginetica  
 Coase � Attention � 31.79 18.75 21.98 43.33 20.29 25.71 50.46 20.85 27.60 55.53 21.14 28.80 
 GAT with SG on SSG � Attention � 30.87 18.23 21.36 42.04 19.72 24.97 48.94 20.26 26.80 53.90 20.54 27.97  
 GGNN with SG on SSG � GRU � 31.79 18.62 21.89 43.25 20.15 25.59 50.34 20.71 27.46 55.44 20.99 28.67  
 GAT with SG on VSG � Attention � 31.22 18.47 21.63 42.56 19.98 25.29 49.62 20.54 27.16 54.70 20.82 28.36  
 GGNN with SG on VSG � GRU � 31.71 18.23 21.36 43.14 19.72 24.97 50.23 20.26 26.80 55.30 20.54 27.97  
 Retailrocket  
 Coase � Attention � 56.90 42.91 46.42 63.73 43.83 48.63 67.16 44.10 49.54 69.47 44.23 50.09 
 GAT with SG on SSG � Attention � 54.38 40.14 43.71 61.72 41.13 46.09 65.69 41.45 47.14 68.27 41.59 47.75  
 GGNN with SG on SSG � GRU � 55.10 40.73 44.32 62.56 41.73 46.75 66.27 42.03 47.73 68.79 42.17 48.33  
 GAT with SG on VSG � Attention � 54.85 40.53 44.12 62.10 41.51 46.47 66.06 41.82 47.52 68.64 41.97 48.13  
 GGNN with SG on VSG � GRU � 55.08 40.66 44.27 62.52 41.66 46.69 66.46 41.97 47.73 68.95 42.11 48.32  
 Dressipi  
 Coase � Attention � 23.65 13.99 16.38 32.03 15.11 19.09 37.23 15.51 20.46 41.03 15.73 21.36 
 GAT with SG on SSG � Attention � 21.67 12.59 14.84 29.77 13.67 17.45 34.92 14.07 18.81 38.67 14.28 19.70  
 GGNN with SG on SSG � GRU � 21.92 12.83 15.08 29.98 13.90 17.68 35.05 14.30 19.03 38.82 14.52 19.92  
 GAT with SG on VSG � Attention � 21.65 12.65 14.88 29.84 13.74 17.52 34.97 14.15 18.88 38.74 14.36 19.77  
 GGNN with SG on VSG � GRU � 22.34 13.14 15.42 30.54 14.23 18.07 35.64 14.63 19.42 39.39 14.84 20.30  

the item features based solely on neighboring items; (ii) GGNN with SG on SSG, which replaces the graph self-attention network 
(GAT) with a gated graph neural network (GGNN); (iii) GAT with SG on VSG, which replaces the session star graphs with vanilla 
session graphs compared to (i); and (iv) GGNN with SG on VSG, which replaces the GAT with GGNN compared to (iii). Table  7 
presents the results, leading to several key observations. In most cases, GGNN-based methods outperform GAT-based ones, suggesting 
that gating mechanisms are effective in filtering out noisy features from neighboring nodes. Additionally, the informative session 
star graph does not consistently enhance performance, and GGNN appears to be more compatible with this structure compared to 
vanilla GAT. The virtual central node establishes bidirectional connections with each item node, thereby improving the connectivity 
of the session graph and facilitating message passing among item nodes. However, treating the central node as an ordinary item 
node can introduce excessive contextual information, potentially overwhelming the target item node—particularly in GAT-based 
models. This highlights the need for a tailored gating mechanism to selectively absorb information from the central node. Such an 
approach mitigates the influence of noisy features originating from distant item nodes, preserving the integrity of the target item’s 
representation. Finally, Coase consistently outperforms all four variants. This can be attributed to its bi-gated graph self-attention 
network, which enhances vanilla GAT by integrating two gating mechanisms that effectively filter and select relevant features from 
different nodes.

5.5.3. Impact of encodings for global context modeling
The third group of ablation studies addresses RQ4, aiming to demonstrate the effectiveness of different encodings in global context 

modeling. Specifically, we produce two variants for comparison: (i) w/o time interval encoding, which removes the time interval 
encoding as the input of our SudokuFormer; and (ii) w/o position encoding, which removes the position encoding as the input of our 
SudokuFormer. The results, shown in Table  8, indicate that both variants perform worse than Coase, underscoring the effectiveness 
of both position and time interval encodings. The core of SudokuFormer is a multi-head disentangled self-attention mechanism, 
a variant of the vanilla self-attention network. While powerful in capturing dependencies between elements in a sequence, the 
vanilla self-attention network lacks positional awareness due to permutation equivalence (Liu et al., 2020; Raffel et al., 2020). This 
means it treats all elements equally, regardless of their position, which can result in sub-optimal performance. In session-based 
recommendation tasks, permutation equivalence implies that the order of items could be randomized without affecting the learned 
features, which contradicts the assumption that the order of items is crucial for capturing user preferences. While position encoding 
is useful for understanding the order of interactions, it does not reveal the level of interest in each interaction. Time interval encoding 
addresses this by parameterizing time cues, providing fine-grained insights into how user interest evolves over time. As a result, both 
position and time interval encodings are essential for learning comprehensive dynamic preferences. Furthermore, the results show 
that w/o time interval encoding performs worse than w/o position encoding in most cases, indicating that the degree of user interest 
in items (captured through time interval encoding) plays a more critical role than the sequential order of items in understanding 
behavioral patterns.
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Table 8
Effects of encodings in global context modeling. For each dataset, the bold-faced number is the best score.
 Models Time interval 

information
Position 
information

@5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Yoochoose 1/64  
 Coase � � 49.05 30.45 35.07 61.25 32.09 39.03 67.12 32.55 40.59 70.50 32.75 41.39 
 w/o time interval encoding � � 48.36 30.12 34.66 60.39 31.74 38.57 65.93 32.18 40.04 69.51 32.39 40.88  
 w/o position encoding � � 48.84 30.24 34.87 61.06 31.89 38.84 66.91 32.36 40.39 70.20 32.54 41.17  
 Diginetica  
 Coase � � 31.79 18.75 21.98 43.33 20.29 25.71 50.46 20.85 27.60 55.53 21.14 28.80 
 w/o time interval encoding � � 31.39 18.49 21.69 42.92 20.03 25.41 50.05 20.59 27.30 55.20 20.88 28.52  
 w/o position encoding � � 31.79 18.69 21.93 43.14 20.20 25.60 50.31 20.76 27.50 55.41 21.05 28.70  
 Retailrocket  
 Coase � � 56.90 42.91 46.42 63.73 43.83 48.63 67.16 44.10 49.54 69.47 44.23 50.09 
 w/o time interval encoding � � 54.78 40.57 44.13 62.23 41.58 46.55 66.13 41.88 47.58 68.61 42.02 48.17  
 w/o position encoding � � 54.74 40.51 44.07 62.09 41.50 46.46 65.88 41.80 47.47 68.32 41.94 48.04  
 Dressipi  
 Coase � � 23.65 13.99 16.38 32.03 15.11 19.09 37.23 15.51 20.46 41.03 15.73 21.36 
 w/o time interval encoding � � 21.62 12.65 14.87 29.69 13.73 17.48 34.77 14.13 18.82 38.52 14.34 19.71  
 w/o position encoding � � 21.90 12.83 15.08 30.04 13.92 17.71 35.12 14.32 19.05 38.86 14.53 19.93  

Table 9
Effects of SudokuFormer. For each dataset, the bold-faced number is the best score.
 Models Disentangled 

representation
Non-invasive 
method

Dual layer norm @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Yoochoose 1/64  
 Coase � � � 49.05 30.45 35.07 61.25 32.09 39.03 67.12 32.55 40.59 70.50 32.75 41.39 
 w/o disentangled representation � � � 48.88 30.33 34.94 60.98 31.96 38.87 66.72 32.41 40.39 70.19 32.61 41.21  
 w/o non-invasive method � � � 48.84 30.32 34.93 61.08 31.97 38.90 66.76 32.42 40.41 70.24 32.62 41.23  
 w/o dual layer norm � � � 48.95 30.39 35.01 61.24 32.05 39.00 66.96 32.50 40.52 70.34 32.69 41.32  
 Diginetica  
 Coase � � � 31.79 18.75 21.98 43.33 20.29 25.71 50.46 20.85 27.60 55.53 21.14 28.80 
 w/o disentangled representation � � � 31.67 18.63 21.86 43.00 20.14 25.52 50.18 20.71 27.42 55.27 20.99 28.62  
 w/o non-invasive method � � � 31.72 18.72 21.94 43.23 20.25 25.66 50.31 20.81 27.53 55.49 21.10 28.76  
 w/o dual layer norm � � � 31.41 18.53 21.72 42.89 20.06 25.44 49.91 20.62 27.29 54.97 20.90 28.49  
 Retailrocket  
 Coase � � � 56.90 42.91 46.42 63.73 43.83 48.63 67.16 44.10 49.54 69.47 44.23 50.09 
 w/o disentangled representation � � � 54.93 40.50 44.11 62.23 41.49 46.48 66.20 41.80 47.54 68.65 41.94 48.12  
 w/o non-invasive method � � � 54.74 40.44 44.02 62.27 41.46 44.02 66.10 41.76 47.48 68.58 41.76 48.07  
 w/o dual layer norm � � � 54.93 40.51 44.12 62.41 41.52 46.55 66.38 41.83 47.60 68.95 41.98 48.21  
 Dressipi  
 Coase � � � 23.65 13.99 16.38 32.03 15.11 19.09 37.23 15.51 20.46 41.03 15.73 21.36 
 w/o disentangled representation � � � 22.01 12.86 15.13 30.16 13.95 17.76 35.32 14.35 19.13 39.11 14.57 20.02  
 w/o non-invasive method � � � 21.72 12.67 14.91 29.81 13.74 17.52 34.94 14.15 18.87 38.70 14.36 19.76  
 w/o dual layer norm � � � 21.93 12.81 15.07 30.05 13.89 17.69 35.20 14.30 19.05 38.99 14.51 19.95  

5.5.4. Impact of each component in SudokuFormer
The last group of ablation studies addresses RQ5, aiming to demonstrate the effectiveness of each component in the proposed 

SudokuFormer. Specifically, we compare three variants: (i) w/o disentangled representation, which combines position and time 
interval encodings as a single input to SudokuFormer; (ii) w/o non-invasive method, which fuses position and time interval encodings 
into the Values using a mean pooling operation; and (iii) w/o dual layer norm, which removes the sub-layer norm operations and 
retains only the original post-layer norm. The results, shown in Table  9, reveal that removing any of these components results in 
a performance drop, with the full Coase model achieving the best performance, highlighting the importance of the disentangled 
attention mechanism and the stable non-invasive fusion method. SudokuFormer represents each item using three distinct vectors 
that encode its content, position, and time cues, which are used to compute disentangled attention weights between items. In the 
w/o disentangled representation variant, the position and time interval encodings are combined, leading to biased attention matrices 
that fail to capture their distinct roles in modeling temporal information. Additionally, the non-invasive method treats positional and 
time interval information as auxiliary features to improve the attention mechanism’s distribution, effectively reducing information 
overload (Liu et al., 2021). Finally, similar to its successful application in natural language processing tasks (Wang, Ma, et al., 2024, 
2023), the dual layer norm method enhances the stability of learned attention weights by incorporating additional normalization, 
which contributes to more robust and stable learning.
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Fig. 4. Coase performance with varying Bi-Gated GSAN stacking layers on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Fig. 5. Coase performance with varying SudokuFormer stacking layers on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

5.6. Parameter sensitivity analysis

To address RQ6, we investigate the impact of key hyperparameters on the performance of Coase, such as the number of 
stacking layers, attention heads, and the time interval. Additionally, we assess the influence of the loss weight, which balances the 
contributions of both tasks in the model. Furthermore, we examine the influence of the temperature parameter in the loss function, 
which controls the strength of penalties on hard negative samples. Finally, we investigate the scalability of Coase by tuning the 
embedding dimension. For the sake of efficiency, we report results from the Yoochoose 1/64 and Diginetica datasets, while the 
similar trends are observed in the other two datasets.

5.6.1. Impact of different number of stacking layers
Figs.  4–5 illustrate the impact of the number of stacking layers on model performance, tuned in {1, 2, 3, 4} for the bi-gated 

graph self-attention network and SudokuFormer, respectively. We observe that Coase achieves the best performance with 1 layer, 
and performance steadily decreases as the number of layers increases. This demonstrates that Coase does not benefit from deeper 
networks, likely due to the over-smoothing problem, where the representations of different items become too similar as the layers 
increase, leading to homogenization of information and reduced distinction between item representations.

5.6.2. Impact of different number of attention heads
As shown in Figs.  6–7, we increase the number of attention heads in both the bi-gated graph self-attention network and 

SudokuFormer, tuning values in the set {1, 2, 4, 5}, to improve the model’s stability and effectiveness. However, this approach proves 
time-consuming and does not enhance performance—rather, it results in a decline. We attribute this diminished performance to the 
limited amount of information in the datasets, which may not fully benefit from the multi-head mechanism. While adding more 
attention heads can theoretically increase model stability and enable learning from diverse sub-spaces, it also leads to inefficiencies 
due to redundant information, making the mechanism cumbersome and less effective (Yin et al., 2023).

5.6.3. Impact of different number of time intervals
Fig.  8 evaluates the impact of the time interval numbers in {8, 16, 32, 64}. It is observed that Coase benefits from a larger maximum 

interval on the Yoochoose 1/64 dataset, while it achieves higher performance with a smaller maximum interval on the Diginetica 
dataset. Specifically, Coase performs best with 16 or 32 time intervals on Yoochoose 1/64, whereas the most suitable value is 8 
on Diginetica. This variation can be attributed to differences in the distribution of time intervals across datasets. Generally, users 
in the Yoochoose 1/64 dataset tend to make decisions quickly, with rapidly shifting preferences. In contrast, Coase encodes fewer 
time intervals for Diginetica, where users typically take longer to make decisions.
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Fig. 6. Coase performance with varying Bi-Gated GSAN attention heads on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Fig. 7. Coase performance with varying SudokuFormer attention heads on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Fig. 8. Coase performance with varying time intervals on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

5.6.4. Impact of different loss weight
In Coase, a hyperparameter is used to balance the two-part cross-entropy loss from local and global context modeling, 

respectively. As shown in Fig.  9, to demonstrate the contribution of each task, we compare the experimental results by tuning 
the values from {0, 0.3, 0.5, 0.7, 1}. We observe that Coase shows worse performance when loss weight is 0 and 1, indicating that 
both preferences are critical for model training. Furthermore, it is found that Coase achieves its best performance on the Yoochoose 
1/64 dataset when the loss weight is 0.5, while the best loss weight is 0.3 on the Diginetica dataset. We attribute the reason that the 
Diginetica dataset contains rich local contextual information, which enables the local context modeling to offer more supervision 
signals for training. By contrast, local and global context modeling tend to be equally crucial in learning the user behavioral patterns 
on the Yoochoose 1/64 dataset.

5.6.5. Impact of different temperature parameter
As shown in Fig.  10, we tune 𝜏 from {0.01, 0.07, 0.2, 0.5, 1} to evaluate its impact. It is observed that the performance improves 

with an increase in 𝜏 across both datasets, reaching its peak at 𝜏 = 0.07. However, further increasing 𝜏 significantly degrades the 
performance. It is attributed that the temperature parameter plays a crucial role in regulating the strength of penalties on hard 
negative samples (Wang & Liu, 2021). Specifically, a small 𝜏 tends to impose greater penalties on the hardest negative samples, 
resulting in a more distinct separation of the local structure around each sample and a more uniform embedding distribution. 
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Fig. 9. Coase performance with varying loss weights on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Fig. 10. Coase performance with varying temperature parameters on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Fig. 11. Coase performance with varying embedding dimensions on Yoochoose 1/64 (Yoo) and Diginetica (Digi).

Moreover, a large 𝜏 tends is less sensitive to hard negative samples, improving the tolerance to the semantically similar samples. 
Therefore, fine-tuning the temperature parameter is essential for achieving an optimal balance between uniformity and tolerance.

5.6.6. Impact of different embedding dimensions
As shown in Fig.  11, we vary the embedding dimension across 50, 100, 200, 400 to evaluate the scalability of Coase. The results 

show that Coase’s performance – measured by Recall@10, Recall@20, NDCG@10, and NDCG@20 – improves as the embedding 
dimension increases from 50 to 100. However, further increasing the embedding size leads to a decline in performance. This suggests 
that while a smaller embedding dimension may constrain the model’s representational capacity, excessively large embeddings may 
introduce overfitting. These findings demonstrate Coase’s scalability and the importance of selecting an appropriate embedding size.

5.7. Impact of the session length

The session length is a key factor that influences model performance of a SBRS, since that it signifies how much information the 
model can rely on to capture user preference. To address RQ7, we explore the performance of our Coase, the two variant models of 
Coase (w/o local context modeling and w/o global context modeling), and seven representative baseline models, i.e., TAGNN (Yu 
et al., 2020), SASRec (Kang & McAuley, 2018), SGNN-HN (Pan et al., 2020), NARM (Li et al., 2017), CORE (Hou et al., 2022), 
GCEGNN (Wang et al., 2020), and CMGNN (Wang, Gao, et al., 2023), under different session lengths in the Diginetica dataset. 
We categorize sessions into short, middle, and long groups with thresholds of 5 and 15 items (short: 5 or fewer, middle: 5 to 
15, long: more than 15). The dataset statistics are presented in Table  10, showing that 71.03% of the sessions are short, 26.94% 
are middle-length, and 2.03% are long. This distribution reveals that most real-world sessions are short, making it challenging 
to capture user behavioral patterns due to limited contextual information in short and middle sessions. Despite these challenges, 
Table  11 shows that Coase outperforms the five baseline models on both the Diginetica-short and Diginetica-middle datasets, while 
achieving comparable performance on the Diginetica-long dataset. These results highlight the effectiveness of Coase in session-based 
recommendation tasks, even with limited session lengths.
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Table 10
Statistics of Diginetica-short, Diginetica-middle, and Diginetica-long.
 Dataset # Sessions # Items # Interactions Avg. session length Avg. action per item 
 Diginetica-short 144 939 40782 444678 3.07 10.90  
 Diginetica-middle 54 984 41011 462360 8.41 11.27  
 Diginetica-long 4141 23071 82166 19.85 3.56  

Table 11
Model performance on short, middle, and long sessions. For each dataset, the bold-faced number is the best score and the second performer is underlined.
 Model Diginetica-short Diginetica- middle Diginetica- long
 @10 @20 @10 @20 @10 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Coase 40.47 20.43 25.18 49.86 21.08 27.55 37.94 17.03 21.94 50.16 17.88 25.03 30.51 13.94 17.82 39.25 14.54 20.02 
 w/o graph learning 40.25 20.15 24.91 49.68 20.80 27.29 37.28 16.83 21.63 49.54 17.69 24.73 29.78 13.97 17.67 37.83 14.52 19.70  
 w/o sequence learning 40.19 20.25 24.98 49.59 20.91 27.35 37.44 16.52 21.43 49.34 17.35 24.44 30.41 14.00 17.85 38.70 14.57 19.94  
 TAGNN 36.14 18.11 22.38 44.58 18.70 24.51 34.21 15.23 19.67 45.40 16.00 22.50 24.35 11.52 14.53 32.00 12.06 16.47  
 SASRec 36.51 18.30 22.58 46.14 18.96 25.01 33.60 14.98 19.33 45.70 15.82 22.39 27.13 12.63 16.03 36.14 13.24 18.30  
 SGNN-HN 38.80 19.14 23.78 48.24 19.79 26.17 35.48 15.74 20.36 47.14 16.54 23.31 29.11 13.33 17.03 36.79 13.86 18.97  
 NARM 33.40 15.91 20.03 42.32 16.53 21.41 33.07 14.42 18.78 44.50 15.22 21.67 25.07 11.15 14.42 32.42 11.65 16.27  
 CORE 39.16 18.85 23.65 49.48 19.57 26.26 35.88 16.47 21.02 47.04 17.24 23.85 29.23 12.93 16.73 38.09 13.54 18.98  
 GCEGNN 38.86 19.36 23.97 48.51 20.03 26.41 37.04 16.26 21.14 48.94 17.09 24.14 29.03 13.73 17.33 35.92 14.21 19.08  
 CMGNN 38.10 18.93 23.47 47.17 19.56 25.76 35.62 15.61 20.30 47.31 16.41 23.25 28.55 13.12 16.76 36.50 13.67 18.77  

Moreover, compared w/o local context modeling to NARM (Li et al., 2017), SASRec (Kang & McAuley, 2018), and CORE (Hou 
et al., 2022), we argue that our SudokuFormer benefits from the disentangled attention mechanism and the stable non-invasive fusion 
method to learn more advanced temporal item transition patterns. Similarly, w/o global context modeling outperforms TAGNN (Yu 
et al., 2020) demonstrates that our Bi-Gated GSAN captures representative non-sequential item dependencies by adopting bi-gated 
graph self-attention network on session star graphs. Furthermore, it is found that the local–global context modeling-based methods 
achieves better performance than the single learning-based methods in most cases. Specifically, SGNN-HN (Pan et al., 2020), 
GCEGNN (Wang et al., 2020), and CMGNN (Wang, Gao, et al., 2023) consistently outperforms TAGNN (Yu et al., 2020), NARM (Li 
et al., 2017), and SASRec (Kang & McAuley, 2018). Meanwhile, our Coase outperforms its two variant models in most cases. It can 
be attributed that the features derived from local and global context modeling are complementary, thus the learning process in dual 
context modeling-based methods is enhanced by local-view and global-view simultaneously. We also note that the performance of 
all the models deteriorates as the session length increases. This decline can be attributed to the presence of a greater number of 
noisy clicks (Zhang, Lin, et al., 2022) and multiple user intents (Zhang et al., 2023) in longer sessions. Therefore, it is challenging 
for these models to precisely predict user behaviors under such complex circumstances.

5.8. Model efficiency

To address RQ8, we compare the efficiency of Coase with six representative baseline models: RepeatNet (Ren et al., 2019), 
TiSASRec (Li et al., 2020), CL4SRec (Xie et al., 2022), TAGNN (Yu et al., 2020), GCEGNN (Wang et al., 2020), and CMGNN (Wang, 
Gao, et al., 2023). All models are trained on a single Nvidia 3090 GPU, with the embedding dimension and batch size set to 100. 
For each epoch across the four datasets, we evaluate GPU memory consumption, training time, and inference time, as summarized 
in Table  12. The results suggest that Coase achieves a strong balance between space and time efficiency while maintaining 
competitive performance. Specifically, compared to dual-context modeling methods GCEGNN and CMGNN, Coase reduces GPU 
memory consumption by 93.67% and 93.68%, training time by 36.45% and 60.56%, and inference time by 7.20% and 13.57% 
on average. In addition, Coase requires less GPU memory, training time, and inference time than RepeatNet. While maintaining 
similar GPU memory consumption as TiSASRec, Coase achieves shorter inference times. It also demonstrates lower training times 
compared to CL4SRec and TAGNN. In summary, Coase offers a more effective trade-off between efficiency and performance than 
existing baselines, highlighting its potential for scalable and efficient deployment in real-world applications.

5.9. Visualization studies

In the first set of ablation studies (see Section 5.5.1), we identified that the global contextual feature extractor has the greatest 
impact on model performance, with SudokuFormer serving as a pivotal element within this module. To gain deeper insights into 
its effectiveness, we will illustrate the attention patterns of SudokuFormer through visualization studies. Specifically, the first 
set of visualizations shows the overall attention pattern of SudokuFormer, highlighting how it captures key interactions within 
sessions. The second set reveals how SudokuFormer operates differently compared to other models, offering insights into its unique 
ability to handle sequential and temporal information. Lastly, the third set demonstrates the significance of each component within 
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Table 12
Summary of efficiency results on four datasets.
 Dataset Method GPU memory (MB) Training time (s) Inference time (s) 
 

Yoochoose 1/64

RepeatNet 840 1213.55 98.11  
 TiSASRec 599 100.27 52.61  
 CL4SRec 611 1842.91 30.54  
 TAGNN 3316 142.45 30.76  
 GCEGNN 13270 513.95 47.18  
 CMGNN 13270 685.92 49.23  
 Coase (Ours) 654 298.80 40.46  
 

Diginetica

RepeatNet 1470 3559.34 360.30  
 TiSASRec 911 189.54 133.34  
 CL4SRec 873 3532.30 72.26  
 TAGNN 7456 586.11 99.04  
 GCEGNN 13286 958.99 107.86  
 CMGNN 13288 1323.16 111.21  
 Coase (Ours) 944 562.67 110.17  
 

Retailrocket

RepeatNet 1896 6660.26 389.77  
 TiSASRec 1097 300.28 116.81  
 CL4SRec 1053 5259.17 66.51  
 TAGNN 10124 1155.33 97.45  
 GCEGNN 13286 960.46 108.76  
 CMGNN 12304 2075.36 120.65  
 Coase (Ours) 1102 773.86 103.84  
 

Dressipi

RepeatNet 876 12770.62 923.12  
 TiSASRec 603 993.36 533.10  
 CL4SRec 711 16298.90 235.72  
 TAGNN 3604 1477.09 338.51  
 GCEGNN 13272 4961.69 490.18  
 CMGNN 15480 8201.25 549.19  
 Coase (Ours) 662 2819.71 430.47  

Fig. 12. Visualizations of the average self-attention weights for a random sampled batch of sessions learned by SudokuFormer, where dark regions indicate that 
the corresponding attention weights are promoted.

SudokuFormer, helping to explain the contribution of its design elements to model performance. Due to space limitations, all 
visualization studies are conducted on the Yoochoose 1/64 dataset.

Fig.  12 shows the averaged attention weights for a random sampled batch of sessions. It is observed that our SudokuFormer has 
a clear diagonal line effect for an item attending to itself. Moreover, we observe a scattered attention pattern where each target item 
has its own distinct sparse focus. It indicates that our SudokuFormer pays attention to some specific items on particular positions 
with special interests.

To visualize how SudokuFormer operates differently from other representative models, we present in Fig.  13 the normalized dot-
product between two position encodings or time interval encodings from SudokuFormer, TiSASRec, SASRec, SGNN-HN, SLIME4Rec, 
and FEARec. It is observed that the position and time interval encodings of SudokuFormer exhibit similar yet distinct mixed patterns, 
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Fig. 13. Visualizations of normalized dot-product between any two encoding vectors in different models. PE and TIE denote the position encoding and the time 
interval encoding, respectively. Q, K, and V denote the key, query, and value, respectively. Darker means the two encoding vectors are closer.

as the disentangled learning effectively captures the hidden relationships among item encoding, position encoding, and time interval 
encoding. In contrast, TiSASRec’s position and time interval encodings show significant differences, resulting in inconsistencies when 
capturing temporal information. Additionally, we observe varied patterns in the position encodings across models. For instance, 
SASRec, SGNN-HN, and SLIME4Rec tend to attend to all positions, with SASRec showing a more uniform pattern. By contrast, FEARec 
shows clear strips and blocks in its position encoding visualization, indicating that the last few positions are relatively independent of 
the others. While each model learns representative position encodings, most fail to fully capture the temporal information embedded 
in time intervals, which negatively impacts their performance.

To further investigate the effectiveness of SudokuFormer, we visualize the correlations in Eq. (19) for a random sampled batch of 
sessions, as shown in Fig.  14. We observe that different terms show its unique attention pattern. For example, the dark blocks with 
various size in the content-to-content term and the position-to-content term shows varying degrees of broad attention. Specifically, 
the first few items focus on more neighbor items in the content-to-content term. By contrast, the last few positions focus on more 
long-distance items in the position-to-content term. Furthermore, the sparse attention pattern represented by time interval-to-content 
term is more scattered, which helps the model capture more implicit information to improve its generalization. The phenomenon 
is consistent with our assumption that each term in the disentangled attention is not redundant.

6. Discussion and conclusion

This paper introduces Coase, a novel SBRS model that collaboratively integrates local and global context modeling. It utilizes 
a unified framework to combine both approaches, leveraging the collaborative effect within a multi-task learning setup. For 
local context modeling, Coase transforms session sequences into session star graphs and employs a Bi-Gated GSAN to learn item 
representations. For global context modeling, it applies position encoding and time interval encoding to capture various aspects of 
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Fig. 14. Visualizations of the different attention terms on our SudokuFormer model for a random sampled batch of sessions. In each matrix, the (𝑖th, 𝑗th) 
element is the correlation between 𝑖th item/position/time interval and 𝑗th item/position/time interval, where darker colors indicate higher correlations. We can 
find that different terms show its unique attention pattern.

temporal information. The SudokuFormer model is then used to update item features through a disentangled attention mechanism 
and a stable fusion method. Additionally, a triple attention mechanism is incorporated to fully capture user preferences, accounting 
for both short-term and long-term preferences, as well as the collaborative effect. Extensive experiments conducted on four real-
world datasets demonstrate that Coase achieves state-of-the-art performance in session-based recommendation tasks. Ablation studies 
further validate the effectiveness of the framework, encoding methods, and components of SudokuFormer.

6.1. Theoretical implications

Our study makes significant methodological contributions for recommender systems. The proposed Coase is a novel SBRS model 
tailored for online platforms that delivers personalized services based on real-time user sessions. It achieves strong performance 
even without relying on external information. Compared with existing methods (Fu et al., 2025; Shin et al., 2024; Wang, Xie, et al., 
2023), Coase offers several key advantages. First, Coase integrates graph learning and sequence learning paradigms to capture both 
local and global contextual features (Wan et al., 2024; Zhu et al., 2023) . This unified approach not only enhances the accuracy 
of item recommendations but also emphasizes the collaborative effects crucial for capturing detailed session-level user preferences. 
Second, for local context modeling (Pan, Cai, Chen, Chen, & Chen, 2022; Zhang, Xu, Wu, et al., 2024), Coase introduces Bi-Gated 
GSAN on session star graphs. This network highlights the intrinsic features of the central node, mitigating the risk of information 
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overload and ensuring more focused and meaningful message passing. Third, for global context modeling (Wang et al., 2022; Wang, 
Zhang, et al., 2024), we propose SudokuFormer, a novel technique that effectively analyzes the complex contextual relationships 
between items, their positions in the session sequence, and the timing of interactions. This results in more accurate and stable 
attention weights, leading to better recommendation quality.

6.2. Practical implications

Our comprehensive experiments in Section 5 validate Coase’s effectiveness and superiority over 20 baseline models across 
four real-world datasets. These findings underscore Coase’s robustness and adaptability in various recommendation environments, 
offering clear advantages for applications that demand high-accuracy, real-time suggestions. Additionally, the analysis of Coase’s 
architecture highlights the significant impact of its core components on performance, with several important practical implications. 
First, by effectively integrating both local and global contextual features, Coase dynamically adapts to evolving user preferences. 
This capability is particularly valuable in real-time recommendation environments, such as e-commerce and streaming platforms, 
where user preferences can shift rapidly (Jannach et al., 2017). Practitioners can leverage this adaptability to deliver more relevant 
and timely recommendations, improving user engagement and satisfaction (Jannach & Jugovac, 2019). Second, instead of relying on 
external side information, Coase track dynamic fine-grained user preferences by considering various internal temporal information. 
In contrast to existing recommender systems (Chen et al., 2024; Wei et al., 2024; Zeng et al., 2025) that rely heavily on user profiles 
and long-term interaction histories, our method effectively balances recommendation precision and privacy protection. It achieves 
competitive performance in recommendations while utilizing only limited interaction history. Last but not least, our experiments 
demonstrate Coase’s capability to effectively handle both short and long user sessions. This versatility suggests practical strategies 
for tailoring recommendation approaches based on session duration and user interaction type, thereby enhancing relevance in both 
exploratory and goal-oriented browsing sessions (Moe, 2003). Together, these results not only confirm Coase’s effectiveness but 
also provide valuable insights for optimizing recommendation system design to meet diverse industry demands, from personalized 
marketing to customer retention and beyond.

6.3. Limitation and future work

While this research has yielded several notable findings and valuable contributions, we also acknowledge certain limitations. 
First, although we validated the effectiveness of the collaborative effect from the first set of ablation studies (see Section 5.5.1), 
its impact on recommendation performance was less pronounced compared to the complete removal of either the local or global 
contextual feature extractor. This prompts us to explore alternative paradigms for integrating both feature extractors in the future 
studies. Second, as shown by the experimental results in Table  11, Coase did not achieve optimal performance on longer sessions. This 
indicates that, in contexts where sessions are lengthy and training data is limited, Coase may not provide the best recommendation 
outcomes for users. Future research could address this by incorporating self-supervised learning techniques, such as knowledge 
distillation, to enhance performance in these scenarios.
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Table A.13
Performance of examined models on Yoochoose 1/64. The best-performing score in each case is highlighted in bold, while the second-best is underlined. A 
superscript ∗ indicates that Coase significantly outperforms the second-best result, based on a paired t-test with a 𝑝-value < 0.05.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Traditional

methods 
5.04 2.69 3.25 7.95 3.09 4.21 10.07 3.26 4.77 12.69 3.40 5.38  

 Item-KNN 26.70 16.83 19.17 35.41 18.01 22.01 39.96 18.37 23.22 42.87 18.53 23.91  
 NextItNet

Local
oriented
methods 

40.07 23.62 27.70 52.13 25.23 31.61 58.21 25.71 33.22 62.04 25.93 34.12  
 SRGNN 46.18 28.13 32.61 58.43 29.78 36.59 64.26 30.24 38.14 67.79 30.44 38.97  
 GCSAN 47.25 28.82 33.41 59.66 30.50 37.44 65.52 30.96 39.00 69.13 31.17 39.85  
 TAGNN 47.65 29.02 33.66 59.93 30.68 37.64 65.65 31.13 39.16 69.12 31.33 39.98  
 LESSR 46.86 28.48 33.05 59.18 30.14 37.05 64.94 30.60 38.58 68.49 30.80 39.41  
 GRU4Rec

Global
oriented
methods 

45.72 27.93 32.36 57.87 29.57 36.30 63.69 30.03 37.84 67.22 30.23 38.68  
 NARM 46.14 28.20 32.66 58.53 29.87 36.68 64.43 30.34 38.25 67.85 30.53 39.06  
 STAMP 44.82 27.94 32.14 56.03 29.46 35.78 61.51 29.89 37.23 64.96 30.09 38.05  
 STAR 46.48 29.49 34.49 56.51 31.84 37.74 61.32 32.22 39.01 64.14 32.38 39.68  
 RepeatNet 45.42 27.23 31.75 57.35 28.84 35.62 63.01 29.29 37.12 66.45 29.48 37.94  
 CORE 44.79 26.60 31.12 57.05 28.25 35.10 63.19 28.74 36.73 66.80 28.95 37.59  
 SASRec 47.09 28.96 33.46 59.44 30.62 37.47 65.43 31.10 39.06 69.03 31.30 39.92  
 TiSASRec 47.83 29.17 33.81 60.11 30.83 37.80 66.09 31.30 39.39 69.60 31.50 40.22  
 AC-TSR 47.84 29.36 33.96 60.48 31.06 38.06 66.63 31.55 39.69 70.42 31.76 40.58  
 CL4SRec 46.08 28.41 32.81 58.08 30.02 36.70 64.21 30.51 38.32 67.84 30.71 39.18  
 DuoRec 46.33 28.70 33.08 58.08 30.27 36.89 63.97 30.74 38.45 67.65 30.95 39.32  
 TCP-SRec

Dual
oriented
methods 

45.78 28.04 32.45 57.50 29.63 36.27 63.15 30.08 37.77 66.58 30.27 38.57  
 COTREC 38.61 28.66 31.15 44.87 29.49 33.17 48.32 29.76 34.07 50.89 29.91 34.68  
 SGNN-HN 46.44 28.57 33.01 58.54 30.21 36.94 64.32 30.67 38.48 67.88 30.87 39.32  
 GCEGNN 48.41 29.53 34.22 60.43 31.15 38.13 66.36 31.62 39.70 69.85 31.82 40.53  
 CMGNN 47.73 29.34 33.91 60.01 30.99 37.90 65.70 31.44 39.40 69.22 31.64 40.24  
 FEARec 46.62 28.79 33.23 58.34 30.37 37.04 64.24 30.84 38.60 67.85 31.05 39.46  
 SLIME4Rec 48.09 29.63 34.22 60.26 31.27 38.17 66.20 31.74 39.75 69.76 31.94 40.59  
 Coase (Ours) 49.05∗ 30.45∗ 35.07∗ 61.25∗ 32.09∗ 39.03∗ 67.12∗ 32.55∗ 40.59∗ 70.50∗ 32.75∗ 41.39∗ 

Table A.14
Performance of examined models on Diginetica. The best-performing score in each case is highlighted in bold, while the second-best is underlined. A superscript 
∗ indicates that Coase significantly outperforms the second-best result, based on a paired t-test with a 𝑝-value < 0.05.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Traditional

methods 
0.52 0.23 0.30 0.95 0.29 0.44 1.29 0.32 0.53 1.59 0.33 0.60  

 Item-KNN 19.27 11.05 13.01 28.34 12.25 15.94 34.48 12.73 17.56 38.99 12.98 18.63  
 NextItNet

Local
oriented
methods 

20.11 11.10 13.33 29.74 12.38 16.43 36.16 12.89 18.13 40.92 13.15 19.25  
 SRGNN 27.85 16.23 19.10 38.91 17.70 22.67 45.93 18.25 24.53 51.10 18.54 25.75  
 GCSAN 29.00 17.16 20.09 39.90 18.61 23.61 46.77 19.15 25.43 51.83 19.43 26.62  
 TAGNN 29.55 17.30 20.33 40.51 18.76 23.87 47.67 19.61 25.77 52.80 19.61 26.98  
 LESSR 28.42 16.55 19.49 39.73 18.05 23.13 46.70 18.60 24.98 51.80 18.89 26.19  
 GRU4Rec

Global
oriented
methods 

26.98 15.57 18.39 37.98 17.03 21.94 45.00 17.58 23.80 50.14 17.87 25.01  
 NARM 27.68 15.99 18.88 38.88 17.48 22.50 45.93 18.04 24.37 51.04 18.33 25.57  
 STAMP 25.55 14.87 17.51 35.76 16.23 20.81 42.38 16.75 22.56 47.33 17.03 23.73  
 STAR 29.30 18.49 21.17 38.66 19.74 24.19 44.50 20.20 25.74 48.75 20.44 26.74  
 RepeatNet 29.35 18.09 20.90 37.48 19.18 23.53 42.10 19.54 24.75 45.39 19.73 25.53  
 CORE 30.65 18.27 21.34 41.39 19.70 24.81 48.21 20.23 26.61 53.02 20.51 27.75  
 SASRec 28.76 16.91 19.85 39.93 18.40 23.45 47.04 18.96 25.33 52.23 19.25 26.56  
 TiSASRec 28.42 16.59 19.52 39.70 18.09 23.16 46.92 18.66 25.07 52.26 18.96 26.33  
 AC-TSR 26.63 15.80 18.48 37.37 17.22 21.94 44.39 17.77 23.79 49.59 18.06 25.02  
 CL4SRec 26.15 15.49 18.13 36.42 16.85 21.44 43.30 17.39 23.26 48.38 17.68 24.46  
 DuoRec 27.68 16.32 19.13 38.40 17.75 22.59 45.50 18.30 24.47 50.70 18.60 25.70  
 TCP-SRec

Dual
oriented
methods 

22.46 12.30 14.81 33.15 13.72 18.25 40.42 14.29 20.18 45.83 14.59 21.46  
 COTREC 24.23 17.02 18.83 27.62 17.48 19.93 29.41 17.62 20.41 30.66 17.69 20.70  
 SGNN-HN 30.31 17.65 20.78 41.42 19.13 24.38 48.39 19.68 26.22 53.44 19.97 27.42  
 GCEGNN 30.42 17.84 20.96 41.71 19.34 24.60 48.66 19.89 26.44 53.72 20.17 27.64  
 CMGNN 29.34 17.06 20.10 40.63 18.56 23.75 47.65 19.12 25.60 52.73 19.40 26.80  
 FEARec 28.36 16.78 19.64 39.18 18.21 23.13 46.20 18.76 24.99 51.38 19.05 26.21  
 SLIME4Rec 29.93 17.51 20.59 41.50 19.05 24.32 48.74 19.62 26.24 54.05 19.92 27.49  
 Coase (Ours) 31.79∗ 18.75∗ 21.98∗ 43.33∗ 20.29∗ 25.71∗ 50.46∗ 20.85∗ 27.60∗ 55.53∗ 21.14∗ 28.80∗ 
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Table A.15
Performance of examined models on Retailrocket. The best-performing score in each case is highlighted in bold, while the second-best is underlined. A superscript 
∗ indicates that Coase significantly outperforms the second-best result, based on a paired t-test with a 𝑝-value < 0.05.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG  
 Pop Traditional

methods 
0.44 0.23 0.28 0.72 0.27 0.37 0.90 0.29 0.42 1.24 0.31 0.50  

 Item-KNN 9.75 6.36 7.08 13.35 6.83 8.22 15.53 7.00 8.80 17.05 7.09 9.15  
 NextItNet

Local
oriented
methods 

45.36 33.61 36.54 52.45 34.56 38.84 56.27 34.86 39.85 58.79 35.00 40.45  
 SRGNN 54.65 40.90 44.35 61.56 41.84 46.60 65.05 42.11 47.52 67.40 42.25 48.07  
 GCSAN 55.56 42.09 45.47 61.92 42.94 47.53 65.21 43.20 48.40 67.44 43.33 48.93  
 TAGNN 56.72 42.52 46.08 63.35 43.42 48.24 66.58 43.67 49.10 68.72 43.79 49.60  
 LESSR 55.79 41.76 45.28 62.33 42.64 47.40 65.67 42.91 48.29 67.88 43.03 48.81  
 GRU4Rec

Global
oriented
methods 

54.44 41.17 44.50 61.14 42.08 46.67 64.58 42.35 47.59 66.89 42.48 48.13  
 NARM 54.88 41.43 44.80 61.63 42.34 46.99 65.19 42.62 47.94 67.49 42.75 48.48  
 STAMP 49.02 38.70 41.27 55.57 39.58 43.40 59.24 39.87 44.37 61.77 40.01 44.97  
 STAR 48.73 39.13 41.53 54.26 39.87 43.32 57.37 40.12 44.15 59.35 40.23 44.61  
 RepeatNet 52.87 40.41 43.55 57.25 41.01 44.98 59.38 41.18 45.54 60.83 41.26 45.89  
 CORE 54.60 40.49 44.03 61.92 41.48 46.40 65.73 41.78 47.41 68.22 41.92 48.00  
 SASRec 53.18 41.11 44.12 60.45 42.08 46.48 64.37 42.40 47.52 67.02 42.54 48.15  
 TiSASRec 56.14 42.33 45.79 62.96 43.25 48.01 66.48 43.53 48.94 68.80 43.66 49.49  
 AC-TSR 52.33 40.65 43.57 59.50 41.61 45.89 63.34 41.92 46.91 66.05 42.07 47.55  
 CL4SRec 51.29 39.78 42.65 58.22 40.71 44.90 61.95 41.01 45.89 64.53 41.15 46.50  
 DuoRec 52.53 40.66 43.62 59.80 41.64 45.98 63.79 41.95 47.04 66.45 42.10 47.66  
 TCP-SRec

Dual
oriented
methods 

44.04 34.72 37.04 49.95 35.51 38.96 53.20 35.77 39.82 55.42 35.89 40.34  
 COTREC 44.32 40.92 41.79 45.21 40.99 41.95 45.77 41.01 42.03 46.20 41.03 42.08  
 SGNN-HN 55.84 41.01 44.73 63.00 41.98 47.06 66.59 42.26 48.01 68.92 42.40 48.56  
 GCEGNN 56.43 42.02 45.64 63.26 42.94 47.85 66.74 43.22 48.78 69.07 43.35 49.33  
 CMGNN 55.46 41.14 44.73 62.40 42.07 46.98 65.92 42.35 47.91 68.30 42.48 48.47  
 FEARec 52.87 40.77 43.80 60.18 41.76 46.17 64.08 42.06 47.20 66.69 42.21 47.82  
 SLIME4Rec 55.71 42.17 45.56 62.97 43.14 47.91 66.76 43.44 48.92 69.28 43.59 49.51  
 Coase (Ours) 56.90∗ 42.91∗ 46.42∗ 63.73∗ 43.83∗ 48.63∗ 67.16∗ 44.10∗ 49.54∗ 69.47∗ 44.23∗ 50.09∗ 

Table A.16
Performance of examined models on Dressipi. The best-performing score in each case is highlighted in bold, while the second-best is underlined. A superscript 
∗ indicates that Coase significantly outperforms the second-best result, based on a paired t-test with a 𝑝-value < 0.05.
 Models Category @5 @10 @15 @20

 Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG 
 Pop Traditional

methods 
1.30 0.74 0.87 2.17 0.85 1.14 2.84 0.91 1.32 3.39 0.94 1.45  

 Item-KNN 13.30 7.94 9.06 19.35 8.76 11.03 23.38 9.09 12.11 26.40 9.26 12.83  
 NextItNet

Local
oriented
methods 

19.68 11.67 13.66 27.11 12.66 16.05 31.91 13.04 17.32 35.47 13.24 18.17  
 SRGNN 22.19 13.33 15.52 29.93 14.36 18.02 34.81 14.74 19.31 38.34 14.94 20.15  
 GCSAN 23.05 13.74 16.05 31.06 14.81 18.64 36.11 15.21 19.97 39.77 15.41 20.84  
 TAGNN 23.35 13.72 16.10 31.60 14.82 18.77 36.69 15.22 20.11 40.38 15.42 20.99  
 LESSR 21.55 13.01 15.13 29.18 14.03 17.59 33.95 14.40 18.85 37.52 14.60 19.70  
 GRU4Rec

Global
oriented
methods 

22.18 13.12 15.36 30.36 14.21 18.01 35.49 14.61 19.36 39.23 14.82 20.24  
 NARM 21.79 12.90 15.10 29.90 13.98 17.72 35.02 14.38 19.07 38.79 14.59 19.96  
 STAMP 20.91 12.78 14.80 27.98 13.73 17.08 32.52 14.08 18.28 35.87 14.27 19.07  
 STAR 19.89 12.48 14.32 26.16 13.31 16.34 30.20 13.63 17.41 33.24 13.80 18.13  
 RepeatNet 21.81 13.46 15.53 28.89 14.40 17.82 33.51 14.76 19.04 36.80 14.95 19.82  
 CORE 20.44 11.89 14.01 27.99 12.90 16.45 32.66 13.27 17.69 36.10 13.46 18.50  
 SASRec 21.58 12.96 15.09 29.41 14.00 17.62 34.47 14.40 18.96 38.21 14.61 19.84  
 TiSASRec 23.08 13.99 16.24 31.05 15.05 18.82 36.11 15.45 20.16 39.82 15.66 21.03  
 AC-TSR 20.93 12.95 14.93 28.25 13.92 17.29 33.03 14.30 18.56 17.29 14.50 19.40  
 CL4SRec 19.30 11.73 13.60 26.33 12.66 15.87 30.99 13.03 17.10 34.48 13.22 17.93  
 DuoRec 21.17 13.15 15.14 28.42 14.11 17.48 33.16 14.49 18.73 36.66 14.68 19.56  
 TCP-SRec

Dual
oriented
methods 

18.33 10.55 12.47 25.43 11.50 14.77 29.97 11.86 15.97 33.36 12.05 16.77  
 COTREC 17.08 12.06 13.31 21.12 12.59 14.61 23.84 12.80 15.33 25.97 12.92 15.83  
 SGNN-HN 22.64 13.14 15.49 30.88 14.24 18.15 36.03 14.64 19.52 39.78 14.85 20.40  
 GCEGNN 23.38 13.82 16.19 31.34 14.89 18.77 36.30 15.28 20.08 39.92 15.48 20.93  
 CMGNN 23.69 13.93 16.35 31.78 15.01 18.97 36.78 15.41 20.29 40.48 15.62 21.17  
 FEARec 20.47 12.71 14.63 27.39 13.62 16.86 31.90 13.98 18.06 35.26 14.17 18.85  
 SLIME4Rec 22.40 13.61 15.79 30.18 14.64 18.30 35.13 15.03 19.61 38.79 15.24 20.47  
 Coase (Ours) 23.65 13.99 16.38 32.03 15.11 19.09 37.23 15.51 20.46 41.03 15.73 21.36 
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