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ABSTRACT 

Urban bus accidents present major safety and operational challenges, particularly in densely populated metropolitan areas. 
This study develops a machine learning-based analytical framework to identify, quantify, and interpret the factors associated 
with severe bus accidents. The framework integrates three components: (i) a structural topic model (STM) to extract latent 
accident scenarios from unstructured narrative data, (ii) an extreme gradient boosting (XGBoost) classifier to predict accident 
severity, and (iii) SHapley Additive exPlanations (SHAP) for post hoc interpretation of model outputs at both global and local 
levels. Using over 15,000 bus accident records (2013–2018) from a Tier-2 city in Jiangsu Province, China, the findings show 

that incorporating text-derived accident patterns markedly improves both predictive accuracy and interpretability. The analysis 
highlights elevated risks linked to rear-end collisions involving electric scooters, sudden stops leading to passenger injuries, and 
left-turn maneuvers in congested areas. SHAP-based explanations yield actionable insights for drivers, transit operators, and 
policymakers, facilitating targeted safety interventions. Methodologically, this study advances interpretable risk modeling through 
the integration of structured and unstructured data, and the modular analytical framework provides a transferable foundation for 
applications across diverse domains of transportation and risk analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

Urban transportation safety has become as a critical issue in
contemporary risk management as cities worldwide confront
increasing traffic density, multimodal network complexity, and
sustainability pressures. Road traffic accidents remain one of
the leading causes of mortality globally, accounting for approxi-
mately 1.19 million deaths each year (World Health Organization
2023 ). The burden of these incidents falls disproportionately on
urban areas in low- and middle-income countries, where rapid
motorization has outpaced safety regulation and infrastructure
development (Ehsani et al. 2023 ). Within this broader context,
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bus accidents represent a distinct and consequential risk domain.
Although public transport is generally recognized as a safer and
more sustainable mode of travel than private vehicles, the large
passenger capacity of buses amplifies the social and economic
impact of each incident, often resulting in multiple casualties,
operational disruptions, and diminished public confidence in 
the transportation system (United Nations Economic Commis- 
sion for Europe 2015 ; Beck et al. 2007 ; Savage 2013 ; Morency
et al. 2018 ). As cities increasingly prioritize bus-based networks
to address environmental and congestion challenges (United 
Nations 2022 ), understanding and mitigating the determinants of
bus accident risk have become essential to achieving both sustain-
its use, distribution and reproduction in any medium, provided the original work is properly 

alysis. 
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able mobility and resilient urban infrastructure. These challenges
underscore the need for advanced analytical frameworks capable
of capturing the multifactorial, nonlinear, and context-dependent
nature of bus accident risk to inform evidence-based prevention
and strategic decision-making. 

Prior studies on transportation safety have predominantly relied
on traditional statistical approaches to identify the determinants
of accident frequency and severity. While these models have
generated valuable insights, they are constrained by assumptions
of linearity, independence, and data normality, and typically
depend on structured variables derived from standardized acci-
dent reports or numerically encoded survey and interview data.
Such limitations restrict their ability to capture the nonlin-
ear, multifactorial, and context-dependent dynamics of accident
causation, where human behavior, environmental conditions,
and operational factors interact in complex ways. With the
increasing availability of large-scale unstructured data-such as
narrative accident descriptions, incident reports, and sensor logs-
recent advances in text mining and machine learning provide
new opportunities to address these challenges. By integrating
structured and unstructured data, these techniques can uncover
latent contextual and behavioral patterns embedded in accident
narratives and develop flexible predictive models capable of
representing complex nonlinear relationships. Building on these
developments, this study proposes an interpretable machine
learning framework that combines topic modeling, predictive
analytics, and explainable machine learning (or explainable AI)
techniques. This unified approach advances the methodological
frontier of transportation risk analysis by enhancing predictive
accuracy, improving interpretability, and generating actionable
insights to inform evidence-based policy design, driver training,
and operational safety management. 

In this research, we introduce an analytical framework for bus
accident risk analytics that comprises three progressive stages: (i)
a topic modeling that uncovers latent semantic structures within
unstructured accident text descriptions and performs automatic
feature discovery and engineering; (ii) a predictive modeling
that ensures high accuracy in forecasting accident severity; and
(iii) a post hoc explanation that offers both local and global
interpretability of model predictions. These stages are opera-
tionalized through the use of three popular machine learning
techniques: structural topic modeling (STM), extreme gradient
boosting (XGBoost), and SHapley Additive exPlanations (SHAP),
respectively. Each selected for its balance of effectiveness, com-
putational efficiency, and interpretability. To validate the frame-
work, we conduct empirical analysis using a comprehensive bus
accident dataset from a Tier-2 city in China, which includes
both structured variables and unstructured textual narratives.
The results demonstrate strong performance in terms of both pre-
dictive accuracy and interpretability. STM identifies 15 coherent
and semantically meaningful patterns from accident narratives,
enriching the feature space and revealing distinctive contextual
mechanisms of accident occurrence. The fine-tuned XGBoost
model outperforms multiple benchmark classifiers, while the
SHAP analysis highlights many STM-derived patterns as key con-
tributors to severity prediction. Collectively, these findings vali-
date the methodological efficacy of the proposed framework and
provide novel insights to inform targeted, data-driven strategies
for accident prevention and urban transport safety management.
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This study makes both methodological and empirical contribu-
tions to the field of risk analysis. Methodologically, it proposes
a novel explainable machine learning framework that balances 
predictive power with interpretability. The framework operates in 
three stages: extracting latent features from unstructured accident
narratives via topic modeling, predicting accident severity using
a nonlinear classifier, and interpreting model outputs through
post hoc explanation. Its modular and extensible design allows
for flexible substitution of methods at each stage, supporting
its application across diverse datasets and analytical contexts. 
Empirically, this work is among the first to analyze bus accidents
using a large-scale dataset that integrates structured variables 
with unstructured narrative descriptions. This comprehensive 
dataset enables a nuanced examination of accident risk factors
across driver behavior, vehicle characteristics, environmental 
conditions, and organizational practices. The analysis identi- 
fies several high-risk scenarios, such as sudden stops leading
to passenger injuries, rear end collisions with electric scoot-
ers, and complex left hand turns, which represent critical
intervention points. These findings provide actionable insights 
at multiple levels: promoting anticipatory driving and route 
familiarity among drivers; enhancing safety training and perfor-
mance monitoring for operators; and informing infrastructure 
design, regulatory policy, and public awareness initiatives for 
policymakers. 

The remainder of this paper is organized as follows: Section 2
provides a review of the existing literature on traffic accident
analytics, with particular emphasis on current methodological 
approaches on bus accident studies and gaps that motivate
our study. Section 3 details the proposed analytical framework,
explaining its three-stage architecture and the rationale for 
the selected machine learning techniques. Section 4 describes 
the dataset, outlines the experimental details, and presents the
analysis of results. Section 5 highlights the study’s method-
ological and empirical contributions, synthesizing key findings 
and exploring their implications for accident prevention from
the perspectives of drivers, transit operators, and policymakers. 
Finally, Section 6 concludes the paper and suggests directions for
future research. For clarity and focus, additional technical details
and extended empirical results are presented in the Supporting
Information. 

2 Literature Review 

Traffic accident studies focus on accident prediction, severity 
classification, and risk inference. They typically model either 
accident frequency or severity as the dependent (or target) vari-
able. Accident frequency refers to the number of traffic accidents
occurring within a specific location or time period and is usually
represented as a count variable. Accident severity , on the other
hand, describes the outcome level of an accident, such as fatal,
serious injury, vehicle or property damage, and is commonly
represented as a binary or ordinal variable. These target vari-
ables are explained by a wide range of factors, including driver
characteristics, vehicle attributes, roadway design, environmental 
conditions, and other operational factors. 

Various types of accidents, including those involving private 
vehicles, trucks, motorcycles, and buses, have been extensively 
Risk Analysis, 2026
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investigated, with hundreds of studies employing diverse analyt-
ical methods and datasets. Recent reviews on accident studies
highlight the increasing sophistication of analytical methods,
from classical regression and hierarchical models to data mining
and machine learning approaches. Early traffic safety research
relied primarily on regression-based statistics models such as
Linear Regression (Cafiso et al. 2010 ), Logistic Regression (Blower
and Green 2010 ; Rahman et al. 2011 ; Ghoubaira et al. 2021 ),
Ordered Logit or Probit (Chang and Mannering 1998 ; Anasta-
sopoulos and Mannering 2011 ; J. Li et al. 2024 ), Poisson (Aguero-
alverde and Jovanis 2008 ;; 2009 ; Chiou and Fu 2013 ), and
Negative Binomial models (Jones and Jørgensen 2003 ; Xu and
Huang 2015 ; X. Wang et al. 2024 ). These approaches were favored
for their interpretability and suitability for structured and small-
to-medium datasets. While traditional models have advanced the
quantitative understanding of traffic accidents, their linearity and
independence assumptions limit their ability to capture nonlinear
and high-order interactions among multiple contributing fac-
tors. The increasing availability of large-scale, high-dimensional
datasets has driven a methodological shift toward data mining
and machine learning approaches. Techniques such as Decision
Trees (Chong et al. 2005 ; Chang and Wang 2006 ; Chang and
Chien 2013 ), Random Forests (X. Li et al. 2018 ; Zeng et al. 2019 ),
Support Vector Machines (Gu et al. 2018 ; Hadjidimitriou et al.
2020 ; Mokhtarimousavi et al. 2019 ; Xi et al. 2019 ), and Neural
Networks (Mussone et al. 2017 ; Sameen and Pradhan 2017 ; Gu
et al. 2018 ; Z. Zheng et al. 2019 ; Hadjidimitriou et al. 2020 ) can
model nonlinear and interactive effects without strict parametric
constraints. Due to space constraints, the following discussion
focuses on methodological developments most relevant to our
study, comprehensive reviews are provided by Lord and Manner-
ing ( 2010 ), Silva et al. ( 2020 ), Wen et al. ( 2021 ), Mannering et al.
( 2021 ), and Skaug et al. ( 2025 ). 

Bus accident analytics is a niche yet increasingly important field,
reflecting the distinct operational and societal characteristics of
public transport. Compared with private vehicles, bus accidents
differ not only in scale and consequence but also in institutional
and operational context. Although buses operate at lower acci-
dent frequencies per passenger-kilometer, their high occupancy
means that a single incident can result in multiple injuries, severe
service disruption, and loss of public confidence. Furthermore,
organizational factors introduce additional layers of risk and
variability across transport systems. Most prior studies focused
on bus accidents draw on relatively small or region-specific
samples and differ considerably in their inclusion of institu-
tional and operational variables (Nguyen and Nguyen 2022 ).
To enhance comparability and generalizability across research
contexts, Table 1 summarizes existing bus accident studies accord-
ing to five contributory categories (i.e., driver, vehicle, road,
institutional, and other) and their methodological approaches. 

Prior bus accident studies typically follow two main approaches:
one based on stakeholder-reported information such as inter-
views and surveys, which provides insights into behavioral and
organizational risk factors; and another based on the analysis
of historical accident records, where statistical methods are
employed to uncover patterns and quantify risk. Specifically,
the first stream leverages qualitative or semi-quantitative data
to examine behavioral, perceptual, and organizational aspects
Risk Analysis, 2026
of safety. For instance, Halpern et al. ( 2005 ) found that sudden
acceleration or deceleration was the leading cause of noncol-
lision injuries among Israeli bus passengers, underscoring the 
importance of improved driver training and passenger awareness. 
Similarly, although not focused exclusively on buses, Nævestad 
et al. ( 2015 ) and Warmerdam et al. ( 2017 ) examined broader traffic
safety contexts, highlighting behavioral risks such as poor speed
monitoring and limited seatbelt use, and emphasizing the impor-
tance of journey planning and communication in risk mitigation.
More recently, L. Zheng et al. ( 2024 ) employed a hierarchical
structures to incorporate latent-variable structural modeling to 
reveal that driver behavior remains the most critical determinant
of injury severity in bus accidents, while organizational safety
management indirectly influences outcomes through its impact 
on driver conduct and vehicle maintenance practices. 

The second, and more commonly adopted, stream of research
relies on archival accident data to quantify and model risk
factors through statistical methods. Early studies, such as those
by Jovanis et al. ( 1991 ) and Björnstig et al. ( 2005 ), leveraged
datasets to uncover recurring patterns in bus accident outcomes.
Jovanis et al. ( 1991 ) identified rear-end collisions as a primary
source of injury in bus crashes within the Chicago metropolitan
area, particularly affecting occupants of other vehicles. Similarly, 
Björnstig et al. ( 2005 ) reported a high incidence of whiplash
injuries in Swedish urban bus crashes and advocated for pre-
ventive policy measures, including mandatory seatbelt use on 
long-distance coaches. 

Logistic Regression and its variants have been widely applied
to examine the determinants of bus accident severity, particu-
larly in capturing the probabilistic relationships between driver 
behavior, vehicle characteristics, and environmental conditions. 
These models are valued for their interpretability and ability to
handle binary or ordinal outcomes. Blower and Green ( 2010 )
found that drivers with prior traffic violations and certain vehicle
types were more likely to be involved in fatal crashes in the
United States, emphasizing the critical role of experience and
compliance in safety outcomes. Rahman et al. ( 2011 ) reported
that adverse weather conditions in Canada increased the like-
lihood of accidents, though the resulting injuries were often
less severe, suggesting that drivers may adopt more cautious
behavior under poor visibility or slippery road conditions. Using
national accident data from Greece, Theofilatos et al. ( 2012 )
showed that roadway geometry, lighting, and pavement quality 
significantly affect injury severity, with urban and rural areas
exhibiting distinct risk profiles. In Iran, Nasri and Aghabayk
( 2021 ) demonstrated that higher speed limits, nighttime driving,
and the presence of vulnerable road users were associated
with greater fatality risk, underscoring the need for targeted
infrastructure design and regulatory enforcement. More recently, 
Zeng et al. ( 2025 ) identified driver fatigue, road curvature, and
vehicle age as persistent predictors of severe bus-taxi collisions in
China, further highlighting the contribution of both human and
operational factors to accident outcomes. 

Multinomial Logit, Ordered Logit, Generalized Ordered Logit, 
and Ordered Probit have also been widely used in the prior
studies. Chimba et al. ( 2010 ) examined the frequency and severity
of bus accidents in the United States through Negative Binomial
3 of 16
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and Multinomial Logit, finding that roadway design features
(e.g., lane width, intersection density, and parking availability)
significantly influence both. In Bangladesh, Barua and Tay ( 2010 )
used Ordered Probit and found that accident severity was higher
during weekends and off-peak hours, while the presence of
enforcement measures such as police patrols and traffic-calming
infrastructure effectively mitigated risk. Extending this line of
research, Gu et al. ( 2020 ) introduced a Spatiotemporal Random-
Effects Zero-Inflated Negative Binomial (in short Spatiotemporal
ZINB) model, revealing that higher passenger volumes and a
greater proportion of male drivers on a route were associated with
increased crash frequencies, thereby highlighting the influence of
exposure and demographic composition on accident risk. Other
studies have explored demographic, contextual, and hierarchi-
cal dimensions of accident severity. Kaplan and Prato ( 2012 )
employed Generalized Ordered Logit and identified that younger
( < 25) and older ( > 55) drivers faced a greater likelihood of
fatal outcomes, particularly in high-speed or intersection-related
crashes. Prato and Kaplan ( 2014 ) analyzed Danish accident data
using a similar modeling framework and found that driver age,
gender, and behavior-along with road characteristics influenced
crash severity. Feng et al. ( 2016 ) combined Clustering with
Ordered Logit to show that road conditions, cyclist presence,
and driver demographics influence crash severity differently
across driver groups, highlighting substantial heterogeneity in
risk behavior. 

Hierarchical modeling has further advanced the understanding
of accident severity by accounting for the nested structure of
accident data and capturing the influence of factors operating
at multiple levels. Using accident records from South Korea,
Yoon et al. ( 2017 ) used Hierarchical Ordered Model to identify
both micro-level factors (e.g., speed, alignment, and weather
conditions) and macro-level influences (e.g., road infrastructure
quality and emergency response capacity) as significant determi-
nants of injury severity. Park et al. ( 2019 ) and Shen et al. ( 2022 )
extended the analysis to environmental conditions and bus-
pedestrian collisions, respectively, demonstrating how regional
and operational contexts shape the distribution and severity of
crash outcomes. 

Collectively, these studies underscore the multifaceted and hier-
archical nature of bus accident risk, shaped by the interaction
among individual behavior, vehicle and roadway characteristics,
organizational safety practices, and environmental conditions.
However, prior research has relied predominantly on structured
quantitative data, often overlooking the rich contextual and
behavioral insights embedded in textual accident narratives.
Furthermore, few studies have leveraged advanced machine
learning techniques capable of modeling complex, nonlinear
relationships while retaining interpretability. To address this gap,
our study integrates structured and unstructured data within a
novel machine learning framework that combines topic mod-
eling, predictive modeling, and post hoc interpretation. Using
a large-scale, multi-source dataset comprising over 15,000 bus
accident records, the framework uncovers latent accident pat-
terns, predicts severity outcomes, and interprets the underlying
risk factors, providing a scalable and transparent foundation for
evidence-based transportation safety management. 
Risk Analysis, 2026
3 Three-Stage Machine Learning Analytical 
Framework 

Figure 1 presents a schematic view of the proposed analytical
framework, which comprises three stages: (i) accident pattern 
discovery, (ii) predictive modeling, and (iii) post hoc explana-
tion. In Stage 1, latent semantic structures are extracted from
bus accident narratives using a probabilistic topic model and
transformed into semantically interpretable themes that capture 
contextual and severity-related patterns; the resulting accident 
pattern proportions are then combined with other feature vari-
ables, along with the target variable of accident severity, to form
a comprehensive dataset. Stage 2 focuses on predictive modeling
of accident severity using the merged dataset. Stage 3 performs
post hoc interpretability analysis of the fine-tuned predictive 
model to quantify the contribution of each input feature to the
predictions. The following subsections detail the methods used 
in each stage. The framework is modular, allowing alternative
models to be integrated at any phase; the rationale and advantages
of the chosen methods are discussed in depth. 

3.1 Discovering Accident Patterns With STM 

The first stage employs STM (Roberts et al. 2016 ) to identify
bus accident patterns from textual descriptions of accidents. In
this context, patterns (or topics ) are conceptualized as distribu-
tions over a vocabulary of words, encapsulating semantically 
coherent “themes.” Assume a total of 𝐾 patterns exist within 
the bus accident text descriptions. Each description is treated
as a document , represented by 𝑑 ∈ {1 , . . . , 𝐷} , and each word
within the description by 𝑡 ∈ {1 , . . . , 𝑇𝑑 } . The observed words 𝑤𝑑,𝑡 

are instances of unique terms from a vocabulary, indexed by
𝑣 ∈ {1 , . . . , 𝑉} . The STM is a generative graphical model, with
its data-generating process depicted in Figure 2 . Each circle in
the model represents a variable, where shaded circles denote
observed variables and unshaded circles, hidden variables. The 
shaded rectangle symbolizes computational replications. 

STM can be broadly divided into three components: (i) the topical
prevalence model, (ii) the topical content model, and (iii) the core
language model. The former controls how words can be allocated
to bus accident patterns as a function of covariates. It allows the
correlated topic proportion 𝜃𝑑 , and the topical prevalence can be
influenced by covariates 𝑋̄𝑑 through a standard regression model, 
that is 𝜃𝑑 ∼ LogisticNormal (𝑋̄𝑑 𝛾, Σ) , where 𝛾 is the coefficient
vector and Σ is the covariance matrix. Covariates on the topical
content 𝑋 allow for the rates of words used for each pattern to
differ by covariate value. According to Roberts et al. ( 2014 ), the
rate 𝛽𝑑,𝑘,𝑣 satisfies 

𝛽𝑑,𝑘,𝑣 ∼
exp { 𝜁𝑣 + 𝜅𝑘,𝑣 + 𝜅𝑦𝑑 ,𝑣 

+ 𝜅𝑦𝑑 ,𝑘,𝑣 } ∑
𝑣 

exp { 𝜁𝑣 + 𝜅𝑘,𝑣 + 𝜅𝑦𝑑 ,𝑣 
+ 𝜅𝑦𝑑 ,𝑘,𝑣 } 

, (1) 

where 𝜁𝑣 is the marginal log-transformed rate of term 𝑣, and
𝜅𝑘,𝑣 , 𝜅𝑦𝑑 ,𝑣 

, 𝜅𝑦𝑑 ,𝑘,𝑣 are coefficients for the topical content model.
Then, the core language model performs a two-step generative
process for each bus accident text description: (i) given the topic
proportion 𝜃𝑑 , for each word within a text description 𝑑, an
5 of 16
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FIGURE 1 Schematic view of the proposed three-stage analytical framework. 

FIGURE 2 Schematic view of STM. 
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accident pattern 𝑧𝑑,𝑛 is sampled from a multinomial distribution
𝑧𝑑,𝑛 ∼ Multinomial ( 𝜃𝑑 ) ; (ii) conditional on the pattern 𝑧𝑑,𝑛 , a
word 𝑤𝑑,𝑛 is sampled from a multinomial distribution 𝑤𝑑,𝑛 ∼

Multinomial ( 𝛽𝑑,𝑧 ) . 

In this stage, we employ a probabilistic topic modeling approach
rather than neural or large language model (LLM)–based tech-
niques such as BERT and GPT (Miao et al. 2016 ; Dieng et al.
2020 ; Srivastava and Sutton 2017 ; Devlin et al. 2019 ; Brown et al.
2020 ; Ouyang et al. 2022 ). Although neural and LLM-based
models can capture deep contextual semantics and dynamic
word meanings, their advantages often come at the cost of
interpretability, computational efficiency, and reproducibility.
Kirilenko and Stepchenkova ( 2025 ) compared a range of topic
modeling approaches in tourism research and found that, while
neural and transformer-based models perform well on short or
noisy texts, probabilistic models such as Latent Dirichlet Alloca-
tion (LDA) (Blei et al. 2003 ) remain favored for their transparency
and consistency. Building on these insights, our study adopts the
STM, a state-of-the-art probabilistic framework that extends LDA.
STM provides a nuanced and contextualized understanding of
 

6 of 16

e

semantic structures in bus accident narratives, capturing com- 
plex thematic patterns that conventional models assuming topic 
independence often overlook. Moreover, its Bayesian formulation 
enables uncertainty quantification in topic estimation, offering 
a transparent and interpretable foundation for data-driven risk
analysis and decision support. Despite its increasing adoption in
tourism and business analytics (Tonidandel et al. 2022 ; B. Chen
et al. 2025 ), STM has yet to be applied to risk management or
transportation safety research. 

3.2 Predicting Accident Severity With XGBoost 

The accident patterns identified in the previous stage are com-
bined with additional variables extracted from accident records, 
encompassing driver attributes, vehicle specifications, roadway 
and environmental conditions, and organizational characteris- 
tics, to form a comprehensive dataset for predictive modeling.
The aim of this stage is to predict accident severity, which may be
defined as a binary (e.g., severe vs. nonsevere) or multi-class (e.g.,
minor, moderate, severe) outcome, consistent with prior studies
Risk Analysis, 2026
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reviewed in Section 2 . In this study, severity is represented as a
binary variable (see dataset description in Section 4.1 ), framing
the task as a supervised two-class classification problem. The
proposed framework, however, remains adaptable to alterna-
tive formulations, including multi-class or continuous severity
representations, depending on the used dataset. 

XGBoost (Chen and Guestrin 2016 ), a widely used predictive
algorithm, is employed at this stage. It constructs an ensemble of
decision trees in an additive manner, where each subsequent tree
is trained to correct the residual errors of the preceding ones. This
iterative process seeks to minimize a regularized loss function,
defined as: 

ℒ ( 𝑓 ) =
∑

𝑖 

𝑙( 𝑦𝑖 , 𝑦̂ 𝑖) +
∑

𝑚Ω( 𝜙𝑚 

) , (2)

where 𝑓 denotes the overall prediction function, 𝑙( 𝑦𝑖 , 𝑦̂𝑖 ) is a
differentiable convex loss function that quantifies the discrepancy
between observed and predicted outcomes, and Ω( 𝜙𝑚 

) is a
regularization term that penalizes model complexity to improve
generalization. This formulation allows XGBoost to balance
predictive accuracy with overfitting control. For readers seeking
a more detailed explanation of the algorithm, please refer to
Appendix 4 of the Supporting Information. 

XGBoost is selected in this stage as the predictive model of
choice due to its demonstrated performance and strong align-
ment with the characteristics of the task. Tree-based methods,
including decision trees and their ensemble extensions, have long
been applied in risk analysis because of their ability to model
complex decision-making processes and accommodate heteroge-
neous data types. Early studies, such as Frohwein and Lambert
( 2000 ) and Frohwein et al. ( 2000 ), employed multiobjective
decision trees to evaluate rare and severe event risks, establishing
the foundation for structured and interpretable models in risk
assessment. Similarly, Weng et al. ( 2013 ) developed a tree-based
logistic regression model for predicting work zone casualties,
underscoring the practical value of decision-tree frameworks in
safety-critical contexts. Building on these developments, recent
advances in ensemble learning, particularly gradient boosting,
have shown strong potential for transportation safety applica-
tions, with XGBoost achieving notable success in predicting
accident severity and related risk outcomes (Khattak et al. 2024 ;
Kabir et al. 2024 ; Q. Wang et al. 2025 ; Y. Li et al. 2025 ). 

Beyond its empirical success, XGBoost offers several technical
advantages that make it particularly well suited for large-scale
accident data. It supports efficient parallelized boosting, inte-
grates regularization to mitigate overfitting, and robustly handles
missing or sparse data. Compared with other advanced machine
learning models that typically demand extensive data and inten-
sive parameter tuning, XGBoost achieves high accuracy with
relatively modest computational cost and fewer hyperparameter
constraints. This balance between parsimony and performance
reflects the principle of Occam’s razor (Murphy 2022 ), whereby
simpler models are preferred unless additional complexity yields
substantial benefits. Empirical results presented in Section 4 also
confirm XGBoost’s strong predictive performance, reinforcing
its suitability for this classification task. Nevertheless, the pro-
posed framework remains intentionally modular, allowing for
Risk Analysis, 2026
the substitution or integration of more advanced methods, such
as deep neural networks or hybrid architectures, when future
applications involve more complex data structures or demand 
greater representational capacity. 

3.3 Explainable Analytics With SHAP 

This stage provides post hoc explanations for the decisions made
by the fine-tuned XGBoost from the previous stage. The state-
of-the-art interpretability technique, SHAP (Lundberg and Lee 
2017 ), is employed. Grounded in cooperative game theory, SHAP
calculates Shapley values to quantify each feature’s marginal 
contribution to an individual prediction. This enables a trans-
parent understanding of how different features influence model 
outputs, both at the case level and across the entire dataset.
Such interpretability is particularly critical in risk modeling, 
where understanding the rationale behind predictions supports 
accountability, trust, and the translation of analytical results into
actionable safety insights. 

Specifically, in cooperative game theory, groups of players (called
coalitions ) are the primary units of decision-making and may
enforce cooperative behavior. In supervised learning setting, 
features in an input data instance can be considered as players
in a coalition and the Shapley value for one feature is defined as
the average marginal contribution of the a feature value across
all possible coalitions. Let 𝜉𝑗 ( 𝑓, 𝑥) denote the Shapley value
representing the impact of feature value 𝑗 on the prediction of the
XGBoost classifier 𝑓 for the given input data 𝑥. We can compute
it using a weighted sum that represents the impact of each feature
being added to the model averaged over all possible orders of
features being introduced. That is, 

𝜉𝑗 ( 𝑓, 𝑥) = 

∑
𝑊⊆{1 ,. . . ,𝐽} ⧵{ 𝑗} 

|𝑊 |!( 𝐽 − |𝑊 | − 1)! 

𝐽! 
[ 𝑓𝑥 ( 𝑊 ∪ { 𝑗}) − 𝑓𝑥 ( 𝑊)] , 

where 𝐽 is the size the feature vector, and 𝑊 is the subsect of
{1 , . . . , 𝐽} ⧵ { 𝑗} . 

SHAP enjoys several desirable theoretical properties that con- 
tribute to its robustness and credibility as a model-agnostic
explanation technique. Specifically, it satisfies three key axioms 
derived from cooperative game theory: (i) local accuracy (also
known as efficiency ), (ii) missingness , and (iii) consistency . These
properties ensure that SHAP values provide meaningful and 
mathematically grounded attributions of feature importance. For 
a detailed explanation of SHAP axioms, please refer to Appendix 6
of the Supporting Information. 

These properties set SHAP apart from many other interpretability
methods, making it particularly well-suited to risk modeling 
applications where transparency, fairness, and theoretical rigor 
are crucial (Khattak et al. 2024 ; Q. Wang et al. 2025 ). One of
SHAP’s main strengths lies in its model-agnostic design, allowing
it to be applied consistently across diverse machine learning
models. This flexibility is especially beneficial in analytical 
frameworks where different predictive models may be evaluated 
or combined. In addition, SHAP supports both instance-level and
global interpretability, offering insight into individual predictions 
while also summarizing overall feature importance across the 
7 of 16
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dataset. This dual capability distinguishes SHAP from alternative
approaches such as Local Interpretable Model-Agnostic Expla-
nations (LIME) (Ribeiro et al. 2016 ) and Confident Itemsets
Explanation (CIE) (Kenny et al. 2021 ), reinforcing its value for
interpretable and accountable risk analysis. 

4 Experiments 

This section presents our experiments, covering the dataset, key
experimental steps, and result analysis. The evaluation assesses
the predictive accuracy and interpretability of the proposed
framework, and demonstrates its practical applicability to real-
world accident severity prediction. 

4.1 Dataset and Preprocessing 

The bus accident dataset used in this study is obtained through a
research collaboration with public transport operators in a Tier-
2 city in Jiangsu Province, China. It contains 15,076 bus accident
records across 243 routes operated by 36 companies between 2013
and 2018. To comply with non-disclosure agreements and insti-
tutional ethical standards, all sensitive commercial and personal
information has been anonymized or replaced with pseudony-
mous identifiers in publication. This includes the names of
bus companies, route identifiers, driver information, and the
identities of injured individuals. 

The target variable, accident severity, was encoded by the data
provider as a binary indicator (severe vs. nonsevere) based on
insurance claim records and repair cost information. The dataset
contains 17 feature variables across the five feature categories
summarized in Table 1 , including accident timestamp, unstruc-
tured description, cause, type, weather conditions, company and
route identifiers, vehicle specifications (length, energy type, brake
and suspension systems), and driver attributes (ID, gender, age,
education, and driving experience). 

The original dataset was in Chinese, including variable names,
non-numerical categorical values, and unstructured accident
narratives. To ensure consistency in analysis and facilitate publi-
cation, all textual elements were translated into English. Variable
names and categorical values (e.g., accident type, weather condi-
tion, energy type) were translated manually to preserve semantic
precision. Automotive-related terms and technical jargon were
standardized during translation. For example, the category

describing the bus brake
system was translated as “Front disc and rear drum brake.”
Details of these translations are provided in Appendix 1 of the
Supporting Information. 

For the large corpus of unstructured accident descriptions, the
Google Cloud Translation API is employed, leveraging pretrained
neural machine translation models to achieve consistent and
context-aware translation quality (Lucas et al. 2015 ).1 The trans-
lated texts were then manually reviewed to correct contextual
nuances and resolve inconsistencies. Because our data were
obtained through a research collaboration with public transport
operators and the accident narratives were written for police
documentation and insurance claim purposes, they are generally
8 of 16
informative, concise, and well-structured. Consequently, the 
translation quality is high and retains the essential contextual
and semantic content of each record. The corpus contains very
little jargon or technical terminology. It should be noted, however,
that the names of roads, streets, and buildings are rendered in
pinyin, as are the names of bus drivers or injured individuals.
In the publication document, company and personal names are
anonymized to comply with ethical requirements. For reference, 
representative accident descriptions in both Chinese and English
are presented in Appendix 2 of the Supporting Information. 

4.2 Latent Accident Patterns 

Prior to training the STM, comprehensive text preprocessing was
conducted on the translated English accident narratives. The 
procedure followed the standard workflow implemented in the 
stm package in R (Roberts et al. 2019 ), including lowercasing,
tokenization, removal of punctuation and numerical values, and 
elimination of stop words. The package employs an approximate
variational Expectation-Maximization (EM) algorithm for 
model estimation but does not compute topic exclusivity when
covariates on topic content are specified. In our implementation,
bus length, brake system, driver gender, driver education, 
weather condition, month, and hour were included as covariates
on topic prevalence. 

The number of latent patterns ( 𝐾) is a key hyperparameter in
topic modeling that must be specified prior to training. Following
established fine-tuning procedures (Roberts et al. 2014 ; Hu et al.
2019 ; B. Chen et al. 2025 ), we systematically searched 𝐾 values
ranging from 5 to 50 and evaluated alternative models using two
complementary metrics-semantic coherence (Mimno and McCal- 
lum 2008 ) and exclusivity (Airoldi and Bischof 2016 )-to guide
model selection (see Appendix 2 of the Supporting Information
for metric definitions). Figure 3 presents the STM model selec-
tion results. As expected, semantic coherence decreases while 
exclusivity increases as 𝐾 grows. The third subplot illustrates
the trade-off between these two metrics, with the red stepwise
line marking the Pareto frontier that represents the optimal
balance between exclusivity and coherence. Among the candidate 
models, those with 𝐾 = 7 , 15 , 20 , and 32 exhibited the most
favorable trade-offs. After qualitative comparison of the generated 
topic structures and their representative accident descriptions 
(see Appendix 3 of the Supporting Information), the model with
𝐾 = 15 was found to produce the most semantically coherent
and interpretable patterns. Therefore, 𝐾 = 15 was adopted for 
subsequent analyses. 

Table 2 summarizes the 15 latent patterns extracted from the
textual descriptions of bus accident records. The “Top words”
column lists the most probable terms inferred from the topic-
ord distribution. Because each accident narrative typically 

represents a mixture of several corpus-wide themes, we manually
reviewed representative descriptions with high topic probabilities 
to facilitate interpretation (see Appendix 2 of the Supporting
Information). This manual inspection, together with the exam- 
ination of top-ranked words, enabled us to assign concise and
meaningful descriptive labels to each topic. The resulting human-
interpreted summaries, reported in the “Summary” column, 
Risk Analysis, 2026
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FIGURE 3 Selection of the optimal number of patterns for the STM. 
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provide a clear overview of the dominant semantic patterns
uncovered by the STM. 

Specifically, Pattern 1 is about collisions arising from bus revers-
ing in stations or car parks, with windshield or mirror broken.
Pattern 2 is about to rear-end collisions (mainly the bus rear-
ends a car, truck, taxi and so on) at a specific location such
as Tongjiang road and Jinling Road. The name of both roads
also appears in the column “Top words.” Pattern 3 describes
sideswipe collisions due to a car in the same direction changing
lanes. In mainland China, all traffic should drive on the right-
hand side of the road. Therefore, slower lanes and slip roads are
on the right, and middle and left lanes should only be used to
overtake slower traffic. There are two scenarios in this pattern.
First, a car travels fast and changes lanes from left lane to right
lane so the left door or front corner of the bus gets damaged.
Second, a car accelerates and changes lanes from the right lane
to the left lane so the right door or front corner of the bus
gets damaged. Pattern 4 is about collisions that the bus is rear-
ended by electric scooters, motorcycles, or tricycles when it is
waiting at the traffic light. Pattern 5 describes bus accidents with
injured passengers or pedestrians. The description contains a
lot of details, including the bus movement direction, the name
and age of injured people, and the specific damage to the body.
Many records show severe injuries (e.g., bone fractures, head
hematoma) so injured people have been taken to hospital. Pattern
6 is about sideswipe collisions between vehicles. There is no
detailed location and no damage description. Pattern 7 describes
sideswipe or rear-end collisions between vehicles. Many records
do not contain detailed accident locations but they mention that
vehicles travel on a road which is along the east-west direction.
Also, detailed damages of the bus are described such as bumper,
mirror, and taillights. Pattern 8 is also about sideswiping or rear-
end collisions between vehicles. Different to Pattern 7, many
record descriptions provide a detailed accident location, and
vehicles travel on a road which is along the north-south direction.
However, detailed damages to the bus are not provided. Pattern 9
describes sideswipe or rear-end collisions with cars or pedestrians
when the bus turns left or right at the intersection. Pattern 10 is
about sideswipe collisions with a fixed object. There is no detailed
accident location or damage description. However, in many text
descriptions, the bus driver’s surname is provided (e.g., Zhang,
Chen, Wang). Pattern 11 is about sideswipe collisions between
vehicles. Different from Patterns 6–8, many text descriptions
contain a detailed location but no bus movement direction and
Risk Analysis, 2026

ve
damage details. Pattern 12 describes sideswipe collisions with a
fixed object. Different from Pattern 10, the accident location and
damage details (e.g., water tank, rear taillights) are provided in
many record text descriptions. Pattern 13 is about bus sudden stop
accidents causing passenger injuries. Some descriptions provide 
the accident location. However, compared to Pattern 5, many
text descriptions are brief, do not provide injury details, and the
injured people are not taken to the hospital. Pattern 14 describes
sideswipe or rear-end collisions mainly due to road issues such
as road construction, small turning angles, and so on. Pattern 15
is about sideswipe or rear-end collisions with a car. Compared
to other patterns, many text descriptions are very brief, do not
contain detailed accident location and damage details. 

The identified patterns provide more details about in which sce-
nario these bus accidents occur. They are consistent with much
existing literature in traffic accident analysis and prevention. For
example, in Pattern 5, we find that many injured people are
elderly females. This is consistent with the findings of Wilmut
and Purcell ( 2021 ) that elderly people are more likely to be
seriously injured in road traffic accidents. To better illustrate
the relationship among these patterns, we use the Meinshausen-
Buhlmann method (Zhao et al. 2012 ) to visualize the network
structure. As depicted in Figure 4 , each node of the graph
represents a pattern, and two patterns are connected by a link
(or edge) if they tend to co-occur with a high probability. It
reveals the correlation of patterns, which further verifies our
pattern labeling. For example, Patterns 2, 6, 8, 10, 11, and 14 are
about sideswipe or rear-end collisions but with fewer damage
details; Patterns 1, 3, 7, and 12 provide damage details for different
sideswipe or rear-end collisions; Patterns 5 and 13 describe bus
accidents with people injuries. 

4.3 Severity Prediction and Post Hoc 
Explanations 

XGBoost was implemented to predict bus accident severity using
its open-source Python library in a single-machine environ- 
ment running Python 3.2 Categorical variables were transformed 
into binary indicators via one-hot encoding, and model fine-
tuning was conducted using 10-fold cross-validation combined 
with a grid-based hyperparameter search. This procedure was 
applied not only to XGBoost but also to several commonly
used machine learning algorithms for benchmarking, includ- 
9 of 16
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TABLE 2 Summary of identified patterns for text description of bus accident records. 

Pattern Summary Top words a Proportion 

1 Collision arises from bus reversing 
(with damage description) 

mirror, station, glass, reversing, broken, 
windshield, right 

5.94% 

2 Rear-end collision between vehicles (at 
a detailed place) 

road, driving, west, east, intersection, 
Tongjiang, Jinling 

7.54% 

3 Sideswipe collision between vehicles 
(due to changing lanes) 

car, right, left, front, north, south, 
direction 

18.92% 

4 Rear-end collision (waiting for the 
green light, by cyclist) 

electric, rear-ended, bike, tricycle, light, 
cyclist, motorcycle 

4.16% 

5 People injury accidents (with a detailed 
injury description, people sent to 

hospital) 

hospital, female, south, old, north, 
injured, years 

4.32% 

6 Sideswipe collision between vehicles 
(no detailed place and no damage 

description) 

car, sideswipe, drove, party, going, 
walking, fled 

8.73% 

7 Sideswipe collision between vehicles 
(no detailed place but with direction 

and damage description) 

damaged, bus, east, west, left, 
sideswipe, rear 

9.21% 

8 Sideswipe collision between vehicles 
(at a detailed place, with direction but 

no damage description) 

north, south, truck, traveling, going, 
garden, middle 

5.04% 

9 Sideswipe collision between vehicles 
(left hand turns) 

causing, rear-end, turning, cars, taxi, 
turn, two 

2.24% 

10 Sideswipe collision with a fixed object 
(no detailed place and no damage 

description) 

time, place, arrived, went, Zhang, 
Chen, Wang 

14.87% 

11 Sideswipe collision between vehicles 
(at a detailed place, no direction and 

damage description) 

collided, section, bridge, descended, 
street, village, mentioned 

3.60% 

12 Sideswipe collision with a fixed object 
(at a detailed place, with damage 

description) 

hit, guardrail, park, wipe, roadside, 
entering, platform 

2.11% 

13 No collision but people injuries with 
detailed description 

passenger, injured, fell, sudden, stop, 
passengers, door 

7.86% 

14 Sideswipe or rear-end collision (mainly 
due to road issues) 

vehicle, front, vehicles, collision, due, 
slipped, venue 

2.13% 

15 Sideswipe or rear-end collision (no 
detailed place and no damage 

description) 

car, point, sideswiped, left, body, small, 
drive 

3.32% 

𝑎 Words within each topic with the highest probability inferred from the topic-word distribution parameter. 
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ing Random Forest, Gradient Boosting Decision Trees (GBDT),
AdaBoost, Multi-Layer Perceptron (MLP), K-Nearest Neighbors
(KNN), and Logistic Regression. While these methods have been
used in some previous traffic accident studies (see Section 2 ),
their application to bus accident analytics remains limited.
The specific hyperparameter configurations used during model
tuning are provided in Appendix 5 of the Supporting Information.
Model performance was evaluated using the area under the
receiver operating characteristic curve (AUC), a standard metric
for assessing the discriminative ability of binary classifiers. As
shown in Figure 5 , XGBoost consistently achieved the highest
AUC scores across multiple folds, outperforming all benchmark
10 of 16
models. This result supports the use of XGBoost as the primary
predictive model within the proposed framework. Furthermore, 
the framework is inherently modular and can readily accommo-
date alternative or more advanced machine learning algorithms
if required by future datasets or analytical objectives. 

The SHAP framework was implemented in Python 3 via the
TreeExplainer (Lundberg et al. 2020 ) to provide post hoc
interpretation of the predictions produced by the fine-tuned 
XGBoost model. Figure 6 presents two empirical examples of local
explanations, illustrating the contribution of different features to 
the predicted severity of bus accidents. In these examples, the
Risk Analysis, 2026
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FIGURE 4 Network graph of the identified patterns from STM. 
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original Chinese accident descriptions are highlighted in yellow
and their English translations in gray. The colors red and blue
denote positive and negative contributions to the prediction,
respectively. The first (top) example corresponds to a severe
bus accident, where 𝑓( 𝑥) = 0 . 89 is substantially higher than the
base value 𝔼 [ 𝑓( 𝑥)] = 0 . 1556 . High values of Patterns 4 and 5,
combined with low values of Patterns 1, 6, 10, and 12, increase
the SHAP value, reinforcing the “severe” classification. The
second (bottom) example, classified as nonsevere with 𝑓( 𝑥) =
0 . 01 , shows the opposite effect: low values of Patterns 4, 5, and
13, together with a high value of Pattern 3, reduce the SHAP value
below the base expectation. 

While these local explanations reveal detailed reasoning behind
each classification, their insights are case-specific. To obtain a
broader perspective, we aggregated many local explanations to
examine global feature importance. Features with large absolute
Shapley values exert stronger influence on model predictions;
thus, averaging these absolute values across all data instances
provides a measure of overall feature impact. Figure 7 displays the
top 30 globally important features along with a summary of local
explanation distributions. In the summary plot, red dots represent
high feature values and blue dots represent low ones, while the
x -axis denotes the SHAP contribution for each feature across sam-
ples. Notably, several latent patterns identified in the first stage
appear among the most influential predictors, confirming that
incorporating STM-derived features from unstructured text sub-
stantially enhances both model performance and interpretability.

Figure 7 highlights Patterns 5, 13, and 4 as the most influential
factors associated with severe bus accidents. As discussed in
Section 3.1 , these patterns capture accident scenarios involving
passenger or pedestrian injuries and therefore contribute posi-
tively to severity classification. Pattern 5 corresponds to incidents
involving injured passengers or pedestrians (often older females),
aligning with findings reported by Björnstig et al. ( 2005 ), Prato
Risk Analysis, 2026
and Kaplan ( 2014 ), Sam et al. ( 2018 ), and Wilmut and Purcell
( 2021 ). Pattern 13 primarily reflects noncollision injuries due to
sudden braking or acceleration, with top words such as “fell”,
consistent with Halpern et al. ( 2005 ), who identified sudden
deceleration as a major mechanism of injury among standing
passengers. Pattern 4 captures situations where buses are rear-
ended by electric scooters, motorcycles, or tricycles while waiting
at traffic lights, resulting in injuries to the riders-typically due to
their inattention or misjudgment. 

Left-hand turns (Pattern 9) also emerge as a key feature
contributing to severe bus accidents. In China, where vehicles
are left-hand drive and travel on the right-hand side, left turns
(or U-turns) at intersections require wider turning angles and
greater attentional demands. Drivers must simultaneously 
monitor cross-traffic, signals, and pedestrians, which increases 
cognitive load and risk. For instance, if a bus driver follows a car
through a left turn and assumes it will complete the maneuver,
failure to check its progress may lead to rear-end collisions or
abrupt stops causing passenger injuries. Furthermore, blind 
spots during turning maneuvers can endanger pedestrians (Park 
et al. 2019 ; Yoshitake and Shino 2018 ). According to the National
Highway Transportation Safety Administration ( 2010 ), left-hand 
turns account for approximately 22% of all vehicle crashes in the
United States, often resulting from obstructed views, misjudged 
gaps or speeds, inadequate surveillance, or false assumptions
about other drivers’ actions. 

Rear-end and sideswipe collisions exhibit mixed effects on acci-
dent severity. Positive contributions are observed for patterns
containing detailed spatial or contextual information (e.g., Pat- 
terns 2, 8, 9, and 11), whereas brief or generic descriptions (e.g.,
Patterns 3, 6, 7, and 15) tend to reduce SHAP values. Rear-
end collisions occurring during reversing maneuvers in depots 
or car parks (Pattern 1) and sideswipes involving fixed objects
(Patterns 10 and 12) are typically associated with minor property
damage rather than serious injury. Additionally, results suggest 
that newly established bus companies or routes tend to exhibit
better safety performance. This may be attributed to (i) more
recent adoption of formal safety and risk management sys-
tems and (ii) greater accountability and vigilance among newer
employees. 

5 Discussion 

This study offers both methodological and empirical contri- 
butions to the field of risk analysis and transportation safety.
Methodologically, it presents a unified three-stage machine 
learning framework that integrates structured data (e.g., driver 
demographics, vehicle specifications, road conditions) with 
unstructured accident narratives to support a richer, more contex-
tualized analysis of accident risk. The framework combines topic
modeling, non-linear severity prediction, and model-agnostic 
post hoc interpretation to balance predictive accuracy with 
explainability and computational efficiency. For explainability, 
the STM in Stage I extracts interpretable themes from accident
descriptions, while SHAP in Stage III enables interpretation
of model outputs—facilitating actionable insights for drivers, 
operators, and policymakers alike. In terms of efficiency, the
selected models in stages (i.e., STM, XGBoost, and SHAP)
11 of 16
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FIGURE 5 Cross-validation performance of machine learning algorithms based on AUC. 

FIGURE 6 Empirical examples of local explanations on the contributions of features towards the bus accident severity. 
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are lightweight, scalable, and capable of running on standard
hardware, eliminating the need for specialized computational
infrastructure. This makes the framework particularly well-suited
for large-scale, real-time, or resource-constrained deployments in
operational risk environments. 

Another notable methodological advantage of the proposed
framework is its modular and extensible design, which allows for
easy substitution and adaptation of components to meet different
analytical needs. In Stage I, STM is used to extract interpretable
topics from accident text narratives, offering an effective compro-
mise between thematic coherence and computational efficiency.
This stage, however, can be enhanced by more advanced text
modeling approaches, such as neural topic models grounded in
variational inference and semantic embeddings or LLMs that are
capable of capturing deep contextual meaning from narrative
data. Stage II applies XGBoost for severity prediction but it can
12 of 16
also be replaced with tailored deep learning architectures when
greater predictive capacity is required. Stage III leverages SHAP
for post hoc explanation, providing a robust, model-agnostic 
approach to interpreting variable importance. While SHAP is 
considered a state-of-the-art method, alternative techniques, 
such as LIME, or CIE, can also be integrated, depending on
application-specific requirements and stakeholder needs. 

Building on this methodological foundation, the analysis yields 
several actionable insights for accident prevention. At the indi-
vidual level, patterns extracted from narrative data reveal that
carelessness, sudden braking, and misjudgment are dominant 
causes of severe injury incidents, while overtaking and short fol-
lowing distances are more associated with minor collisions. These
findings highlight the need for improved route awareness and
schedule adherence to reduce abrupt maneuvers. The integration 
of Advanced Driver Assistance Systems could further enhance 
Risk Analysis, 2026
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FIGURE 7 Plots of (left) global feature importance and (right) local explanation summary. 
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safety by supporting decision-making related to acceleration,
braking, and steering (Yan et al. 2007 ). Although urban buses in
many countries are not required to be equipped with seatbelts,
drivers should ensure passengers are securely positioned before
departure. Routine announcements, such as “Please hold on,
the bus is about to move,” play an important role, particularly
for older or vulnerable passengers-and could be expanded to
context-specific warnings in high-risk zones. 

At the organizational level, the analysis highlights a particularly
vulnerable subgroup: young but experienced drivers. While their
tenure suggests familiarity with operations, this group may
be prone to behavioral risk factors such as overconfidence,
impulsivity, and sensation seeking (Clarke et al. 2006 ; Rahman
et al. 2011 ), increasing their likelihood of involvement in severe
incidents. By contrast, newly qualified drivers, often closely
monitored and recently trained, tend to exercise greater caution
behind the wheel. These findings point to the need for more
nuanced interventions that go beyond experience alone. Targeted
initiatives such as risk-awareness workshops and performance-
based safety incentive schemes can help address this gap (Carrera
et al. 2020 ; Keller et al. 2021 ). Complementing these efforts, in-
vehicle monitoring technologies, such as telematics systems or
mobile applications, can offer continuous feedback on driving
behavior and reinforce safe practices. Metrics like eco-driving
scores have demonstrated success in promoting both road safety
and fuel efficiency (Baecke and Bocca 2017 ). 

From a policy perspective, our findings point to two key strategies.
First, public education campaigns targeting passengers, pedes-
trians, and cyclists can raise awareness of safe behaviors and
reduce accident vulnerability. For example, passengers are safer
Risk Analysis, 2026

e

when facing forward and holding handrails, as sideways standing
increases the risk of head or chest injuries in the event of a sudden
stop (Yao et al. 2021 ). Cyclists and pedestrians should be especially
cautious near intersections, where visibility and turning dynam- 
ics introduce heightened risks. Awareness campaigns should also 
reflect regional traffic patterns, including the risks associated 
with left- or right-hand turns, depending on the country’s driv-
ing orientation. Second, infrastructure improvements, such as 
installing dedicated turning lanes at high-risk intersections, can 
help eliminate conflict points and enhance road safety (Depart-
ment of Transportation Federal Highway Administration 2009 ). 

6 Conclusion 

We have proposed a novel explainable machine learning 
framework for bus accident analytics that integrates three 
components: topic modeling, tree-based ensemble learning, and 
model-agnostic post hoc interpretation. Using a comprehensive 
dataset from a Tier-2 city in China, the framework uncovers
latent patterns in accident narratives and produces interpretable 
predictions of accident severity. The empirical results provide 
actionable insights for accident prevention and demonstrate 
the framework’s value for policymakers and practitioners 
in the transportation sector. Methodologically, the framework 
advances explainable analytics in risk analysis and transportation
safety by integrating structured and unstructured data within 
a modular architecture that balances predictive accuracy, 
interpretability, and computational efficiency. Its flexible design 
also allows adaptation to domains beyond transportation and 
risk management. The successful application to bus accident 
data underscores its contribution as both a robust research
framework and a practical decision-support tool. 
13 of 16
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This paper paves the way for several promising avenues of future
research. As the primary objective of this study is to develop and
demonstrate the proposed methodological framework, a formal
expert evaluation was not included within the current scope.
In future research, such an evaluation could be incorporated
to further validate and extend the framework through expert
assessment and practical feedback. Future extensions of the
framework could also integrate image or video data to provide
pixel-level contextual information and a more nuanced under-
standing of accident scenarios. Incorporating such visual data
would enable scalable, automated analysis through advances in
computer vision, thereby enriching the interpretation of accident
dynamics. This direction holds significant potential for advancing
safety research and represents a promising avenue for future
investigation. More broadly, this work aims to encourage con-
tinued exploration of big data and machine learning approaches
in business and risk analytics, fostering innovation in evidence-
informed decision-making. 
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