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Road safety remains urgent global issue

The WHO Global Status Report on Road Safety 2023
indicates that since 2010, road traffic deaths have de-
creased by 5%, bringing the annual total to 1.19 million.
However, road crashes remain a significant global health
issue, with pedestrians, cyclists, and other vulnerable
road users facing increasing and severe risks of death.

Thttps: //www.who.int.


https://www.who.int/news/item/13-12-2023-despite-notable-progress-road-safety-remains-urgent-global-issue

Bus accidents are important for several reasons

® High casualty potential: Buses often carry many passengers, so a single accident can
cause significant injuries or fatalities, making each incident potentially very serious.

¢ Public safety: Buses are an essential part of public transport, particularly in densely
populated areas. Ensuring their safety affects the whole community and helps maintain
trust in transport systems.

® Vulnerable populations: Bus passengers often include school children, the elderly, and
those on lower incomes, making their safety a key concern.?

Zhttps:/ /www.nhtsa.gov.



® Our data was provided by transport companies from a tier-2 city in Jiangsu province,
China, through a research collaboration. Commercial and personal information has been
anonymised to comply with ethical agreements.

® The original Chinese text data was translated into English using the Google Cloud
Translation API, following [1], and reviewed for accuracy.

e Standard pre-processing techniques were applied, including cleaning missing and
inconsistent values.

e The final dataset includes 15,076 bus accidents from 243 routes across 36 companies,
covering the period from 2013 to 2018.



Schematic view of the proposed analytical framework
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Stage |: Topic modeling®
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Structural topic model (STM) [3]

Topical prevalence Language model
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Determining the optimal number of patterns in the STM
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® Semantic coherence [4] measures how S e
frequently the most probable words in a E
topic co-occur in the same documents. 3

(8]

e High coherence means that the model has '% 200+
effectively grouped words that are £
commonly found together, which helps n
ensure that the topics are meaningful. 50
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Determining the optimal number of patterns in the STM
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¢ Exclusivity [5] measures how unique a -
topic’s top words are, ensuring they do not Z 9501
appear in other topics. 3
x
® High exclusivity ensures that these top W 9254
words are not shared by multiple topics,
making the topics more distinct. 9.004
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Determining the optimal number of patterns in the STM

e Combining these metrics enables 9.751
fine-tuning of the STM to produce -
meaningful, non-overlapping topics. :(% 9.50

® STM with K = 7,15, 20, 32 offer the best 3
trade-offs under a convex utility i 9.25-

preference. Among these, K = 15 yields
the most semantically interpretable results 9.004
and is therefore used in our analysis.
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Detected bus accident patterns (topics)

Pattern | Description Prop

1 Collision arises from bus reversing (with damage description) 5.94%
2 Rear-end collision between vehicles (at a detailed place) 7.54%
3 Sideswipe collision between vehicles (due to changing lanes) 18.92%
4 Rear-end collision (waiting for the green light, by cyclist) 4.16%
5 People injury accidents (with a detailed injury description, people sent to hospital) 4.32%
6 Sideswipe collision between vehicles (no detailed place and no damage description) 8.73%
7 Sideswipe collision between vehicles (no detailed place but with direction and damage description) | 9.21%
8 Sideswipe collision between vehicles (at a detailed place, with direction but no damage description) | 5.04%
9 Sideswipe collision between vehicles (left hand turns) 2.24%
10 Sideswipe collision with a fixed object (no detailed place and no damage description) 14.87%
11 Sideswipe collision between vehicles (at a detailed place, no direction and damage description) 3.60%
12 Sideswipe collision with a fixed object (at a detailed place, with damage description) 2.11%
13 No collision but people injuries with detailed description 7.86%
14 Sideswipe or rear-end collision (mainly due to road issues) 2.13%
15 Sideswipe or rear-end collision (no detailed place and no damage description) 3.32%




Correlation of bus accident patterns
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Stage |I: Predictive models

® Input: 64 features after one-hot encoding, including variables from given data and topic modeling
® Qutput: 1 - severe accident; 0 - non-severe accident

® Model tuning using 10-fold cross-validation coupled with randomized search across
hyper-parameter space.
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Stage Ill: Post-hoc explanations

Post-hoc explanations are methods applied after a model makes predictions to explain how decisions
were produced, particularly for complex "black-box'

models like neural networks and ensemble methods.

Method

Pros

Cons

Impurity-based feature importance

Fast and efficient, built into tree-
based models, and globally inter-
pretable

Biased towards features with more
categories, only applicable to tree-
based models, and feature interac-
tion ambiguity

Permutation feature importance

Model-agnostic and less biased

Can be computationally expen-
sive, feature interaction ambiguity

Local interpretable model-agnostic expla-

nations (LIME) [7]

Model-agnostic, provides local
interpretability

Sensitivity to parameter settings,
computationally expensive, and
only local explanations

Shapley additive explanations (SHAP) [8]

Theoretically sound and consis-
tent, handles interactions well

Computationally expensive, espe-
cially for large datasets




Shapley additive explanations (SHAP) [§]

® The general idea behind SHAP is to compute Shapley values from game theory to obtain
both local and global insights into the contributions of feature values in the data.

® |t can be computed as a weighted sum representing the marginal impact of each feature
when added to the model, averaged over all possible feature combinations:

girog= . PZMIED G gy - s,

J!
Wg{lvvJ}\{J} D D
=Weight =Contribution

where J is the size the feature vector, and W is the subsect of {1,...,J} \ {/}.



Examples of local explanations on feature importance

“Going straight from south to north, it collided with an electric scooter on the “HEELETES—HENRAEE
right in the same direction. Scratches on the rear panel of the bus and MEARE, BAREFERLES,
damage to the front panel of the electric scooter. The rider of the electric B LR IR BHEBRA B
scooter, male 42-year-old Wang XXX, was injured. Injuries: Skull fracture and 42% XXX 5. 1515 © BB

intracranial hematoma were treated in Changzhou First People's Hospital.” RIARFEH M E — ARERET.
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base value f(x)
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ﬁ’;ttern 6 = 0.009 Pattern 10 = 0.00502 Lattern 12 = 0.00389 L’attern 1=0.00439 Pattern 4 = 0.15005 Pattern 5 = 0.39221
Pattern | Description
5 People injury accidents (with a detailed injury description, people sent to hospital)
4 Rear-end collision (waiting for the green light, by cyclist)
1 Collision arises from bus reversing (with damage description)
12 Sideswipe collision with a fixed object (at a detailed place, with damage description)
10 Sideswipe collision with a fixed object (no detailed place and no damage description)
6 Sideswipe collision between vehicles (no detailed place and no damage description)




Examples of local explanations on feature importance

“HEERETS—WRT A NEE
R AR . BAREAFRIEER
B, BEERAHZR.

“Going straight from west to east, it collided with a car changing lanes
on the right in the same direction. The paint on the right front wheel of
the bus was damaged, and the left mirror of the car was damaged.”

.

higher & lower

f(x) base value
0.01
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Pattern 13 = 0.00274 Pattern 5 = 0.00422 Pattern 3 = 0.46596 Pattern 4 = 0.02184

Pattern | Description

13 No collision but people injuries with detailed description

People injury accidents (with a detailed injury description, people sent to hospital)
Sideswipe collision between vehicles (due to changing lanes)

Rear-end collision (waiting for the green light, by cyclist)

S o




Top 20 important global features (left) and their local explanations (rig
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Insights & implications for bus drivers

® Carelessness, sudden braking, and underestimation are major causes of severe bus accidents.
® Non-injury collisions often occur due to overtaking or maintaining a short front distance.

® Bus drivers should be familiar with their route and timetable, and use technology to aid with gap
decision, acceleration rate, and steering actions.

e Although seat-belts are not mandatory on city buses in many countries, drivers should ensure
passengers are seated or holding a handrail before pulling away.

® Announcements like "Please hold on, the bus is about to move" should be maintained, particularly
for elderly passengers, and additional warnings should be given in specific situations, such as deep
downbhill or gravel roads.



Insights & implications for bus companies

® Bus driver's age and years of driving experience are important factors in accident severity.

® Experienced young bus drivers are associated with a higher risk of severe accidents. On the one
hand, younger drivers are more prone to severe accidents due to psychological characteristics such
as impulsivity and risk-seeking behaviour. On the other hand, less experienced bus drivers may be
more cautious and attentive, leading to fewer mistakes and a lower overall risk.

® Companies should focus on educating experienced young drivers and incentivizing safe behaviors
to reduce the risk of severe accidents.



Insights & implications for government and public bodies

® Governments should prioritize the installation of dedicated left or right-turn lanes at intersections
with high turn volumes or crash histories to improve safety.

® Public bodies should organize more promotional events to raise awareness of transport risks for
passengers, pedestrians, and cyclists.

® Transport authorities should ensure that passengers are properly instructed to hold handrails and
face forward while standing on buses to minimize the risk of injury.



Discussion

® The proposed framework integrates topic modeling, predictive modeling, and post-hoc
explanations to analyze urban bus accident data — an approach not previously adopted in this
literature (see paper Table 1).

® |t is modular and flexible: Stage | supports other topic or transformer-based models; Stage Il allows
different predictive models; and Stage Il accommodates various post-hoc explanation methods.

® QOur model choice (STM+XGBoost+SHAP) balances predictive performance and interpretability:
(i) STM incorporates document-level covariates and captures latent accident themes; (ii) XGBoost
delivers strong predictive accuracy, handles nonlinearity and requires limited tuning; (iii) SHAP
provides consistent, model-agnostic explanations at both local and global levels.
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Appendix: Evaluation metrics for topic models

® Semantic coherence [4] estimates the likelihood that an accident record contains the first few
words of a pattern simultaneously. Given a list of the @ most probable words in pattern k, the
semantic coherence for the pattern Cj is calculated as follows:

ZQ:E 1log{e(ve,vé))+ 1}7

e=2 e=1
where ©(ve, v.) is the number of times words v, and v, co-occur in the accident record text.

® Exclusivity [5] means the top words for a pattern are unlikely to appear within top words of other
patterns, which can be computed using the frequency-exclusivity (FREX) score:

FREX,, =

™ n 1—m -
ECDF(Biv)/ S5y B, ECDF(Bey) |

where ECDF is the empirical cumulative distribution function and 7 is the weight.#

*In our used R package, 7 = 0.7 by default [9].
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