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Option on S&P 500 index
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Stochastic underlying models

Brownian motion (or Wiener process, or continuous-time random walk)

Geometric Brownian motion

* Jump diffusion process

Levy model

Bachelier, L. (1900) Theorie de la speculation. Annales Scientifiques de ’Ecole Normale Superienre, 3(17):21-806.

Samuelson, P. (1965) Proof that properly anticipated prices fluctuate randomly. [ndustrial Management Review, 41— 49.
Kou, S. (2002) A jump-diffusion model for option pricing, Management Science, 48(8):1086—1101.

Hobson, D. (2004) A survey of mathematical finance. Proceedings of the Royal Society: Mathematical, Physical and Engineering
Sciences. 460:2052, 3369-3401



Black-Scholes model

Given a filtered probability space (Q, Wy oF {ft}tzo,]P), X can be modeled by the following stochastic dif-
ferential equation
dXt - }lXtdt + (TXtth,

where y is a constant drift, ¢ is a constant volatility, W; is a Brownian motion under .

The value of an European call option contract is then given by

C(X;,t) = N(d1)X; — N(dp)Ke (T4,

=i [ () (4 )
dy =dy — 0T -1,

where r is the risk-less interest rate, T is the expiration date of the option, and t is the current time.

Black, F., & Scholes, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637—654.



Implied volatility
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The mplied volatility of an option is defined as the id
. . o . . O
inverse problem of option pricing, mapping )
from the option price in the current market to a g 1
single value. When it 1s plotted against the
option price strike price and the time to maturity, 0
it 1s referred to as the zmplied volatility surface. 0




To avoid dealing with interest rates and dividends, the forward measure is used

The implied volatility v(m,T) can be written as a function of m and 7, where m is the log forward
moneyness and T is the annualized time to maturity. The value of v can be obtained by inverting the

Black-Scholes formula. The log forward moneyness can be computed by log{ Ff—T}, where K is the strike
price, (F,1)¢>0 is the forward price of the asset with maturity date T so F; 1 := %TL) where B(t,T) is the
price at time ¢ of a zero-coupon bond paying one unit at time T.

Cont, R., & Da Fonseca, J. (2002) Dynamics of implied volatility surfaces. Quantitative Finance, 2, 45—060.



Prior financial domain knowledge

1. financial conditions studied in the existing financial mathematics studies
2. empirical evidence volatility smile



Financial conditions

Absence of arbitrage conditions
Gulisashvili, A. (2012) Analytically Tractable
Stochastic Stock Price Models. Springer.

Boundaries conditions
Carr, P., & W, L. (2007) Stochastic

skew in currency options. Journal of
Financial Economics, 86, 213-247.

Asymptotic slope condition
Lee, R. (2004) The moment formula for

implied volatility at extreme strikes.
Mathematical Finance. 14(3), 469—480.

THEOREM 1. Let dy(m,7) = — == = ﬁ”gm’T), n(-) and N(-) be the probability density and
cumulative functions of a standard normal distribution, respectively. The following conditions
should hold for an implied volatility surface v(m,T):

1. (Positivity) v(m,7) >0 for all (m,7) e R x R*.

2. (Twice Differentiability) For every T >0, m — v(m,T) is twice differentiable on R.

3. (Monotonicity) For every m € R, 7 — /Tv(m,T) is increasing on R*, therefore
v(m,7) +270;v(m,7) 2 0.

4. (Absence of Butterfly Arbitrage) For all (m,7) e R x RY,

(1 3 mamv(m,'r)) _ (v(m,7)T0Rv(m,T))? gl Ao i o i

v(m,T) 4
5. (Limit Condition) For every T >0, lim,,_, . d,(m,T) = —o0.
6. (Right Boundary) N(d_(m,T)) — /TOnv(m,7)n(d_(m,7)) >0 if m > 0.
7. (Left Boundary) N(—d_(m,7)) +/T0nv(m,T)n(d_(m,7)) 20 if m <O0.

8. (Asymptotic Slope) For every T >0, 2|m|—v*(m,7)7 > 0.



Volatility smile and smile function

1
o(2) = \/ztanh(z + 5) +tanh(—%z +¢), z€R,
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Neural network architecture
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Yang, Y, Zheng, Y, & Hospedales, T. (2017). Gated neural networks for option pricing: rationality by design. .4.4AI.




Embedding constraints into optimisation
min/ = {y + ’)/51 + 045 + 1763 + p€4 + wls,

1 il A 2 1 - Un — vAn 2
by = Nﬂ;(log(z’n) —log(dn))” | +PB N nZ::l( = ), < Joint data loss
MSLE MSPE

i
]
]
3

ax(0,—a(mp,7;)), <— Monotonicity condition > a(m,T):=v(m,T) +279;0(m,T)

p=1g=1
> b(m, ) = (1— miz)n(z;—(':)f))z _ (v(m,r)Tc“)4,nv(m,r))2 + to(m, T)dymo(m, T)
Pl Q PZ Q
bs="), ) max(0,—ci(mp,79)) + ) ) max(0,—ca(mp,, 7)), < Boundary condition
p1=1q=1 p2=1q=1
>c1(m,7):=N(d_(m,7)) — /TOv(m,T)n(d_(m,T))
>cp(m,T) := N(—d_(m,7)) + /TOmv(m, T)n(d_(m,T))
P Q
ly=Y_ ) max(0,—(g(mp,7;) —€)), < Asymptotic condition > g(m, ) :=2|m| —v*(m,T)T
p=1g=1

[ W2+ [W] 2 + | |[W]]3, <— Regularization for the single model,
DT EL WO R+ Ty [[WO[2 + S [WO|2 + ||W2 + |[W][2,  for the multimodel.
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Examined models & hyperparameters’ setting

Model Description Model Hyperparameter
SSVI | [17] I|J|K|a|f |y |6|n|p| @
Multi | The proposed model specified in Egs. (2)-(11). Multi |48 |5[1]|1]10]1]10 1] 5e5
Multi" | The Multi model trained without embedding Multi' |4 8 |5 |1]1]0 ][00 |0|5e5
61,85, €3, s, Single | 1|32 -1 [1]10][1]10]1]5e5
Single | The single network model so there is no weighting Single™ | 1 (32| -[1|1[0/[0] 0 |0]5e5
network, and||W||% and||ﬁ1||% are not included in the Vanilla |1 (32| - |1|1]10| 1|10 | 1 | 5e-5
regularization term {5 for the model training Vanilla| 1 |32 | - [ 1|1] 0 |[0| 0 |0]5e5
Single” | The Single model trained without embedding
{1, €2, €3, 4.
Vanilla | The neural network model with the simplest architec-
ture — it has a single hidden layer which only uses the
sigmoid activation function and the model’s output
is censored to be non-negative.
Vanilla’ | The vanilla model trained without embedding

ti,€3,43, 4.

* Gatheral, J., & Jacquier, A. (2014). Arbitrage-free SVI volatility surfaces. Quantitative Finance, 14, 59-71.
* Kingma, D, & Ba, J. (2015). Adam: a method for stochastic optimization. ICLR, pp. 1-13.
* Yang, Y, Zheng, Y, & Hospedales, T. (2017). Gated neural networks for option pricing: rationality by design. .4.4AL



Overall performance — mean absolute percentage error (MAPE)

Option price

Implied volatility

Training Test
Model I T STD | Mean STD
Multi | 174 050 | 334 2.18
Multi" | 1.76 050 | 335 2.17
Single | 2.15 067 | 3.60 2.12
Single’ | 1.82 052 | 338 2.6
Vanilla | 3.21 098 | 446 2.07
Vanilla' | 2.87 080 | 418 2.04
SSVI | 259 085 | 373 2.18

Trainin Test
hodel: | ~iiean s%) Mean STD
Multi | 597 1.86 | 10.64 6.72
Multi" | 603 1.86 | 10.67 6.70
Single | 7.38 257 | 11.64 6.68
Single’ | 620 191 | 10.77 6.67
Vanilla | 11.31 3.57 | 14.61 6.42
Vanilla” | 1053 3.34 | 1417 6.60
SSVI | 871 272 | 12.74 6.74




Conditions check

Model | Monotonicity | Absence of butterfly arbitrage | Left boundary | Right boundary | Asymptotic slope

Multi 0.00% 7.02e-6% 0.00% 0.00% 0.00%
Multi” 1.28% 4.87% 0.00% 14.06% 0.00%
Single 0.00% 5.56e-3 % 0.00% 0.05% 0.00%
SingleJf 0.00% 14.88% 0.95% 3.16% 0.00%
Vanilla 3.75e-3% 1.53e-2% 4.07e-3% 0.00% 0.00%
Vanilla' 5.32% 5.72% 14.63% 0.00% 0.54%




Conclusion

* Technology wise, we propose a framework of incorporating prior financial domain
knowledge into neural network design and training. This 1s an important step for interpretable
machine learning, and we hope the framework can motivate many other investigations of
machine learning applications in finance.

* From the application perspective, we develop a best-performing prediction model, and the
conventional financial conditions and empirical evidence are met empirically. To the best of
our knowledge, this is one of the very first neural networks tailored for implied volatility
surface.



Thank youl



