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ABSTRACT
Quantifying the value of data within a machine learning work-

flow can play a pivotal role in making more strategic decisions

in machine learning initiatives. The existing Shapley value based

frameworks for data valuation in machine learning are computa-

tionally expensive as they require considerable amount of repeated

training of the model to obtain the Shapley value. In this paper, we

introduce an efficient data valuation framework EcoVal, to estimate

the value of data for machine learning models in a fast and practical

manner. Instead of directly working with individual data sample,

we determine the value of a cluster of similar data points. This value

is further propagated amongst all the member cluster points. We

show that the overall value of the data can be determined by esti-

mating the intrinsic and extrinsic value of each data. This is enabled

by formulating the performance of a model as a production function,
a concept which is popularly used to estimate the amount of output

based on factors like labor and capital in a traditional free economic

market. We provide a formal proof of our valuation technique and

elucidate the principles and mechanisms that enable its accelerated

performance. We demonstrate the real-world applicability of our

method by showcasing its effectiveness for both in-distribution and

out-of-sample data. This work addresses one of the core challenges

of efficient data valuation at scale in machine learning models. The

code is available at https://github.com/respai-lab/ecoval.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Informa-
tion systems→ Information systems applications.
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1 INTRODUCTION
Data valuation is a pivotal concern in modern machine learning

(ML) and data analytics, where the quality and worth of data have

profound implications for decision-making, model performance,

and data marketplace. Quantifying the worth of data plays an impor-

tant role in data pricing and regulation compliance [39, 49], remov-

ing low-value/noisy data from the training set [28, 48], and incen-

tivizing data sharing by personal data monetization [17, 18, 23, 25].

In a ML framework, the quality of data determines the effectiveness

of the final model. Therefore, identifying high and low value data

through data valuation would yield significant benefits for a wide

range of machine learning applications.

Background: In recent studies, a cooperative game theory con-

cept, Shapley value [41] has been frequently used for data valu-

ation in supervised ML [17, 18, 25]. It offers a desirable property

of equitable reward allocation. The data Shapley and its exten-

sions [17, 18, 31, 32] have empirically shown the effectiveness of

Shapley value based valuation in a fixed dataset as well as in a

particular distribution of data, allowing for out-of-time data val-

uation. The value of a data point in ML relies on its individual

contribution to the model’s performance and its relationship with

other data points utilized during training. The presence of similar

data in the training set can dilute the significance of individual

points. To account for these interactions, data Shapley methods

evaluate the contribution of each point by determining how its

absence affects the overall performance of the model. This process
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usually involves repeatedly training the model with the selective

exclusion of certain instances or subsets, thereby identifying those

with the most substantial impact. The impact is measured by the

observing the change in the performance score of the ML model.

However, this incurs a high computational cost, typically requiring

model training runs in the order of𝑂 (𝑛2) in current methodologies,

where 𝑛 is the total number of data points in the dataset.

Motivation: While offering insightful analyses of data point

significance and alleviating the issue of poor discrimination of

data quality in leave-one-out (LOO) error methods, existing data

Shapley based frameworks [17, 18, 32, 50] suffer from a high com-

putational cost. The need for a higher number of repeated training

sessions for a model, as required by these methods, leads to inef-

ficiencies in both time and resource utilization. Furthermore, this

inefficiency translates to an increased carbon footprint due to the en-

ergy requirements of training, thereby exacerbating climate change

concerns [33]. The development of scalable algorithms capable of

handling extensive datasets is essential for practical use of data

valuation in real-world applications.

Our Contribution:We adopt a two-step approach where the

valuation is performed at cluster-level first and the value is further

divided among the cluster members. The similar data points are

represented through a cluster which significantly reduces the total

number of data points to deal with during training phase of the

valuation process. At cluster level, we can use a simple LOO error

for valuation since there is minimal possibility (almost zero) of a

similar datum to be found in other clusters. The difficulty however,

is to divide the value at each cluster among the cluster members. To

address this issue, a novel approach is proposed based on production
functions in economics. Our two-step approach aims to significantly

speed up the valuation process in comparison to the Truncated

Monte Carlo (TMC) Shapley.

In this paper, we introduce a a novel framework based on Leave

Cluster Out (LCO) and production functions for data valuation in

machine learning. The framework is computationally efficient, with

theoretical and empirical verifications. The following are the key

contributions of our work:

Novel Framework: The intuition behind our framework is that

we find a group of similar items and estimate this cluster’s marginal

contribution. As similar data items are bound to have similar values,

we extend this principle to estimate cluster-level value through

Leave Cluster Out (LCO).

We introduce a production function formulation representing the

relation between the data and its utility in a model. We show that

this formulation can be used to estimate the value of individual

data based on the value of each cluster.

Computational Efficiency: We estimate the intrinsic and ex-

trinsic value of each data point to determine the individual data

value. By checking only the marginal contribution of the represen-

tative data point of a cluster, we substantially reduce the overhead

of creating multiple subsets containing similar data points. Our

approach is scalable to large datasets without being limited by the

presence of similar data points in the dataset.

Theoretical Proof: We provide a theoretical proof of our data

valuation method. We also show that the valuation obtained by

our method has negligible error margin when compared with the

vanilla Shapley value approximation method.

Empirical Evaluation: We conduct experiments with machine

learning models on MNIST, CIFAR10, and CIFAR100. We compare

the value rankings of our method with the existing state-of-the-

art data valuation approaches data Shapley [18], LOO error, and

Distributional Shapley [17] and notice similar or better performance

with significant speed-up in data valuation process.

2 RELATEDWORK
Literature Review of Shapley Value. Shapley value as formalized

in [42] establishes the axiomatic properties and demonstrates its

unique ability to fairly allocate gains from cooperation among play-

ers. This seminal contribution laid the theoretical groundwork for

subsequent developments in cooperative game theory [4, 20, 27, 37].

Shapley value has been extensively used for applications in eco-

nomics, [21, 36, 40], management science [14, 29], online advertis-

ing [46]. In machine learning, it has been utilized for addressing the

challenges in pricing ML training data, feature selection, and ML

explainability. [11, 53] proposed to employ Shapley value properties

for feature selection. [1, 16] use Shapley value in market mechanism

to price training data and match buyers to sellers data marketplace

design. [34] introduced the SHAP framework, leveraging Shapley

values to provide interpretable explanations for machine learning

models. Other works have also explored its utility in explaining

black-box model predictions [6, 9, 19, 47].

Data Valuation in ML. Recently, the subfield of data valuation

in ML models has attracted significant attention and the existing

works have shown promising outcomes. Data Shapley [18, 25] pro-

posed to use Shapley value from cooperative game theory for valu-

ation of training data. KNN Shapley [24] improved the efficiency of

data Shapley by using a k-nearest neighborhood model. Distribu-

tional Shapley [17] expanded the scope of valuation to the under-

lying data distribution instead of only considering the data points.

Beta Shapley [32] relaxes the efficiency axiom in DataShapley and

reports utility of data valuation in detecting mislabeled images in

the training data. Data Banzhaf [51] propose to estimate the Banzhaf

value to improve results on noisy label detection. Several works

have attempted to improve the efficiency of the Shapley value com-

putation through approximation techniques [31]. Apart from this,

other aspects of data value has been studied in [12, 13, 23, 38, 52].

However, approximation of Shapley value still remains a compu-

tationally expensive process, making it difficult to adapt for large

models and datasets. The main goal of this work is to develop an

alternative efficient data valuation framework to overcome this

problem.

Literature Review of Production Functions. [35] offers a de-
tailed outline of the evolution and econometrics of the production

function. Aggregate production functions are used in macroeco-

nomics to represent the relationship between total output of an

economy (GDP) and the inputs used to produce that output. These

inputs typically include capital (𝐾 ), labor (𝐿), and sometimes other

factors like technology or natural resources [5, 43]. The simplest

production function used in economics, is the Cobb-Douglas pro-

duction function introduced by [3]. [30] identifies all multi-factor

production functions with given elasticity of output and from given

elasticity of production. Production functions have been used in

various domains, including health, education, and energy, to name
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a few [2, 7, 22]. In our study, we adopt the concept of a production

function and adapt it for data valuation. This approach draws in-

spiration from foundational works and recent advancements in the

field. [26] develops a theoretical framework that applies the produc-

tion function to the economics of data, particularly employing data

as an input for training machine learning models. Moreover, [15]

highlights the role of data as information aimed at reducing fore-

cast errors, which hints at a production function characterized by

bounded returns to data. In our paper, we align with these per-

spectives and further the discourse by specifically focusing on the

application of the production function concept in the valuation of

data.

3 PRELIMINARIES
Let an ML model𝑀 , intended for a task 𝑇 , is trained on a dataset

𝐵 of size𝑚. Let𝑈 denote the performance metric and𝑈𝑇
denote

the performance obtained on task 𝑇 . The overall performance 𝑈

is achieved after training a sufficient number of epochs 𝑒 . Here

the sufficient number of epochs means |𝑈𝑒+𝑖+1 −𝑈𝑒+𝑖 | < 𝛾 for all

𝑖 ≥ 0, where 𝛾 is an arbitrarily small value. It should be noted that

𝛾 arises due to the randomness within the learning algorithm and

not further training. The value of a data point is denoted by Φ.
Leave-One-Out (LOO) Error. The LOO error computes the

value of a datum 𝑧 based on the increase in performance obtained

by adding it to the training set:

Φ𝐿𝑂𝑂 (𝑧;𝑈 , 𝐵) = 𝑈 (𝐵) −𝑈 (𝐵 \ {𝑧}) . (1)

It struggles in differentiating data quality when similar data

samples exist in the dataset. For example, if each sample has a

duplicate copy in the dataset, the LOO will return a value 0 for all

of the samples. Shapley value overcomes this limitation by checking

the marginal distribution over many subsets of the dataset.

Shapley Value. Shapley value [18] measures the value of a data

point 𝑧 as the weighted average of the performance increase when

𝑧 is added to different subsets of the dataset 𝐵:

Φ𝑠 (𝑧;𝑈 , 𝐵) = 1

𝑚

𝑚∑︁
𝑘=1

1(𝑚−1

𝑘−1

) ∑︁
𝑆⊆𝐵\{𝑧}

Δ(𝑧;𝑈 , 𝑆), (2)

where |𝑆 | = 𝑘 − 1 for 𝑘 ∈ 𝑁 and Δ(𝑧;𝑈 , 𝑆) = 𝑈 (𝑆 ∪ {𝑧}) −𝑈 (𝑆).
Thus, data Shapley value is the weighted average of the marginal

contribution Δ(𝑧;𝑈 , 𝑆). It satisfies the following Shapley value ax-

ioms:

• Dummy Player: If 𝑈 (𝑆 ∪ {𝑧}) = 𝑈 (𝑆) + 𝑒 for all 𝑆 ⊆ 𝐵ß

and some 𝑒 ∈ 𝑅, then Φ(𝑧;𝑈 , 𝐵) = 𝑒 .
• Symmetry: If𝑈 (𝑆∪{𝑧}) = 𝑈 (𝑆∪{𝑧′}) for all 𝑆 ⊆ 𝐵\{𝑧, 𝑧′},
then Φ(𝑧;𝑈 , 𝐵) = Φ(𝑧′;𝑈 , 𝐵).
• Linearity:Φ(𝑧;𝛼1𝑈1+𝛼2𝑈2, 𝐵) = 𝛼1Φ(𝑧;𝑈1, 𝐵)+𝛼2Φ(𝑧;𝑈2, 𝐵)
for 𝛼1, 𝛼2 ∈ 𝑅.
• Efficiency:

∑
𝑧∈𝑁 Φ(𝑧;𝑈 , 𝐵) = Φ(𝑈 , 𝐵).

Further details regarding the interpretation of the above axioms in

the context of machine learning can be referred to Ghorbani and

Zou [18] and Jia et al. [25].

Production Function. In economics, a production function

expresses the relationship between the specific quantities and com-

binations of different inputs a company uses and the amount of

output it produces. Commonly used production functions include

Linear, Leontief, Cobb–Douglas [8, 10], CES, and CRESH [45], each

varying in their assumptions for the input and the output. The wide-

spread usage of the Cobb-Douglas production function is attributed

to its simplicity and adaptability. It assumes homogeneity of inputs

and this principle is consistent with many machine learning setups.

Let 𝑃 (𝑔) denote the production over a set of goods𝑔 = (𝑔1, 𝑔2, ....𝑔𝑛),
the Cobb-Douglas production function is defined as

𝑃 (𝑔) = 𝐴
𝑛∏
𝑖=1

𝑔
𝑥𝑖
𝑖
, (3)

where 𝑥𝑖 is an elastic parameter for good 𝑖 , and 𝐴 is the total factor

productivity or the quality factor. If inputs are just labor 𝐿 and

capital 𝐾 , the production function is then

𝑃 = 𝐴𝐿𝑥𝐾𝑦 . (4)

It should be noted that the Cobb-Douglas production function also

supports the diminishing returns in terms of both labor and capital.

The Law of Diminishing Returns [44] states that as the amount

of a single factor of production is incrementally increased, the

marginal output of a production process decreases. This property

is analogous to how more data points have diminishing effects on

a machine learning models performance. We therefore adapt the

formulation of production functions in our proposed method to

efficiently distribute the value of a cluster among its data members.

4 PROPOSED METHOD
A two-stage approach is proposed for efficient data valuation. First,

data points are clustered together based on shared characteristics.

Then, a leave cluster out (LCO) technique is applied to estimate the

value of each cluster. This cluster value is then distributed among

its members to obtain the preliminary individual data valuations.

In the following, we delve into the building blocks of the proposed

method and discuss its properties compared to the original Shapley

methods.

4.1 Leave-Cluster-Out
Cluster analysis is firstly performed on the given data and the

marginal contribution of a cluster 𝑐 can be expressed as

𝑉𝑐 = 𝑈 (𝐵) −𝑈 (𝐵 \ 𝑐). (5)

The simple LOO error may provide an underestimated view of

the true impact of specific data points, especially when similar

data points remain in the dataset even after removal. Data Shap-

ley alleviates this issue but suffers from high computational cost.

By organizing data points into clusters based on their similarity,

we ensure that when an entire cluster is removed, there are no

closely-related points to mask the effect of its absence in other

clusters. Consequently, this leads to a more precise assessment of

the cluster’s marginal contribution, effectively approximating its

value. Furthermore, this clustering approach significantly reduces

the number of model training iterations needed in comparison to

Data Shapley since evaluations are conducted at the cluster level

instead of for each individual data point. Once we have obtained

cluster-level valuations, the subsequent step involves efficiently

approximating the values of individual data points within each

cluster.
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4.2 Value Propagation within a Cluster
Production Function for ML.We adapt the Cobb-Douglas pro-

duction function to approximate the data value for ML. In this

context, we can draw an analogy: the labor 𝐿 corresponds to the

available data points for the model; the learning capacity or the

number of parameters in the model represents the capital 𝐾 ; and

the final output is the obtained performance on the test set 𝑈𝑇
.

As both data quantity and model complexity exhibit diminishing

returns, the Cobb-Douglas production function can be leveraged to

effectively model learning performance. Therefore, we propose to

approximate the model’s performance after 𝑒 epochs as

𝑈𝑇 (𝑆, 𝑁 ) = 𝐴𝑓 (𝑆)ℎ𝑇 (𝑁 ), (6)

where 𝑓 (𝑆) quantifies the informational utility of the dataset 𝑆 to the

predictive efficacy of the model 𝑈 , 𝑇 denotes the task, and ℎ𝑇 (𝑁 )
represents the effect of the model capacity which is dependent on

𝑁 , the number of parameters of the model.

Then, for a new point 𝑧, the performance changeΔ𝑈 in themodel

incurred by the small increase (Δ𝑆 = {𝑧}) in 𝑆 can be computed by

Δ𝑈𝑇 (𝑆, 𝑁 )

=𝐴𝑓 (𝑆 + Δ𝑆)ℎ𝑇 (𝑁 ) −𝐴𝑓 (𝑆)ℎ𝑇 (𝑁 )

=𝐴 [𝑓 (𝑆 + Δ𝑆) − 𝑓 (𝑆)] ℎ𝑇 (𝑁 )

=𝐴

[
𝑓 (𝑆 + Δ𝑆) − 𝑓 (𝑆)

𝑜 (𝑧)

]
ℎ𝑇 (𝑁 )𝑜 (𝑧) . (7)

To better understand Eq. (7), let us consider 𝑓 as a smooth function

of 𝑥 as specified in Eq. (6), i.e., 𝑈𝑇 (𝑥, 𝑁 ) = 𝐴𝑓 (𝑥)ℎ𝑇 (𝑁 ). Thus,
a minor change in 𝑥 leads to a change in 𝑈𝑇

, which can be ap-

proximated by 𝐴𝑓 ′ (𝑥)ℎ𝑇 (𝑁 )Δ𝑥 . This allows us to interpret the

expression enclosed in square brackets of Eq. (7) as effectively serv-

ing as the derivative of 𝑓 with respect to the set 𝑆 , especially when

considering incremental changes to 𝑆 .

Also, in Eq. (7), 𝑜 (𝑧) serves as an indicator of how a single data

point enhances the model’s overall performance and is a proxy

to Δ𝑥 discussed above. Therefore, the difference 𝑓 (𝑆 + Δ𝑆) − 𝑓 (𝑆)
captures the marginal impact on the model’s performance when

dataset 𝑆 is augmented by a new data point. Analogous to the

concept of derivatives in calculus, this difference, when normalized

by the contribution 𝑜 (𝑧) of the individual point, can be interpreted

as the “rate-of-change”of 𝑓 upon the addition of a new data point.

This rate is contingent on both the existing dataset 𝑆 and the new

data point being added. That is

𝑈 (𝑆 ∪ {𝑧}) −𝑈 (𝑆) = 𝛼𝑇 (𝑧)𝛽 (𝑧, 𝑆), (8)

where

𝛼𝑇 (𝑧) =𝐴ℎ𝑇 (𝑁 )𝑜 (𝑧),

𝛽 (𝑧, 𝑆) = 𝑓 (𝑆 + Δ𝑆) − 𝑓 (𝑆)
𝑜 (𝑧) .

Substituting the above into Eq. (2) then gives

Φ𝑠 (𝑧;𝑈𝑇 , 𝐵) = 1

𝑚

𝑚∑︁
𝑘=1

1(𝑚−1

𝑘−1

) ∑︁
𝑆⊂𝐵\{𝑧}
|𝑆 |=𝑘−1

𝛼𝑇 (𝑧)𝛽 (𝑧, 𝑆)

= 𝛼𝑇 (𝑧)𝛽∗ (𝑧, 𝐵) (9)

where

𝛽∗ (𝑧, 𝐵) = 1

𝑚

𝑚∑︁
𝑘=1

1(𝑚−1

𝑘−1

) ∑︁
𝑆⊂𝐵\{𝑧}
|𝑆 |=𝑘−1

𝛽 (𝑧, 𝑆) (10)

Proposition 1. (Production Function Based Valuation for
ML). Let 𝛼𝑇 (𝑧) denote the intrinsic value of a datum 𝑧, i.e., 𝛼𝑇 (𝑧) is
only dependent on the characteristics of 𝑧. The interaction of 𝑧 with
rest of the data points in 𝐵 is captured by 𝛽∗ (𝑧, 𝐵). From equitable
properties of data valuation in [18], we postulate that for every datum
𝑧 having an intrinsic value 𝛼𝑇 (𝑧), the 𝛽∗ (𝑧, 𝐵) acts as a multiplier or
extrinsic factor that decreases the value of 𝑧 if similar data points are
present in the dataset. Similarly, it increases the data value if 𝑧 is a
unique datum. Then the data valuation can be performed as below

Φ(𝑧;𝑈𝑇 , 𝐵) = 𝛼𝑇 (𝑧)𝛽∗ (𝑧, 𝐵) . (11)

To simplify notation, we denote 𝛼𝑇 (𝑧) with 𝛼 (𝑧), and Φ(𝑧;𝑈𝑇 , 𝐵)
with Φ(𝑧;𝑈 , 𝐵) for the rest of the discussion, since 𝑇 is invariant.

Fast Data Valuation. Based on the above setup, we propose an

efficient data valuation method that also works as an efficient proxy

to Distributional Shapley [17] to predict valuation for unseen data-

points in the distribution. The existing Data Shapley adheres to

two fundamental axioms [50]: symmetry and efficiency. Symmetry
states that for points 𝑧 and 𝑧′ that contribute similarly to themodel’s

performance should have the same value, i.e. 𝑈 (𝑆 ∪ {𝑧}) = 𝑈 (𝑆 ∪
{𝑧′}) for all 𝑆 ∈ 𝐵 \ {𝑧, 𝑧′}. Efficiency, on the other hand, ensures

that the aggregate value of all data points aligns with the overall

performance achieved after training on the entire dataset.

Proposition 2. (Fast Data Valuation of Cluster Data Mem-
bers) The symmetry and efficiency properties when applied to a spe-
cific cluster implies the data points within a cluster, characterized
by similar features, will likely possess similar values and a cluster’s
value can be accurately represented as the sum of its constituent data
points’ valuations.

Let 𝑉𝑐 (= Φ𝑐 ) be the value of cluster 𝑐 , the initial value assigned to
any data point 𝑧𝑖 within this cluster is:

𝑉𝑖 = 𝑉𝑐/𝑛𝑐 , (12)

where 𝑛𝑐 is the number of data points in cluster 𝑐 . Using this cluster-
level assignment of initial data value, we estimate the actual data
value based on Eq. (11) as

𝑉 ∗𝑖 = 𝛼𝑖𝛽
∗
𝑖 . (13)

Estimating 𝛼 and 𝛽∗. Assuming each cluster contains an equal

number of data points, the distribution of similar and dissimilar

samples encountered by each datum becomes roughly uniform. This

results in a near-constant extrinsic factor, 𝛽∗ (𝑧, 𝐵), across all data
points. Thus, the value of these data points are directly proportional

to 𝛼 (𝑧𝑖 ). We use 𝑄𝑖 to denote the value of individual datum to

differentiate it from 𝑉𝑖 value that is initialized by the cluster value

in Eq. (12).

Theorem 4.1. For data point 𝑧𝑖 , assuming there is no error in 𝛽∗
𝑖
,

its adjusted value 𝑉 Δ𝛼𝑖
𝑖

is

𝑉
Δ𝛼𝑖
𝑖

= (𝛼𝑖 + Δ𝛼𝑖 )𝛽∗𝑖 = Γ𝛼𝑖𝛼𝑖𝛽
∗
𝑖 , (14)
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where Γ𝛼𝑖 is an adjustment factor for 𝛼𝑖

Γ𝛼𝑖 = 1 + 𝑄𝑖∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

𝑉𝑐 . (15)

The adjustment factor Γ𝛼𝑖 ensures that value of individual data
point is adjusted not only based on its personal contribution (𝑄𝑖 )

but also in proportion to the corresponding cluster’s overall impact

(𝑉𝑐 ). This dual consideration is crucial for accurately reflecting the

true value of each data point, balancing internal cluster contribu-

tions with the broader context of the cluster’s role within the entire

dataset. Including 𝑉𝑐 in the adjustment ensures that the recalibra-

tion of 𝛼𝑖 remains sensitive to both intra-cluster dynamics and

the comparative significance of each cluster, providing a more nu-

anced and equitable valuation of data points across a heterogeneous

dataset.

Corollary 4.1.1. When all data points in a cluster are exactly
the same, the adjustment factor should be equal to 1 so that for each
point in 𝑐 , the value becomes 𝑉𝑖 . But the above formulation of Γ𝛼𝑖
yields 1 + 1/𝑛 when all the points are identical as 𝑉𝑖 and 𝑉𝑗 will be
equal for any 𝑖 , 𝑗 . Thus, we normalize Γ𝛼𝑖 as follows

Γ𝛼𝑖 =
1

1 +𝑉𝑐/𝑛𝑐

(
1 + 𝑄𝑖∑

𝑧 𝑗 ∈𝑐 𝑄 𝑗
𝑉𝑐

)
. (16)

Similar to 𝛼𝑖 , we find the adjustment factor for 𝛽∗
𝑖
, i.e. Γ𝛽∗

𝑖
. 𝛽∗

𝑖

measures the interaction of 𝑧𝑖 with all other data points in 𝐵. As all

data points similar to 𝑧𝑖 belong to the same cluster and 𝛽∗
𝑖
is only

affected by the other members in 𝑧𝑖 ’s cluster. We use the distance

between 𝑧𝑖 and cluster centroid as a measure to it’s belongingness

to the cluster or similarity to other points in the cluster.

Theorem 4.2. For data point 𝑧𝑖 , assuming no error in 𝛼𝑖 , its ad-

justed value 𝑉
Δ𝛽∗𝑖
𝑖

is

𝑉
Δ𝛽∗𝑖
𝑖

= 𝛼𝑖 (𝛽∗𝑖 + Δ𝛽
∗
𝑖 ) = Γ𝛽∗

𝑖
𝛼𝑖𝛽1𝑖 , (17)

where 𝑑𝑖 is the distance of 𝑧𝑖 and Γ𝛽∗
𝑖
is the adjustment factor repre-

sented as

Γ𝛽∗
𝑖
=

1

1 +𝑉𝑐/𝑛𝑐

(
1 + 𝑑𝑖∑

𝑧 𝑗 ∈𝑐 𝑑 𝑗
𝑉𝑐

)
. (18)

Production Function based Data Value Estimation. The
final approximation value Φ̂𝑖 of the data point is

Φ̂𝑖 =(𝛼𝑖 + Δ𝛼𝑖 ) (𝛽∗𝑖 + Δ𝛽
∗
𝑖 ) . (19)

Ignoring Δ𝛼𝑖Δ𝛽
∗
𝑖
then gives

Φ̂𝑖 ≈(𝛼𝑖 + Δ𝛼𝑖 )𝛽∗𝑖 + 𝛼 (𝛽
∗
𝑖 + Δ𝛽

∗
𝑖 ) − 𝛼𝑖𝛽

∗
𝑖 . (20)

By substituting Eq. (13), Eq. (14), Eq. (17), we obtain.

Φ̂𝑖 =𝑉
Δ𝛼𝑖
𝑖
+𝑉 Δ𝛽∗𝑖

𝑖
−𝑉𝑖

=𝑉𝑖 (Γ𝛼𝑖 + Γ𝛽∗𝑖 − 1)

=𝑉𝑖

[(
1

1 +𝑉𝑐/𝑛𝑐

) (
1 + 𝑄𝑖∑

𝑧 𝑗 ∈𝑐 𝑄 𝑗
𝑉𝑐

)
+(

1

1 +𝑉𝑐/𝑛𝑐

) (
1 + 𝑑𝑖∑

𝑧 𝑗 ∈𝑐 𝑑 𝑗
𝑉𝑐

)
− 1

]
. (21)

For the reader’s convenience, Algorithm 1 outlines the implemen-

tation steps of the EcoVal efficient data valuation framework.

4.3 Discussion: Comparison with Original
Shapley

Let 𝐸 (𝑧) denote the appropriate embedding from amachine learning

model or the pre-final layer of a deep learning model for a data

point 𝑧. We extend the notion of Lipschitz Stability of data Shapley

introduced in [17] to estimate the difference in value of different

data points. We use proximity of the embeddings 𝐸 (𝑧) as a proxy
to the closeness in the underlying data distribution and formalize

the same in the following Theorem.

Theorem 4.3. For any 𝑧 𝑗 , 𝑧𝑘 if | |𝐸 (𝑧 𝑗 )−𝐸 (𝑧𝑘 ) | | < 𝜖 then, |Φ(𝑧 𝑗 )−
Φ(𝑧𝑘 ) | ≤ 𝜖1 for very small 𝜖, 𝜖1 ≥ 0

From the principle of clustering, a datum 𝑧 𝑗 belongs to cluster 𝑐

if

| |𝐸 (𝑧 𝑗 ) − 𝐸 (𝑧𝑘 ) | | ≤ 𝜖,∀𝑧𝑘 ∈ 𝑐, (22)

then for this cluster

|Φ(𝑧 𝑗 ) − Φ(𝑧𝑘 ) | ≤ 𝜖1,∀𝑧𝑘 , 𝑧 𝑗 ∈ 𝑐. (23)

It means all Shapley values lie within an 𝜖1 interval. Therefore,

Φ(𝑧 𝑗 ) for any 𝑧 𝑗 ∈ 𝑐 can be expressed as

Φ(𝑧 𝑗 ) = Φ̄𝑐 + 𝛿 (𝑧 𝑗 ), (24)

where 𝛿 (𝑧 𝑗 ) ≤ 𝜖/2 and Φ̄𝑐 lies somewhere in the 𝜖1 interval.

Corollary 4.3.1. The value𝑉𝑐 of the a cluster by Shapley axioms
is defined as

𝑉𝑐 =
∑︁
𝑧 𝑗 ∈𝑐

Φ(𝑧 𝑗 ) = 𝑛𝑐 Φ̄𝑐 +
∑︁

𝛿 (𝑧 𝑗 ) . (25)

The detailed proof to 4.3.1 is provided in the Appendix.

Theorem 4.4. The difference between the original Shapley value
and our proposed approximated data value is

ΔΦ𝑖 ≈
𝑛𝑐 Φ̄𝑐𝛿𝑅∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

+ 𝑛2

𝑐 Φ̄𝑐𝑄𝑖𝛿𝑅

(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2
. (26)

Due to the intrinsic limitations on the magnitudes of average Shapley
value within a cluster Φ̄𝑐 and individual point contribution 𝑄𝑖 , both
values inherently remain within a bounded range. As cluster size 𝑛𝑐
increases, the predicted aggregate value

∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗 proportionately

grows, naturally restricting the potential expansion of 𝑛𝑐∑
𝑧𝑗 ∈𝑐 𝑄 𝑗

. Ad-

ditionally, a moderately accurate regression model ensures a low 𝛿𝑅
error. Therefore, our method produces Shapley value estimates Φ𝑖 with
minimal margin of error.

The detailed proof to 4.4 is provided in the Appendix.

5 EXPERIMENTS
We show the broad effectiveness of the proposed valuation frame-

work and its general applicability to machine learning models

through empirical evidence. We estimate the value of data in a ma-

chine learning model in MNIST, CIFAR10, and CIFAR100 datasets.

We compare our method with Data Shapley [18] and Distributional

Shaply [17].

Experiment Settings: Following the common practice in previ-

ous works, we extract the features from last layer of a pre-trained

network and apply Shapley on this embedded vector. We sample
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Algorithm 1 EcoVal Data Valuation

1: 𝑀 (.;𝜓 ): Fully Trained Model

2: 𝐵: Training Dataset

3: 𝐵𝐷 : Set of available points from the underlying distribution of

𝐵

4: 𝑀−𝑛 (𝑥 ;𝜓 ) ← Embedding of data 𝑥 obtained from the 𝑛𝑡ℎ last

layer of the model

5: Let 𝐸 (𝑥) = 𝑀−𝑛 (𝑥 ;𝜓 )
6: Let 𝐴𝑐 be a clustering algorithm then (𝑥𝑖 , 𝑐 𝑗 ) ← 𝐴𝑐 (𝐵𝐷 )∀𝑥𝑖 ∈
𝐵𝐷 where 𝑐 𝑗 ∈ 𝐶 is the cluster associated with 𝑥𝑖 and 𝐶 is the

set of all clusters

7: Find valuation at cluster level

8: 𝑉𝑐 𝑗 = 𝑈 (𝐵) −𝑈 (𝐵 \ 𝑐 𝑗 ) ∀𝑐 𝑗 ∈ 𝐶
9: Initialize value 𝑉𝑖 for each cluster member 𝑥𝑖
10: 𝑉𝑖 = 𝑉𝑐 𝑗 /𝑛𝑐 𝑗 , where 𝑛𝑐 𝑗 is the number of elements in cluster 𝑐 𝑗

to which 𝑥𝑖 belongs

11: Initialize: 𝐷 ← []

12: for 𝑐 𝑗 ∈ 𝐶 do
13: Sample 𝑋 𝑗 = {𝑥

𝑗

1
, 𝑥

𝑗

2
, ... 𝑥

𝑗
𝑛𝑐 } from 𝑐 𝑗

14: 𝐷 ← 𝐷 ∪ 𝑋 𝑗

15: end for
16: Run TMC Shapley [18]

17: (𝑥𝑘 , 𝑣𝑇𝑀𝐶𝑘
) ← 𝑇𝑀𝐶 (𝑈𝑇 , 𝐷)∀𝑥𝑘 ∈ 𝐷

18: Train a regression model 𝑅 on the sampled data

{(𝑥1, 𝑣𝑇𝑀𝐶1
), (𝑥2, 𝑣𝑇𝑀𝐶2

) ....(𝑥 |𝐷 | , 𝑣𝑇𝑀𝐶 |𝐷 | )}
19: for 𝑐 𝑗 ∈ 𝐶 do
20: (𝑥 𝑗

𝑖
, 𝑞

𝑗
𝑖
) ← 𝑅(𝑥 𝑗

𝑖
)∀𝑥 𝑗

𝑖
∈ 𝑐 𝑗

21: Let 𝑥𝑐 𝑗 be the centroid of the cluster 𝑐 𝑗

22: (𝑥 𝑗
𝑖
, 𝑑

𝑗
𝑖
) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥 𝑗

𝑖
, 𝑥𝑐 𝑗 )∀𝑥𝑖 ∈ 𝑐 𝑗

23: end for
24: for 𝑥𝑖 ∈ 𝐵 do
25: Find correction term for 𝛼

26: Γ𝛼𝑖 =
1

1+𝑉𝑐 𝑗 /𝑛𝑐 𝑗
(1 + 𝑞

𝑗

𝑖∑
𝑧𝑘 ∈𝑐 𝑗 𝑞

𝑗

𝑘

𝑉𝑐 𝑗 )

27: Find correction term for 𝛽∗
𝑖

28: Γ𝛽∗
𝑖
= 1

1+𝑉𝑐 𝑗 /𝑛𝑐 𝑗
(1 + 𝑑

𝑗

𝑖∑
𝑧𝑘 ∈𝑐 𝑗 𝑑

𝑗

𝑘

𝑉𝑐 𝑗 )

29: Final valuation = 𝑉𝑖 ∗ (Γ𝛼𝑖 + Γ𝛽∗𝑖 − 1)
30: end for

a small subset, i.e. 200 samples from the original training data

and run the baseline methods TMC-Shapley (Data Shapley) and

distributional Shapley. 2000 samples are used for testing and hold-

out for Shapley calculation. We keep 10,000 samples which are

never seen by model or valuation method at any point, we call this

out-of-sample (OOS) set. The rest of the samples are used as data

distribution and exposed to Distributional Shapley, and our method

during the clustering step and 𝛼 correction step. We use Gauss-

ian Mixture Models (GMM) for clustering. Our proposed method

works for both in-distribution and OOS samples. As Data Shapley

only works for in-distribution samples, we compare our results

with Distribution Shapley for out-of-sample data. We use Gauss-

ian Mixture Model (GMM) clustering with default parameters of

Figure 1: Computation cost in terms of number of training
iterations required for the given dataset size. We compare
EcoVal with TMC Shapley (also known as Data Shapley), dis-
tributional Shapley, and a lighweight version of EcoVal. Our
method requires substantially lower number of training iter-
ations for data valuation.

scikit-learn’s implementation, covariance-type=’full’, tol=0.001, reg-

covar=1e-06, max-iter=100, n-init=1, init-params=’kmeans’, and 30

mixtures/clusters.

5.1 Comparative Analysis of the Computational
Time

The Data Shapley approximation method TMC Shapley [18] con-

verges in approximately 3|𝐵 | (or 3 ×𝑚 in Eq. 2) Monte Carlo sam-

ples. Each Monte Carlo sample is a random permutation of the data

points in the training set. The marginal contribution of a data point

𝑧 in a given permutation is obtained as the performance difference

between the model trained on data points before this datum, say 𝑆 ,

and the model trained on 𝑆 ∪ {𝑧}. Each point is added sequentially

meaning |𝐵 | training runs are required in a single Monte Carlo

sample. This makes the number of training runs in the order of

𝑂 ( |𝐵 |2). Distributional Shapley’s [17] time complexity is similar

with 𝑇 runs to get an unbiased estimate using different subsets 𝑆

from the underlying data distribution. This makes the number of

training runs of Distributional Shapley 𝑂 (𝑇 ∗ |𝐵 |2).
Ourmethod performs clustering that takes less time than training

a machine learning or deep learning model in most real-world

scenarios. This is a one time effort, so the complexity is in the order

of𝑂 (1). Estimating the value of each cluster requires𝑂 (𝑝) training
runs. Apart from that, our method involves running Data Shapley

on a curated subset 𝑝 containing an equal number of points from

each cluster, this take𝑂 (𝑝2) time. The size of this subset 𝑝 is much

smaller than |𝐵 |. The total number of training runs required is in the

order of 𝑂 (1) +𝑂 (𝑝2) +𝑂 (𝑝). We compare the computational cost

associated with the TMC Shapley/Data Shapley with our EcoVal

method. As illustrated in Figure 1, EcoVal requires significantly

fewer training iterations, approximately 10
3
to 10

5
, compared to

10
7
to 10

9
required by traditional TMC Shapley. Ourmethod reduces

computational overhead by employing a curated subset approach,

which involves running Data Shapley on a subset 𝑝 containing

an equal number of points from each cluster. This curated subset

approach requires computational resources in the order of 𝑂 (𝑝2),
significantly less than the 𝑂 ( |𝐵 |2) required by the standard TMC
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Figure 2: Accuracy difference with respect to the % of data
points added or removed. We add or remove the highest val-
ued data points first and then subsequently add or remove
the lesser value data, respectively. The top, middle and bot-
tom rows show the results for MNIST, CIFAR10, CIFAR100,
respectively with in-distribution valuation. The EcoVal gives
comparable or better performance when compared to Data
Shapley and Distribution Data Shapley.

Shapley method, where |𝐵 | represents the size of the full dataset.
The size of subset 𝑝 is much smaller than |𝐵 |, which explains our

method’s efficiency and scalability. With the increase in the dataset

size, the utility of our EcoVal becomes more evident. Our method

without 𝛼 correction is even faster with negligible loss in valuation

quality.

5.2 Data Point Addition and Removal
Experiments

We evaluate the data valuation methods by running the data point

addition and removal experiments as proposed in [18]. For a given

model and dataset, the data points are added in the order of pre-

dicted value, i.e. from largest to lowest values, and the model is

retrained for each addition. Similarly, another experiment is con-

ducted where we remove samples with high values and observe

the performance drop. The impact of removal and addition of high

value data-points help us measure the effectiveness of data valua-

tion techniques. We compare our results with state-of-the-art Data

Shapley and Distributed Data Shapley valuation methods.

Removing most valued data points. We predict values of

data-points using each valuation method and we measure the drop

Figure 3: Data valuation on out-of-sample data (top left to
bottom right: CIFAR10, CIFAR100, MNIST, respectively). Our
EcoVal method outperforms Distributed Data Shapley and
Random Data Removal by getting steeper performance drop
with increasing % valuable data removal.

in performance of model by removing most-valued data-points for

each method. A better valuation method’s high value data-points

will result in a higher drop in performance. So, for removal of most

valued points, the method resulting in higher performance drop is

a better valuation method.

Adding most valued data points. This approach is vice-versa

of the previous approach, we add most valued data-points into

the training set and observe the increase in the performance. A

higher increase on adding the top data-points shows better valu-

ation method. Figure 2 shows the performance drop and increase

upon adding and removing most valued points, respectively. It can

be observed that EcoVal performance drop is slightly less than that

of Data Shapley but significantly higher than the Distributed Data

Shapley which is desired. Similar patterns can be observed in the

data addition graph also.

Removing most valuable data points from out-of-sample
set. The discussed earlier, EcoVal supports data valuation for out-

of-sample data as well which is supported only by Distributed Data

Shapley. Therefore, we compare the OOS valuation results between

them. Figure 3 shows the performance drop by removing the most

valuable points from an out-of-sample set of size 10, 000. It can be

observed that EcoVal’s performance drop is very high as compared

to Distributed Data Shapley. The steep drop in the performance after

removing the most valuable data points implies better precision for

data valuation in our EcoVal framework.

5.3 Effect of the Adjustment Terms
We observe the effect of removing different adjustment terms Γ𝛽∗

𝑖
,

Γ𝛼𝑖 or both in the EcoVal framework and show the results in Figure 4.

The overall EcoVal framework with the terms 𝛼 and 𝛽 performs

the best, in general. Eliminating one of the adjustment terms dete-

riorates the quality of the valuation by a small margin. Removing

both corrections significantly impacts the quality of data valuation.

This is particularly visible in the initial phase of adding the most
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Figure 4: Effect of adding different adjustment terms
(refer Section 4.2). EcoVal: the full proposed method,
EcoVal_no_alpha: removal of 𝛼 adjustment term,
EcoVal_no_beta: removal of 𝛽 adjustment term, Eco-
Val_no_adjustment: EcoVal without any adjustment terms,
i.e. the mean of the cluster value used as the data value.

significant data points. It should be noted that eliminating Γ𝛼𝑖 only
affects the valuation quality marginally, but completely removes

the need for model training, giving an even more efficient version

of our valuation method.

The performance of different variations of our method (EcoVal,

EcoVal-no-𝛼 , EcoVal-no-𝛽 , EcoVal-no-adj) would vary depending

on the intra-class and inter-class variations present in a dataset. In

Figure 4, the performance differences are not sometimes consistent.

We report our observation based on the experiments with CIFAR-10

dataset. More complex datasets with larger variations may better

reveal the impact of these adjustment factors, which is the future

scope of this work.

5.4 Mutual Influence of Clustering Methods and
Adjustment Terms

The effectiveness of EcoVal is intrinsically related to the success

of the clustering method, as the initial valuation is carried out at

the cluster level. The adjustment terms are meant to marginally

correct the data value distribution within each cluster. The simi-

larity within a single cluster compared to the similarity between

clusters significantly influences the structure and application of the

adjustment factors. We assume that data points within the same

cluster have a higher degree of similarity compared to points across

different clusters, a standard assumption in clustering algorithms

such as Gaussian mixture models (GMM). However, the variance

in the degree of similarity across different clusters (inter-cluster

dissimilarity) justifies the need for a scaling factor such as Γ𝛼𝑖 , intro-
duced in Equation 15. This accounts for the relative contribution of

an entire cluster to the model’s performance, acknowledging that

some clusters may be more pivotal due to their positioning, density,

or the nature of the data points they contain. This process depends

on the intra-cluster variation present in a dataset. For some dataset,

a simple distribution of the value of the cluster without correction

factors can also give a good valuation, leaving a minimal scope of

correction.

6 CONCLUSION
This work presents a focused study on improving the speed of data

valuation in machine learning models. We develop an efficient data

valuation method that is significantly fast and practical for working

with large datasets. Our method works for both in-distribution and

out-of-sample data. The proposed EcoVal data valuation framework

shows comparable and sometimes even better results than the ex-

isting approaches for in-distribution data. For out-of-sample data

points, our method significantly outperforms competing methods,

thus establishing a new state-of-the-art. This proves our method’s

utility in a data market, where new data points analogous to our out-

of-sample set are generated every passing instant. Our valuation

also shows negligible error margin with the vanilla Shapley value

approximation. The points mentioned above collectively make the

proposed method a robust and scalable approach to estimate the

value of data across a variety of machine learning models.
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Appendix

A PROOFS
A.1 Theorem 3.4
Let equal number of samples are used from each cluster to run

TMC Shapley. Then the intrinsic value of a datum is independent of

proportion and bias in the data distribution. If 𝑛𝑠 such samples exist,

the value is divided into these 𝑛𝑠 samples. From Shapely axioms, the

data Shapley at the current stage of TMC becomes approximately

𝛼𝑖
𝑛𝑠
.

For rest of the samples in the TMC, we train a regression model

𝑅 for predicting
𝛼𝑖
𝑛𝑠

for an input data. If the predicted Shapley for

any 𝑧𝑖 ∈ 𝑐 is 𝑄𝑖 , then assuming no error is introduced due to the

TMC Shapely algorithm, this gives us

𝑄𝑖 =
𝛼𝑖

𝑛𝑠
+ 𝛿𝑅𝑖 , (27)

where 𝛿𝑅𝑖 is error introduced by the regression model. 𝑄𝑖 denotes

𝑏∗𝛼𝑖 , where𝑏 is some constant.We use this to obtain the adjustment

factor for 𝛼𝑖 in Eq. 14. Assuming 𝑉𝑖 and 𝑑𝑖 do not have any error,

we take the differentiation of Eq. 21 with respect to 𝑧

𝜕Φ𝑖
𝜕𝑧

=
1

𝜕𝑧
( 𝑉𝑖

1 +𝑉𝑐/𝑛𝑐
)
[
𝑛𝑐 𝜕𝑄𝑖∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

−
𝑛𝑐𝑄𝑖 𝜕(

∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗 )

(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2

]
. (28)

Intuition. 𝑉𝑖 does not have any error as this is the difference

between the performance with and without the cluster 𝑐 divided

by a constant. Both the values can be directly computed from the

model. Similarly, 𝑑𝑖 is the distance of the datum from the centroid

of the cluster 𝑐 which can be calculated without any error.

Comparing Eq. 28 with the change in the Shapley value leads to

the following inequality.

ΔΦ𝑖 ≤
𝑉𝑐/𝑛𝑐

1 +𝑉𝑐/𝑛𝑐

[
𝛿𝑅𝑛𝑐∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

+ 𝑛𝑐𝑄𝑖 (𝑛𝑐𝛿𝑅)
(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2

]
,

where 𝛿𝑅 = max

𝑖
𝛿𝑅𝑖 is the maximum error of the regression model

ΔΦ𝑖 ≤ 𝑉𝑐

[
𝛿𝑅∑

𝑧 𝑗 ∈𝑐 𝑄 𝑗
+ 𝑛𝑐𝑄𝑖𝛿𝑅

(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2

]
,

as 𝑉𝑐 ≥ 0, 𝑛𝑐 ≥ 1 therefore,
1

1+𝑉𝑐/𝑛𝑐 ≤ 1. From Eq. 24 and Eq. 30

ΔΦ𝑖 ≤ (𝑛𝑐 Φ̄𝑐 + 𝑛𝑐𝜖/2)
[

𝛿𝑅∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

+ 𝑛𝑐𝑄𝑖𝛿𝑅

(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2

]
.

Ignoring factors with multiples of 𝜖 and 𝛿 as these values are very

small. We get the final difference between the original Shapley

value and our proposed approximated Value as below

ΔΦ𝑖 ≈
𝑛𝑐 Φ̄𝑐𝛿𝑅∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗

+ 𝑛2

𝑐 Φ̄𝑐𝑄𝑖𝛿𝑅

(∑𝑧 𝑗 ∈𝑐 𝑄 𝑗 )2
, (29)

Φ̄𝑐 and 𝑄𝑖 cannot be arbitrarily large as they are the average

Shapely value for a cluster and change in performance due to a

data point 𝑧𝑖 . With increasing cluster size 𝑛𝑐 , the corresponding

predicted value

∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗 will increase. Thus, 𝑛𝑐/

∑
𝑧 𝑗 ∈𝑐 𝑄 𝑗 can not

be very large. The 𝛿𝑅 error will be low for a moderately good

regression model. Thus, our method estimates the Shapely value

Φ𝑖 with negligible error.

A.2 Corollary 4.3.1
The value 𝑉𝑐 of the a cluster by Shapley axioms is defined as

𝑉𝑐 =
∑︁
𝑧 𝑗 ∈𝑐

Φ(𝑧 𝑗 ) = 𝑛𝑐 Φ̄𝑐 +
∑︁

𝛿 (𝑧 𝑗 ) . (30)

The sum of the Shapley values within a cluster equalling the

leave-cluster-out value of the cluster follows logically from the

axioms of the Shapley value, in particular, additivity and efficiency.

Additivity: If we treat each data point as contributing a separate

game to the performance, the total Shapley value of a cluster should

naturally be the sum of the Shapley values of each data point within

the cluster.

Efficiency: This axiom ensures that the total value generated by

the coalition is fully distributed among the players. If the Shapley

value calculation respects this axiom, then the allocation to a cluster

should match the cumulative contribution of its members.

We can consider a simple proof by induction on the number of

data points in the cluster:

1. Base Case: If a cluster has only one data point, then the Shapley

value of the cluster is clearly equal to the Shapley value of the single

data point.

2. Inductive Step: Assume the proposition holds for all clusters

of size 𝑘 . For a cluster of size 𝑘 + 1, if you remove one data point,

by the induction hypothesis, the sum of the Shapley values of the

remaining 𝑘 data points equals the value of these 𝑘 data points.

Adding the𝑘+1-st point, by the additivity axiom, the overall Shapley

value would be the sum of the individual Shapley values.
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