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In sponsored search, advertisement (abbreviated ad) slots are usually sold by a search engine to an advertiser
through an auction mechanism in which advertisers bid on keywords. In theory, auction mechanisms have
many desirable economic properties. However, keyword auctions have a number of limitations including: the
uncertainty in payment prices for advertisers; the volatility in the search engine’s revenue; and the weak
loyalty between advertiser and search engine. In this article, we propose a special ad option that alleviates
these problems. In our proposal, an advertiser can purchase an option from a search engine in advance by
paying an upfront fee, known as the option price. The advertiser then has the right, but no obligation, to
purchase among the prespecified set of keywords at the fixed cost-per-clicks (CPCs) for a specified number of
clicks in a specified period of time. The proposed option is closely related to a special exotic option in finance
that contains multiple underlying assets (multi-keyword) and is also multi-exercisable (multi-click). This
novel structure has many benefits: advertisers can have reduced uncertainty in advertising; the search engine
can improve the advertisers’ loyalty as well as obtain a stable and increased expected revenue over time. Since
the proposed ad option can be implemented in conjunction with the existing keyword auctions, the option
price and corresponding fixed CPCs must be set such that there is no arbitrage between the two markets.
Option pricing methods are discussed and our experimental results validate the development. Compared to
keyword auctions, a search engine can have an increased expected revenue by selling an ad option.
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1. INTRODUCTION

Sponsored search has become an important online advertising format [PWC 2013],
in which a search engine sells ad slots in the search engine results pages (SERPs)
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generated in response to a user’s search behaviour. An online user submits a term or
phrase within the search box to the search engine. The term or phrase is collectively
known as the query. The SERP has two types of result listings in response to the sub-
mitted query: organic results and paid results. Organic results are the Web page listings
that most closely match the user’s search query based on relevance [Jansen 2011]. Paid
results are online ads — the companies who have paid to have their Web pages displayed
for certain keywords, so that such listings show up when a user submits a search query
containing those keywords. The price of an ad slot is usually determined by a keyword
auction such as the widely used generalized second price (GSP) auction [Edelman et al.
2007; Varian 2007; Lahaie and Pennock 2007; Borgers et al. 2013; Qin et al. 2014]. In
the GSP auction, advertisers bid on keywords present in the query, and the highest
bidder pays the price associated with the second highest bid.

Despite the success of keyword auctions, there are two major drawbacks. First,
the uncertainty and volatility of bids make it difficult for advertisers to predict their
campaign costs and thus complicate their business planning [Wang and Chen 2012].
Second, the “pay-as-you-go” nature of auction mechanisms does not encourage a stable
relationship between advertiser and search engine [Jank and Yahav 2010] — an adver-
tiser can switch from one search engine to another in the next bidding at near-zero
cost.

To solve these problems, we propose a multi-keyword multi-click ad option. It is
essentially a contract between an advertiser and a search engine. It consists of a
nonrefundable upfront fee, known as the option price, paid by the advertiser, in return
for the right, but not the obligation, to subsequently purchase a fixed number of clicks
for particular keywords for a prespecified fixed cost-per-clicks (CPCs) during a specified
period of time. From the advertiser’s perspective, fixing the CPCs significantly reduces
the uncertainty in the cost of advertising campaigns. Moreover, for a keyword, if the
spot CPC set by keyword auction falls below the fixed CPC of the option contract,
the advertiser is not obligated to exercise the option, but can, instead, participate
in keyword auctions. Therefore, the option can be considered as an “insurance” that
establishes an upper limit on the cost of advertising campaigns. From the search
engine’s perspective, the proposed option is not only an additional service provided for
advertisers. We show that the search engine can, in fact, increase the expected revenue
in the process of selling an ad option. Also, since the option covers a specific period of
time, this should encourage a more stable relationship between advertiser and search
engine.

An important question for us is to determine the option price and the fixed CPCs
associated with candidate keywords in the advertiser’s request list. Clearly, if the
option is priced too low, then significant loss in revenue to the search engine may
result. Moreover, this may create an arbitrage opportunity in which the buyer of the
option sells the clicks from one’s targeted keywords to gain extra profits. Conversely, if
the option is priced too high, then the advertiser will not purchase it. In this article,
we consider a risk-neutral environment and price the option under the no-arbitrage
objective [Wilmott 2006; Bjork 2009]. We use the Monte Carlo method to price the
option with multiple candidate keywords and show the closed-form pricing formulas
for the cases of single keyword and two keywords. Further, the effects of ad options on
the search engine’s revenue is analysed.

This article has three major contributions. First, we propose a new way to presell ad
slots in sponsored search, which provides flexible guaranteed deliveries to advertisers.
It naturally complements the current keyword auction mechanism and offers both
advertiser and search engine an effective risk mitigation tool to deal with fluctuations
in the bid price. Although the proposed ad option belongs to a family of exotic options,
it differs from existing exotic options in that we know the following from finance and
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other industries (see Table I for detailed comparisons): it can be exercised not only once
but multiple times during the contract period; it is not for a single keyword but multiple
keywords, and each keyword has its own fixed CPC; it allows its buyer to choose which
keyword to reserve and advertise at the corresponding fixed CPC later during the
contract period. Second, we discuss a generalized pricing method for the proposed ad
option (see Algorithm 1) to deal with the high dimensionality. Third, we demonstrate
that, compared to keyword auctions, a search engine can have an increased expected
revenue by selling an ad option.

The rest of the article is organised as follows. Section 2 reviews the related literature.
Section 3 introduces the design of proposed ad option, discusses the option pricing
methods, and analyses the option effects on the search engine’s revenue. Section 4
presents our empirical evaluation, and Section 5 contains our conclusions. Several
important mathematical results are provided in Appendices A through C.

2. RELATED WORK

The work presented in this article touches upon several streams of literature. We first
review the prior work on options in finance and other industries, then discuss the
related literature in guaranteed advertising deliveries.

2.1. Options and Their Pricing Methods

Options have been known and traded for many centuries, and can be traced back to
the 17th century [Constantinides and Malliaris 2001]. A standard option is a contract
in which the seller grants the buyer the right, but not the obligation, to enter into a
transaction with the seller to either buy or sell an underlying asset at a fixed price on or
prior to a fixed date. The fixed price is called the strike price and the fixed date is called
the expiration date. The seller grants this right in exchange for a certain amount of
money, called the option price. An option is called the call option or put option depending
on whether the buyer is purchasing the right to buy or sell the underlying asset. The
simplest option is the European option [Wilmott 2006], which can be exercised only on
the expiration date. This differs from the American option [Wilmott 2006], which can
be exercised at any time during the contract lifetime. Both European and American
options are called standard options.

In the beginning of the 1980s, standard options became more widely understood and
their trading volume increased dramatically. Financial institutions began to search
for alternative forms of options, known as exotic options [Zhang 1998], to meet their
new business needs. Among them, two types of options, multi-asset options and multi-
exercise options, are particularly relevant to our research.

Multi-asset options are the options written on at least two underlying assets [Zhang
1998]. These underlying assets can be stocks, bonds, currencies, and indices in either
the same category or different markets. Several types of multi-asset options are worth
mentioning, such as basket options, dual-strike options, rainbow options, paying the
best and cash options, and quotient options. Table I provides a brief summary of these
multi-asset options, and compares them to standard options and our proposed multi-
keyword multi-click ad options (see Section 3) along the following seven dimensions:
payoff function, underlying variable, exercise opportunity, early exercise opportunity,
strike price and application area. The comparison indicates that our proposed ad op-
tions are more complex than previous proposals.

In Table I, it is worth emphasising basket options and dual-strike options. Basket
options are those options whose payoffis determined by the weighted sum of underlying
asset prices [Wilmott 2006]. This structure can be extended to the keyword broad
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match setting!, in which the weights are the probabilities that subphrases occur in
search queries. Dual-strike options are options with two different strike prices for two
different underlying assets [Zhang 1998]. One simple version of our proposed ad options
is a dual-strike call option, which allows advertisers to switch between their targeted
two keywords during the contract lifetime. However, in sponsored search, the number
of candidate keywords to choose from is usually more than two, thus the two keywords
are extended to higher dimensions. In addition, as an advertiser usually needs more
than a single click for guaranteed delivery, the dual-strike call option is extended to a
multi-exercise option.

Multi-exercise options are a generalisation of American options, which provide a
buyer with more than one exercise right and sometimes control over one or more other
variables [Villinski 2004], for example, the amount of the underlying asset exercised in
certain time periods. Multi-exercise options have become more prevalent over the past
decade, particularly in the energy industry, such as electricity swing options and water
options. Contributors to the multi-exercise options include Deng [2000], Deng and
Oren [2006], Clewlow and Strickland [2000], Villinski [2004], Weron [2006], Marshall
et al. [2011], and Marshall [2012]. Their work is not further discussed here as our
proposed ad option is a simple example of multi-exercise options. Compared to the
energy industry, the multi-exercise opportunity in sponsored search is more flexible.
Advertisers are allowed to exercise options at any time in the option lifetime, that is,
the exercise time is not prespecified, and no minimum number of clicks is required for
each exercise. Therefore, there is no penalty fee if the advertiser does not exercise the
minimum clicks. In addition, there is no transaction fee for ad options in sponsored
search.

Motivated by an attempt to model the fluctuations of asset prices, Brownian motion
(i.e., the continuous-time random walk process [Shreve 2004]) was first introduced
by Bachelier [1900] to price an option. However, the impact of his work was not recog-
nised by financial community for many years. Sixty-five years later, Samuelson [1965]
replaced Bachelier’s assumptions on asset price with a geometric form, called the geo-
metric Brownian motion (GBM). In the GBM model, the proportional price changes are
exponentially generated by a Brownian motion. While the GBM model is not appro-
priate for all financial assets in all market conditions, it remains the reference model
against which any alternative dynamics are judged.

The research of Samuelson highly affected Black and Scholes [1973] and Merton
[1973], who then examined the option pricing based on a GBM. They constructed a
portfolio from risky and riskless underlying assets to replicate the value of a European
option. Risky assets can be stocks, foreign currencies, indices, and so on; riskless assets
can be bonds. Once the risky part of the replicated portfolio is estimated, the option
value can be obtained accordingly. The pricing methods proposed by Black and Scholes
[1973] and Merton [1973] were based on the assumption that investors on the market
cannot obtain arbitrage. Therefore, the replicated portfolio is treated as a self-adjusting
process whose least expectation of returns increases at the same speed as the con-
stant bank interest rate. If considering the constant bank interest rate as a discount
factor, the discounted value of the replicated portfolio would be a martingale [Bjork
2009], whose probability measure is called the risk-neutral probability measure. Since
a closed-form pricing formula can be obtained from the settings of Black and Scholes

1The keyword match type setting helps the search engine to control which searches can trigger an advertiser’s
ad. Under the exact match setting, the advertiser’s ad may show on searches that are an exact term and
close variations of that exact term. Under the broad match setting, the advertiser’s ad may show on searches
that include misspellings, synonyms, other relevant variations, and related searches. For further details, see
https://support.google.com/adwords/.
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[1973] and Merton [1973], we normally call their work the Black-Scholes-Merton (BSM)
option pricing formula. The BSM option pricing formula spurred research in this field.
Various numerical procedures then appeared, including lattice methods, finite differ-
ence methods, and Monte Carlo methods. These numerical procedures are capable of
evaluating more complex options when the closed-form solution does not exist. In this
article, the Monte Carlo method that we discussed earlier can quickly price an ad option
when the number of candidate keywords is larger than two.

2.2. Guaranteed Advertising Deliveries

Guaranteed contracts appeared in the early stages of online advertising (particularly
in display advertising). They were mostly negotiated by advertisers and publishers?
privately [Edelman et al. 2007]. Each negotiation contains an amount of needed display
impressions over a certain period of time and a prespecified guaranteed price. Hence,
in discussing guaranteed deliveries, the following issues must be considered: allocation
and pricing. Many studies discussed these two issues separately. Allocation models is
reviewed first, then the pricing models.

Feldman et al. [2009] studied an ad selection algorithm for a publisher whose objec-
tive is not only to fulfill the guaranteed contracts but also to deliver the well-targeted
display impressions to advertisers. This research was more relevant to a service match-
ing problem. The allocation of impressions between the guaranteed and nonguaranteed
channels was first discussed by Ghosh et al. [2009], in which a publisher was consid-
ered to act as a bidder who bids for guaranteed contracts. This modelling setting was
reasonably good as the publisher acts as a bidder who would allocate impressions to
online auctions only when other winning bids are high enough. Balseiro et al. [2011]
investigated the same allocation problem but used some stochastic control models.
In their model, for a given price of an impression, the publisher can decide whether
to send it to ad exchanges or assign it to an advertiser with a fixed reserve price.
The decision-making process aims to maximise the expected total revenue. Roels and
Fridgeirsdottir [2009] proposed a similar allocation framework to Balseiro et al. [2011],
where the publisher can dynamically select which guaranteed buy requests to accept
and to deliver the guaranteed impressions accordingly. However, compared to Balseiro
et al. [2011], the uncertainty in advertisers’ buy requests and the traffic of a web-
site were explicitly modelled under the revenue maximisation objective. Recently, a
lightweight allocation framework was proposed by Bharadwaj et al. [2012]. They used
a simple greedy algorithm to simplify the computations of revenue maximisation.

Two algorithms for pricing the guaranteed display contracts were discussed
by Bharadwaj et al. [2012]. Each contract has a large number of impressions and the
proposed algorithms solved the revenue optimisation problem for the given number of
user visits (i.e., the demand level). However, their work did not consider the auction
effects on the contract pricing, and the developed algorithms were purely based on the
statistics of users’ visits.

Consider the case in which the online advertising market is bouyant (i.e., the winning
payment prices for specific ad slots from online auctions increase) and nonguaranteed
selling becomes more profitable for publishers. In this case, they may want to cancel
the sold guaranteed contracts before the time that the targeted impressions will be
created. Online auctions with cancellations are discussed by Babaioff et al. [2009] and
Constantin et al. [2009]. They both consider a design in which a publisher can cancel the
sold guaranteed contracts but needs to pay a penalty to the advertisers. The proposed
auctions with cancellations exhibit interesting economic properties, such as allocative
efficiency and equilibrium solution. However, there may exist speculators who pursue

2Publishers are sellers in display advertising.
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the cancellation penalty only. In fact, the discussed cancellation penalty is very similar
to overselling of flight tickets [Talluri and van Ryzin 2005].

Salomatin et al. [2012] studied a framework of guaranteed deliveries for sponsored
search, under which advertisers are able to send their guaranteed requests to a search
engine. Each guaranteed request includes the needed number of clicks and the ad bud-
get. The search engine then decides guaranteed deliveries according to search queries
and available positions. Since the allocation decision is based on the joint revenue max-
imisation from guaranteed deliveries and keyword auctions, some advertisers may not
receive all their demanded clicks. In such cases, the search engine pays a penalty. How-
ever, advertisers still have less control of the ad exposure time and the position of the
ad. In addition, with the number of guaranteed advertisers increasing, it is less likely
that advertisers can meet their business needs with such a mechanism.

The concept of ad option was initially introduced by Moon and Kwon [2010] (even
though Meinl and Blau [2009] discussed the possibility of Web service derivatives, their
proposal was not intended for online advertising). Moon and Kwon [2010] proposed
that the ad option buyer can be guaranteed the right to choose the minimum payment
between cost-per-mille (CPM) and CPC once click-through rate (CTR) is realized. This
option structure was similar to a paying the worst and cash option [Zhang 1998]. In
addition, Moon and Kwon [2010] suggested option pricing under the framework of
a Nash bargaining game. Simply, they considered two utility functions: one for the
advertiser and one for the publisher. The objective function is the product of these two
utilities, and each utility function is restricted by a negotiation power. Therefore, the
option price is the optimal solution which maximises the negotiated join utility. Another
ad option was discussed by Wang and Chen [2012] (and later Chen and Wang [2015]) for
display advertising. The option allows its buyer to select a preferred payment scheme
(either CPM or CPC) for the fixed payment. For example, an advertiser can choose to
pay a fixed CPC for targeted display impressions. They discussed the lattice methods
for option pricing and investigated the stochastic volatility (SV) model for the cases in
which the GBM assumption is not valid empirically. However, their work was limited
to an univariate case as the SV model cannot be easily extended to multiple variables
based on the lattice framework.

3. MULTI-KEYWORD MULTI-CLICK AD OPTIONS

In this section, we introduce how a multi-keyword multi-click ad option works, discuss
the option pricing methods, and provide an analysis of the search engine’s revenue.

3.1. Guaranteed Delivery in Sponsored Search via Ad Options

We use the following example to illustrate our idea. Suppose that a computer science
department creates a new master degree programme on ‘Web Science and Big Data
Analytics’ and is interested in an advertising campaign based around relevant search
terms such as ‘MSc Web Science’, ‘MSc Big Data Analytics’ and ‘Data Mining’. The
campaign is to start immediately and last for 3 months. The goal is to generate at
least 1000 clicks on the ad, which directs users to the homepage of this new master
programme. The department (i.e., advertiser) does not know how the clicks will be
distributed among the candidate keywords, nor how much the campaign will cost if
based on keyword auctions. However, with the ad option, the advertiser can submit
a request to the search engine to lock-in the advertising cost. The request consists of
the candidate keywords, the overall number of clicks needed, and the duration of the
contract. The search engine responds with a price table for the option, as shown in
Figure 1. It contains the option price and the fixed CPC for each keyword. The CPCs
are fixed, yet different across the candidate keywords. The contract is entered into
when the advertiser pays the option price.
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Lose/win the campaign. If the advertiser is
the winning bidder, he obtains the ad slot and
pays at the bid next to him.

Select the winning bidder for the keyword ‘MSc Big
Data Analytics’ under the GSP auction model.

If the advertiser thinks the fixed CPC $6.25
of the keyword *‘MSc Big Data Analytics’ is
expensive (i.e., higher than the winning
payment CPC from keyword auctions), he
can attend keyword auctions to bid for the
keyword as other bidders, say $6.

Pay $6.25 to the search engine for each click
until the requested 5 clicks are fully clicked
by users.

< ety s o Aot OF the Keyword JMS6 Big Data
Analytics’ for the advertiser for 5 clicks until all the
5 clicks are fully clicked by users.

Exercise 5 clicks of the keyword ‘MSc Big
Data Analytics” via option.

Reserve an ad slot of the keyword ‘MSe Web
Science’ for the advertiser for 100 clicks until all the
<| 100 clicks are fully clicked by users.

Pay $1.80 to the search engine for each click
until the requested 100 clicks are fully
clicked by users.

Exercise 100 clicks of the keyword *‘MSc
Web Science’ via option.

Sell clicks from the requested keywords in advance
via a multi-keyword multi-click option .

contract can be exercised 1000 times for total

Pay $50 option price (i.e., upfront fee) to buy
the multi-keyword multi-click option. The 5 [ =0 | <

1000 clicks on the candidate keywords in Option prif:e

period [0, T]. (max 1000 clicks) CPCs
1;'8.': T $1.80

cience

Submit a request of guaranteed deliveries for $50 ‘MSc Big Data $6.25

the keywords ‘MSc Web Science’, ‘MSc Big Analytics’ '

Data Analytics’ and *Data Mining’ for the ’ o

future 3 month period [0, T], where T = 0.25. Data Mining’ |  $8.67

2

Search engine

Q

Advertiser

Fig. 1. Schematic view of buying, selling, and exercising a multi-keyword multi-click ad option in sponsored
search.
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During the contract period [0, T'], where T represents the contract expiration date
(and is 3 months in this example), the advertiser has the right, at any time, to exercise
portions of the contract, for example, to buy a requested number of clicks for a specific
keyword. This right expires after time 7' or when the total number of clicks have
been purchased, whichever is sooner. For example, at time #; < T', the advertiser may
exercise the right for 100 clicks on the keyword ‘MSc Web Science’. After receiving the
exercise request, the search engine immediately reserves an ad slot for the keyword
for the advertiser until the ad is clicked on 100 times. In our current design, the search
engine decides which rank position the ad should be displayed as long as the required
number of clicks is fulfilled — we assume that there are adequate search impressions
within the period. It is also possible to generalise the study in this article and define
a rank-specific option in which all the parameters (CPCs, option prices, and so on)
become rank specific. The advertiser can switch among the candidate keywords and
also monitor the keyword auction market. If, for example, the CPC for the keyword ‘MSc
Web Science’ drops below the fixed CPC, then the advertiser may choose to participate
in the auction rather than exercise the option for the keyword. If, later in the campaign,
the spot price for the keyword ‘MSc Web Science’ exceeds the fixed CPC, the advertiser
can then exercise the option.

Figure 1 illustrates the flexibility of the proposed ad option. Specifically, (i) the
advertiser does not have to use the option and can participate in keyword auctions
as well, (i) the advertiser can exercise the option at any time during the contract
period, (iii) the advertiser can exercise the option up to the maximum number of clicks,
(iv) the advertiser can request any number of clicks in each exercise provided the
accumulated number of exercised clicks does not exceed the maximum number, and
(v) the advertiser can switch among keywords at each exercise at no additional cost. Of
course, this flexibility complicates the pricing of the option, which is discussed next.

3.2. Option Pricing Methods

The proposed multi-keyword multi-click ad option enables advertisers to fix their ad-
vertising cost and construct a set of candidate keywords beforehand, yet leave the
decision of selecting suitable keywords for matching and the exact timing to place the
ad to later. Since the advertiser enjoys great flexibility in sponsored search, there is
an intrinsic value associated with an ad option, and the buyer needs to pay an upfront
option price first. In the following discussion, we focus on calculating a fair upfront
option price for the given option candidate keywords, the current winning payment
prices, the volatility of these keywords, the contract period length, the riskless bank
interest rate, and the fixed CPCs for candidate keywords. Note that the fixed CPCs are
considered as given variables, as they can be set by the search engine after receiving
the advertiser’s request or be proposed by the advertiser in the advertiser’s request.
Either case will not affect our valuation of the option. We follow the scenario of the
motivating example presented in Figure 1 and consider the search engine sets the fixed
CPCs.

Recall that Table I presents two different payoff functions for the proposed ad option.
The first payoff function can be used to price an ad option with either the keyword exact
or broad match setting, which is determined by the match type of the winning payment
prices used. However, if only having the exact match winning payment prices from
keyword auctions and the advertiser wants to have an ad option with keyword broad
match setting, the second payoff function can be used for option pricing. In the following,
we discuss the option pricing based on the first payoff function. The same method can
be applied to the second payoff function; for further details, see Section 3.2.4.
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Table Il. Summary of Notations
Notation Description
r Constant continuous-time (riskless) interest rate
T Option expiration date
t Continuous time point in [0, T']
m Number of total clicks specified by an ad option
n Number of total number of keywords specified by an ad option
K Keywords specified by an ad option, K = {Kj, ..., K,}
F Prespecified fixed CPCs for keywords K
C(t) Winning payment CPCs for keywords K from auctions at time ¢

Vi, C@t); T, F,m
Hi
i

W)

Value of an n-keyword m-click ad option at time #
Constant drift of CPC for keyword K;,i =1,....n
Constant volatility of CPC for keyword K;,i =1,...,n
Standard Brownian motion at time ¢

) Price correlation matrix, in which p;; is the correlation coefficient between
keywords K; and Kj, such that p;; = 1 and p;; = pj;

MM Price covariance matrix, where M is the matrix with o; along the diagonal
and zeros everywhere else
O(C(t)) Payoff function of an ad option at time ¢

0 Option price (i.e., upfront fee) of an ad option

N(u, o2) Normal distribution with mean x and variance o2
MV N(u, MX M) Multivariate normal distribution with mean u and variance MX M
N Cumulative probability distribution of a standard normal distribution

3.2.1. Underlying Stochastic Model. The winning payment CPC of the candidate keyword
K; (for a specific slot/position) at time ¢ is denoted by C;(¢). Its movement can be
described by a multivariate GBM [Samuelson 1965]:

dC;(t) = w;C;t)dt + o;C;()dW; (), i=1,...,n, (1)
where y; and o; are constants representing the drift and volatility of the CPC, respec-
tively, and W;(¢) is a standard Brownian motion satisfying the conditions:

E(dW;()) =0,
var(dW;(®) = EdW;(6)dW;(t)) = dt,
cov(dWi(t), dW;(£)) = E(dW;()dW(£)) = pyjdt.

where p;; is the correlation coefficient between keywords K; and Kj, such that p;; = 1
and p;; = pj;. The correlation matrix is denoted by X, so that the covariance matrix
is simply MX M, where M is the matrix with the o; along the diagonal and zeros
everywhere else. For the reader’s convenience, detailed descriptions of notations are
provided in Table II.

Since the GBM assumption lays the foundation for pricing the proposed ad option,
we provide several discussions and investigations of it. In Section 3.2.4, we explain why
the GBM assumption is suitable for pricing an ad option in sponsored search, and also
highlight its limitations. In Section 4.2, we discuss the estimation of GBM parameters.
In Section 4.3, we conduct goodness-of-fit tests with real datasets and track the “errors”
of the calculated option price when the GBM assumption is not valid empirically.

3.2.2. Terminal Value Pricing. To simplify the discussion and without loss of generality,

the value of an n-keyword m-click ad option can be decomposed as the sum of m inde-
pendent n-keyword 1-click ad options. If an advertiser buys an ad option at time 0, the
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option price 7y can be expressed as follows:
o = V(0,C(0); T, F,m) =mV(0,C(0); T, F, 1), (2)

where V (0, C(0); T, F, m) represents the option value at time 0.

Our focus now centres on the n-keyword 1-click ad option. Adopting the basic eco-
nomic setting [Narahari et al. 2009], we assume that an advertiser is risk-neutral.
In other words, the advertiser has no preference across the candidate keywords and
exercises the option for the keyword which has the maximum difference between its
winning payment price and the prespecified fixed price. This difference shows the value
of the option because the advertiser is offered the right to move from the auction market
to the guaranteed market.

Let us first consider if the advertiser exercises the option at the contract expiration
date 7', the option payoff can be defined as follows:

O(C(T)) = max{Ci(T) — Fy,...,C(T) — Fy, 0}. 3)

Note that the option payoff in sponsored search does not mean the direct reward, but
it measures the difference of advertising cost between the auction market and the
guaranteed market. By having Equation (3), we can see if the advertiser would like to
exercise the option early by using the backward deduction method. The option value
at time ¢t < T is then

) d(C®1)), if early exercise,

Ve, Co;T. F. 1) = { E;Q[e*r(T*”CD(C(T))], if not early exercise,

where r is the constant riskless bank interest rate and E2[] is the conditional expec-
tation with respect to time ¢ under the probability measure Q. As we use the riskless
bank interest rate as the discounted factor, the probability measure Q is also called the
risk-neutral probability measure [Bjork 2009]. Appendix B discusses the rationale for
using the riskless bank interest rate and introduces an alternative method of option
pricing.

Let us now return to the decision-making problem. If the ad option is exercised
early at time ¢, the option value is equal to its payoff ®(C(¢)). However, if the ad
option is not exercised, the option value at time ¢ is equal to the discounted value of
the expected payoff at the expiration date 7'. The comparison between ®(C(¢)) and
E;@ [e"T-Dd(C(T))] informs the optimal decision for the advertiser. Since the payoff
function defined is convex, we then obtain the following inequality (see Appendix A):

O(C@) < Effe "o (C(T))]. (4)

Equation (4) illustrates, to gain the maximum option value, that the advertiser will not
exercise the option until its expiration date. Hence, the option price should be computed
at the discounted value of the expected payoff from the expiration date T'. Together
with Equation (2), we can obtain the option pricing formula for the n-keyword m-click
ad option:

o = me TEJ[®(C(T))). (5)

It is worth noting that we rule out arbitrage [Varian 1987] between the auction
market and the guaranteed market in option pricing. The concept of arbitrage can
be understood as the “free lunch”. As a market designer, we need to make sure that
everyone obtains something by paying something so that it is fair to both the buy and
sell sides. Since we assume that an advertiser is risk-neutral, the riskless bank interest
rate can be employed as the benchmark rate to rule out arbitrage. Equation (5) can also
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ALGORITHM 1: Pricing a Multi-keyword Multi-click Ad Option via Monte Carlo
Simulations.
function OptionPricingMC(K, C(0), X, M, m,r, T)
for £ < 1tondo #mnisthe number of simulations;
[21% - - -, 2nk] < GeneratingMultivariateNoise(MVN[0, MX M])
for i < 1tondo
Ci,k <« CL(O) exp {(r — %O’?)T + aizi,kﬁ}.

end for

Gk < CD([CLk, ey an])
end for .
7o < me " TEo[®(C(T))] ~ me™T (% Y1 Gk>.
return i

end function

Note: A detailed description of notations is provided in Table II.

be obtained by constructing an advertising strategy for the advertiser, as discussed in
Appendix B.

3.2.3. Solutions. Equation (5) can be expanded in integral form as follows:

n -1
7o =me T (2nT) 5|3 2 <]_[ ai)

i=1

© e o(C) 1, _1} ~
- ) dcC, 6
X/o fo 0 C exp{ 502 (6)

where ¢ = (¢1,...,8), & = ﬁ(ln{&/q(on —(r— %Z)T), and other notations are

described in Table II.

Closed-form solutions to Equation (6) can be derived if n < 2. If n = 1, Equation (6)
is equivalent to the Black-Scholes-Merton (BSM) pricing formula for a European call
option [Black and Scholes 1973; Merton 1973]. If n = 2, Equation (6) contains a bivari-
ate normal distribution and the option price can be obtained by employing the pricing
formula for a dual-strike European call option [Zhang 1998]. The closed-form solutions
are provided in Appendix C.

For n > 3, taking integrals in Equation (6) is computationally difficult. In such a case,
we resort to numerical techniques to approximate the option price. Algorithm 1 illus-
trates our Monte Carlo method. For 7 number of simulations, for each simulation, we
generate a vector of multinormal noise, then calculate the CPCs at time T'. Equation (4)
shows that there is no need to generate the whole paths in each simulation, as we only
consider the CPCs on the expiration date in the calculation of option payoff. Hence, by
having 7 payoffs at time T, the option price my can be approximated numerically. We
refer to this as Algorithm 1.

3.2.4. Discussion. The candidate keywords’ prices may not follow the GBM assumption
empirically because some time series features, such as jumps and volatility clustering,
cannot be captured effectively by a GBM [Marathe and Ryan 2005]. However, the GBM
model is still a good choice for pricing ad options in sponsored search. First, in our
data analysis (see Section 4.3.1), we find that 15.73% of keywords’ CPCs satisfy the
GBM assumption. Second, for the cases in which the GBM assumption is not valid
empirically (see Section 4.3.2), we find that the pricing model is reasonably robust as
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the identified arbitrage values in many experimental groups are small. Of course, our
dataset might be biased. However, previous research in keyword auctions supports
the GBM assumption: Lahaie and Pennock [2007] tested the log-normality of bids
on Yahoo! search advertising data and gave the estimated distribution parameters;
Ostrovsky and Schwarz [2011] performed experiments based on the log-normal bids
on the Yahoo! search advertising platform; Pin and Key [2011] observed random bids
from the Microsoft Bing search platform and simulated similar bids based on the
log-normal distribution. Since in this research the advertisers’ bids are tested across
auctions, the winning payment prices (i.e., the second-highest bids from auctions)
over time also satisfy the log-normal distribution. Recall that, in the GBM model, the
difference between two logarithms of winning payment prices follows a time-dependent
normal distribution. If we consider the average daily winning payment price as the
underlying variable, these previous works can provide the distribution hypothesis tests
to support the GBM assumption in sponsored search. However, for display advertising,
the GBM assumption is usually not valid empirically, which has been investigated
recently by Chen et al. [2014] and Yuan et al. [2014].

Table I shows that, if only having the exactly matched C(T'), we can still construct a
broad match structure for the option. Similar to Equation (3), the option payoff function
on time T' can be defined as follows:

ky Fn
®(C(T) = max | Y 0,Cr(T) — F1,.... Y 0nCu(T)—F,.0¢, (7)

=1 i=1

where wj; is the probability that the ith broad matched keyword (i.e., the subphrase
occurs in search queries) for the keyword K, and %; represents the number of broad
matched keywords. Equation (1) can be still used to model the underlying CPCs’ move-
ment and the option price 7y can be directly calculated by Algorithm 1.

3.3. Revenue Analysis for Search Engine

The proposed ad option can be considered as “insurance” for an advertiser. The adver-
tiser needs to pay the upfront option price, which contributes to the search engine’s
revenue. In the following discussion, we analyse the effect of an ad option on the search
engine’s revenue. We provide a functional analysis for the 1-keyword 1-click ad option
in this section and leave the empirical investigation of the n-keyword cases to Section 4.

Let D(F) be the difference between the expected revenue from an ad option and the
expected revenue from only keyword auctions; we then have

D(F) = <C(0)</V[§1] — e TN (2] +e’TF>P(Eg@[C(T)] > F)

= Discounted value of expected revenue from option if IE? [C(TH=F

+ <c<o>m;ﬂ —e"TF.N [55] +e—rTE§P[C(T)])IP(Eg@ [C(T)] < F)

= Discounted value of expected revenue from option if Eg [C(T)]<F

- e "TEIIC(T)]
—
= Discounted value of expected revenue from auction

= CO)AN 1] — e TF N [go] — e T (EJIC(T)] — F) x P(ESIC(T)] = F),  (8)

where _/[-] represents the cumulative probability of a standard normal distribution.
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Let us consider the boundary values first. If F' = 0, the option price 7y achieves its
maximum value e‘rT]Eg‘) [C(T)]; therefore, D(F) — 0. If my = 0, the fixed CPC F' is as
large as possible, and H”(]Eé()J2 [C(T)] > F) — 0 and D(F) — 0. Since

In{C(T")/C(0)} ~ N((r —o2/2)T, O’ZT),

we can have

P(EJIC(T)] > F)

P( C(0)exp {(r - %az> T + %O’ZT} > F>

=P (In{C(T)/C(0)} + In{F/C(T)} — rT < 0)

_ ( (ln{C(T)/C(O)} - (r _ %&) T)

- f (In(C(O)/F} + 1T + UW(T))) s )

where ¢* = #T(ln{C(O)/F} +rT +oW(T) =1 —GovT — JLTW(T)) =+ @oVT +
%TW(T)). Since E[W(T)] = 0 and var[W(T')] = T, then ¢, < ¢* < ¢1 with 67% proba-
bility if 02T > 4. Then

D(F) = CO).A[¢1] —e"TF N [g5] — e T (EQIC(T)] — F). A [¢*]
=CO) (AN [e1] = N[ +e " TF(AN ] — A gD = 0, (10)

suggesting that the search engine can have an increased expected revenue if the search
engine sells the click via an option rather than through an auction. Taking the deriva-
tive of D(F') with respect to F' and assigning its value to zero, we have

ID(F) 0NNl 081 0 12] 98
o = CO= 2 en —e T N gl —e TR PR
IP(EG[C(T)] > F)

oF

—e T (EGIC(T)] ~ F) +e " TP(ESC(T)] = F) =0. (11)

Since 3.4 (x)/dx = —2—e~2*", the following equation holds:

F

AN gl [N [E1] 1.5 }_C(O)erT
0% / 00 _e"p{z@1 @)= —F (12

Taking the derivative of ¢; and ¢s with respect to F gives

o 02 (In{CO)/F} +(r + 304)T) 1 13
9F aF T FoJT'
3 _ 00 d0vT 1

aF ~ 9F 9F  FoJT

(14)
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Table IlI. Overview of Experimental Settings of Data

Market | Group | Training set (31 days) | Deve&test set (31 days)
1 25/01/2012-24/02/2012 | 24/02/2012—-25/03/2012

US 2 30/03/2012—-29/04/2012 | 29/04/2012-31/05/2012

3 10/06/2012-12/07/2012 | 12/07/2012-17/08/2012

4 10/11/2012-11/12/2012 | 11/12/2012-10/01/2013

1 25/01/2012-24/02/2012 | 24/02/2012-25/03/2012

UK 2 30/03/2012—-29/04/2012 | 29/04/2012-31/05/2012

3 12/06/2012-13/07/2012 | 13/07/2012-19/08/2012

4 18/10/2012-22/11/2012 | 22/11/2012-24/12/2012

5:15

and D(F) achieves its maximum or minimum value at F' = ]E? [C(T)]. Further, taking
the second derivative of D(F') with respect to F' = EBQ [C(T)] gives

0°D(F) _9PEGICTN=F) oNgloce 1 10 1

= — e 3% <0.
oF? oF 9 OF V270 FoJT

Hence, if the fixed CPC is set the same as the estimated spot CPC on the contract
expiration date (i.e., F = E((? [C(T)]), the search engine can increase its profit.

4. EXPERIMENTS

In this section, we describe our data and experimental settings, conduct assumption
and fairness tests, and investigate the option’s effects on the search engine’s revenue.

4.1. Data and Experimental Design

The data used in the experiments is collected from Google AdWords by using its Traffic
Estimation Service [Yuan and Wang 2012]: when an advertiser submits targeted key-
words, budget, and other settings to Google, the Traffic Estimation Service will return
a list of data values, including the estimated CPCs, clicks, global impressions, local
impressions, and position. These values are recorded for the period from 26/11/2011 to
14/01/2013, for a total of 557 keywords in the US and UK markets. Note that, in the
data, 21 keywords have missing values and 115 keywords’ CPCs are all 0.

For each market, as illustrated in Table III, we split the data into 4 experimental
groups. Each group has one training, one development, and one test set. The training set
is used to: (i) select the keywords with nonzero CPCs; (ii) test the statistical properties of
the underlying dynamic, and estimate the model parameters. We then price ad options
and simulate the corresponding buying and selling transactions in the development
set. Finally, the test set is used as the baseline to examine the priced ad options.

4.2. Parameter Estimation and Option Pricing

The GBM parameters are estimated by using the method suggested by Wilmott [2006].
Specifically, for the keyword K;, the volatility o; is the sample standard deviation of
change rates of log CPCs and the correlation p;; is given by

i i) — 3y () — 7))
VI i) = 5002 S (3 (R) — 5,02
where m is the size of training data and y;(#,) is the kth change rate of log CPCs.

pij = (15)
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(a) Path from 1 simulation (b) Option payoff from 1 simulation
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Fig. 2.  Empirical example of pricing a 3-keyword 1-click ad option via the Monte Carlo method, where
K; = ‘canon cameras’, Ky = ‘nikon camera’, K3 = ‘yahoo web hosting’, F; = 3.8505, Fy, = 4.6704, and
F3 = 6.2520.

Figure 2 illustrates an empirical example, in which the candidate keywords are
K ‘canon cameras’
K=K ; = ‘nikon camera’ ,
K3 ‘yahoo web hosting’

and the estimated model parameters are

0.2263 1.0000 0.2341 0.0242
o= <0.4521 ) Y= (0.2341 1.0000 —0.0540)
0.2136 0.0242 —0.0540 1.0000
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Note that a high contextual relevance of keywords normally means that they have a
high substitutional degree to each other, such as ‘canon cameras’ and ‘nikon camera’,
whose CPCs move in the same direction with correlation 0.2341. The other keyword
‘yvahoo web hosting’ is contextually less relevant to the former keywords and also
has very low price correlations to them. The example also shows that the contextual
relevance of keywords has an impact on their CPC movement.

Based on the estimated parameters, we draw a sample of simulated paths of a 3-
dimensional GBM in Figure 2(a) for 31 days (in which the x-axis is expressed in terms
of year value). Recall that the option payoff at any time ¢ in the contract lifetime is
max{C(t) — Fy,...,C,(t) — F,, 0}. In Figure 2(b), we plot the price difference between
the spot CPC and the fixed CPC of each candidate keyword (i.e., C;(¢) — F;,i =1,...,n)
and also indicate the corresponding option daily payoffs (shown by the cyan curve). It
suggests that switching among keywords would help the advertiser to maximise the
benefits of the ad option. Repeating these simulations 50 times generates 50 simulated
vales of each keyword for each day, as shown in Figure 2(c). We then calculate 50
option payoffs and their daily mean values to obtain the final option price, as shown in
Figure 2(d).

To examine the fairness (i.e., no-arbitrage) of the calculated option price, we can
construct a riskless value difference process by delta hedging 0V /9C; (see Appendix B)
and check if any arbitrage exists [Wilmott 2006]. The hedging delta of the 1-keyword
1-click ad option can be calculated as follows:

ov 1 C(0) o2

— = In{ —= — )T )| 1

o= LT+ 3)7)] 1o
For the n-keyword 1-click option, the hedging delta of each keyword can be com-

puted by the Monte Carlo method, i.e., 3V /dC; = EQ[aV (T, C(T))/dC;(T)]. According

to Appendix B, we can define the 31-day growth rate of the value difference process

as y = (I(t31) — T(#))/ (%), and compare y to the riskless bank interest rate r = 5%
(equivalent to 7 = 4.12% per 31 days return®). The arbitrage detection criterion is

|V — 7| < ¢ ? arbitrage does not exist : arbitrage exists, a7

where the notation ¢ is the model variation threshold (and we set ¢ = 5% in exper-
iments). Hence, a positive ¥ — ¥ means that the advertiser who buys an option can
obtain arbitrage while a negative ¥ —7 indicates the case of making arbitrage by selling
an option. Then, the identified arbitrage « is defined as the excess return, that is,

a={)7—(?—£), ify <7 —e, (18)

y—F+e), ify >T+e.

Table IV presents the overall results of our arbitrage test based on the GBM model.
We generate paths for candidate keywords with 100 simulations and examine the op-
tions price using delta hedging. There are 99.76% (1-keyword), 93.06% (2-keyword),
and 92.71% (3-keyword) options fairly priced. Only a small number of options exhibits
arbitrage and most of the mean arbitrage values lie within 5%, such as shown in Fig-
ure 3. The existence of small arbitrage may be due to two reasons. First, the stability
of process simulations in both option pricing and arbitrage test. Second, the candidate
keywords are randomly selected for the 2-keyword and 3-keyword options. The signifi-
cant differences in the absolute prices of these keywords can generate a large variation
of calculated option payoffs, which then trigger arbitrage.

3The relationship between the continuous compounding » and the return per 31 days 7 is: 1 + 7 =
307365 [Hyll 2009].
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Table IV. Test of Arbitrage for Ad Options Based on a GBM

US market UK market
n | Group | N P(x) El«] N P(a) Elo]
1 94 0.00% 0.00% | 76 0.00% 0.00%
1 2 64 0.00% 0.00% | 45 0.00% 0.00%
3 94 1.06% 0.75% | 87 0.00% 0.00%
4 112 | 0.89% | —0.37% | 53 0.00% 0.00%
1 47 4.26% 1.63% | 38 0.00% 0.00%
9 2 32 9.38% 0.42% | 22 4.55% | 13.41%
3 47 4.26% 0.84% | 43 4.65% 0.82%
4 56 5.36% 3.44% | 26 | 23.08% | —6.22%
1 31 0.00% 0.00% | 25 4.00% 0.00%
3 2 21 4.76% | —1.38% | 15 0.00% 0.00%
3 31 0.00% 0.00% | 29 3.45% | —1.12%
4 37 | 10.81% 3.87% | 17 | 35.29% | —2.54%

Note: n is the number of candidate keywords, N is the number of
options priced in a group, P(«) is percentage of options in a group with
identified arbitrage, and the E[«] is the average arbitrage value of the
options, where the arbitrage « is defined by Equation (18) and the
riskless bank interest rate r = 5%.

(a) n=2 & group 2 (b) n=2 & group 3 (c) n=2 & group 4
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Fig. 3. Empirical example of arbitrage analysis based on GBM for the US market.

4.3. Model Validation and Robustness Test

We now examine the GBM assumption and investigate if arbitrage exists when the
candidate keywords in an option do not follow a GBM.

4.3.1. Checking the Underlying GBM Assumption. Two validation conditions of the GBM
model are tested [Marathe and Ryan 2005]: (i) the normality of change rates oflog CPCs
and (ii) the independence from previous data. Normality can be either checked graph-
ically by histogram/Q-Q plot or verified statistically by the Shapiro-Wilk test [Shapiro
and Wilk 1965]. To examine independence, we employ the autocorrelation function
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Fig. 4. Empirical example of checking the GBM assumption for the keyword ‘canon 5d’, in which the
Shapiro-Wilk test has a p-value of 0.3712 and the Ljung-Box test has a p-value of 0.4555.

(ACF) [Tsay 2005] and the Ljung-Box statistic [Ljung and Box 1978]. Figure 4 pro-
vides an empirical example of the keyword ‘canon 5d’. Figures 4(a) and 4(b) exhibit
the movement of CPCs and log change rates while Figures 4(c) and 4(d) show that the
stated two conditions are satisfied in this case.

We check the discussed two conditions with the training data. As shown in Figure 5,
there are 14.25% and 17.20% of keywords in US and UK markets, respectively, that
satisfy the GBM assumption. Thus, 15.73% of keywords can be effectively priced into
an option based on a GBM. It is worth mentioning that not all keywords follow a GBM.
Next, we examine the robustness of pricing models and investigate the arbitrage based
on non-GMB models.

4.3.2. Examining Arbitrage for Non-GBM Dynamics. Several popular stochastic processes
(together with the real data) are tested to check the arbitrage in option pricing. Table V
shows the candidate models. Each model can capture certain features of time-series
data, such as mean reversion, constant volatility, and square root volatility [Hull 2009].
The arbitrage tests here are slightly different from those of the GBM model. We esti-
mate the model parameters from the actual data in the test sets instead of the learning
sets and treat the actual data as one single path of each model. Hence, the simulated
data has the same drift, volatility, and correlations as the test data. We are now able
to examine the arbitrage multiple times when the real-world environment does not
follow a GBM. Also, for the candidate models, hypothesis tests are used to check if the
simulated path and actual data come from a same distribution. These tests include
the Wilcoxon test [Wilcoxon 1945], Ansari-Bradley test [Mood et al. 1974] and Two-
sample Kolmogorov-Smirnov test [Justel et al. 1997]. Figure 6 summarises the results
of models’ goodness-of-fit tests, in which the y-axis represents the mean percentage of
simulated paths not rejected by the hypothesis tests. Even though the three tests give
different absolute percentages, the dynamics’ performance is similar and consistent:
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Fig. 5. Overview of checking the GBM assumption for all keywords of experimental groups.

Table V. Tested non-GBM Dynamics

Dynamic Stochastic differential equation (SDE)
Constant elasticity of variance (CEV) model [Cox and Ross dC;(t) = piC;t)dt + o;(Ci ()Y 2dW;(¢)
1976]
Mean-reverting drift (MRD) model [Wilmott 2006] dCi(t) = k(i — C;@)dt + o;(Ci () 2dW;(t)
Cox-Ingersoll-Ross (CIR) model [Cox et al. 1985] dC;(t) = k(i — Ci())dt + (61)Y2C;()AW; (2)
Hull-White/Vasicek (HWV) model [Hull and White 1990] dC;(t) = ki(u; — Ci()dt + o;dW;(t)

Note: ki = 0.5 while other parameters are learned from the training data.

the CEV model has the best simulations for the actual data, followed by the MRD; the
CIR and HWV models are very close.

Table VI presents the results of arbitrage tests for the non-GBM dynamics, in which
most of experimental groups exhibit arbitrage. The CEV model gives the best no-
arbitrage performance, showing that 78.65% of CEV-based keywords can be properly
priced by using the GBM-based option pricing model. About 53.05% of the CIR model
and about 43% of the MRD or HWV model-based options have no arbitrage. For 1-
keyword options, the fairness percentage is more than 85% across all experimental
groups. However, this number drops to around 38% for multi-keyword options (36.27%
for 2-keyword options and 42% for 3-keyword options). For the identified arbitrage,
many groups (especially 1-keyword options) show small arbitrage values (around 10%),
while arbitrage explodes in some groups.

In summary, Tables IV and VI illustrate that our option pricing methods are effective
and reasonably robust for the real sponsored search data. As shown in Figure 7, when
the keywords’ prices follow a GBM (15.73%), the pricing model ensures that 95.17%
of ad options are fairly priced under the 5% arbitrage precision. For the non-GBM
keywords, the CEV model is the best performance model, giving 78.65% of fairness;
the CIR model is the worst performance model, with only 31.97% of fairness. Overall,
the best expected fairness for all keywords is 81.25%, while the worst is 41.91%. We
find that the increase of the number of candidate keywords in an ad option increases
the likelihood of arbitrage. This is confirmed by the fact that expected fairness drops
from 86.83% (99.76% GBM and 83.60% non-GBM for 1-keyword options) to 43.69%
(2-keyword options) and 53.39% (3-keyword options), respectively.

4.4. Effects on Search Engine’s Revenue

Let us start with the case of 1-keyword options. The example of keyword ‘canon cameras’
in Figure 8 (a) illustrates (other keywords exhibit the similar pattern) the conclusions
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Fig. 6. Overview of model similarity tests: Wilcoxon test, Ansari-Bradley (A-B) test and Two-sample
Kolmogorov-Smirnov (K-S) test.
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Fig. 7. Overview of pricing model robust tests.

from our theoretical analysis in Section 3.3, that (i) the revenue difference between
option and auction is always positive and (ii) that when the fixed CPC F = Eg [C(T)],
the revenue difference D(F') achieves its maximum and the two boundary values are
approximately zero.

The non-GBM cases are further examined in Figures 8(b) through 8(e), which show
that when the fixed CPC is close to zero, the revenue difference D(F) — 0. This is
because when the fixed CPC approximates zero, it is almost certain that the option
will be used in the contract period. As such, the only income for the keyword is from
the option price, which, in this case, is close to the CPC in the auction market. On the
other hand, if the fixed CPC is very high, it is almost certain that the option will not be
used. In this case, the option price 79 — 0 and the probability of exercising the option
P(]E(g) [C(T)] > F) — 0. Hence, D(F) is zero. However, under the non-GBM dynamics,

the point F = IE? [C(T)] is not the optimal value that gives the maximum D(F'), which
indicates that arbitrage may occur.

Next, Figure 9 illustrates an empirical example of a 2-keyword ad option. The can-
didate keywords are ‘non profit debt consolidation’ and ‘canon 5d’. Figure 9(a) shows
that the higher the fixed CPCs, the lower is the option price (even though the option
price is less sensitive to the keyword ‘canon 5d’) and it achieves the maximum when
all the fixed CPCs are zeros. These monotone results are the same as the 1-keyword
options. Figure 9(b) then shows the revenue difference curve of the search engine, in
which the red star represents the value where F; = EBQ [C1(T)] and F5 = ]E? [Co(T)].
The expected revenue differences are all nonnegative, showing that this 2-keyword ad
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Fig. 8. Empirical example of analysing the search engine’s revenue for the keyword ‘canon cameras’.
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Fig. 9. Empirical example of analysing the search engine’s revenue for the keywords ‘non profit debt con-
solidation’ and ‘canon 5d’, where p = 0.2247.

option is beneficial to the search engine’s revenue. However, the red star point is not
the maximum difference revenue. This is different from the 1-keyword ad options.

For higher-dimensional ad options (i.e., n > 3), it is not possible to graphically exam-
ine the revenue difference. However, based on the earlier discussions, two findings can
be summarised. First, there are boundary values of the revenue differences: if every
F; — 0, D(F) — 0; and if every F; — oo, D(F) — 0. Second, there exists a maximum
revenue difference value even though this may not at the point where F; = EBQ [C;(T)].
Hence, compared to only keyword auctions, properly setting the fixed CPCs can increase
the search engine’s expected revenue.
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5. CONCLUDING REMARKS

In this article, we proposed a novel framework to provide flexible guaranteed deliveries
for sponsored search, from which both buy and sell sides can benefit. On the buy side,
advertisers are able to secure a certain number of clicks from their targeted keywords
in the future and can decide how to advertise later. They can be released from auction
campaigns and can manage price risk under the given budgets. On the sell side, the
search engine can sell the future clicks in advance and can receive a more stable and
increased expected revenue over time. In addition, advertisers would be more loyal to
a search engine due to the contractual relationships, which has the potential to boost
the search engine’s revenue on the long run.

We also believe that the proposed ad options will soon be welcomed by the sponsored
search market. Several similar but different developments that have appeared in the
display digital markets support our point of view. They are:

09/2013: AOLs Programmatic Upfront*

03/2013: OpenX Programmatic Guarantee [OpenX 2013]
10/2012: Adslot Media’s Programmatic Direct Media Buying®
10/2012: Shiny Ads Programmatic Direct Advertising Platform®
10/2012: iISOCKET’s Programmatic Direct’

Our work differs from these developments in many aspects. First, we focus on spon-
sored search, while they are for display advertising. Second, the proposed ad options
provide flexible guaranteed deliveries (e.g., multi-keyword targeting, multi-click exer-
cise, early exercise, no obligation of exercise) while other recent developments do not
provide such features.

Our work leaves several directions for future research. First, to address the limita-
tions of GBM, other stochastic processes tailored to some specific keywords are worth
studying, such as the jump-diffusion model [Kou 2002] and the stochastic volatility
model [Chen and Wang 2015]. The most challenging part of this future research is
that the underlying model is multi-dimensional and needs to be computational fast.
Second, it would be interesting to discuss an optimal pricing and allocation model of
ad options so that a search engine can algorithmically manipulate the limited future
clicks in front of uncertain demand. Third, the game-theoretical pricing of ad options
can be another direction.

APPENDICES
A. PROOF OF THE NO-EARLY EXERCISE PROPERTY FOR THE PROPOSED AD OPTION

Equation (3) can be rewritten as ®(x) = max{x — f, 0}, where &’ = [x1,...,x,] and
f =1f...., f.]. Itis not difficult to find that ®(x) is multivariate convex. Let0 < A < 1
and let ¥ = [y1, ..., y,], if the elements of vector @a = y — x are all nonnegative, then

dOx+ (1 - Ny < AP(x) + (1 — 1)D(y).
If y =(0,...,0), and using the fact that ®(0) = 0, we obtain
d(Ax) < Ad(x), forallx; >0, 0 <A <1.
4http://www.aolplatforms.com/aolupfront2014.
Shttp://www.automatedguaranteed.com.

6https://shinyads.com/solutions/direct-programmatic-guaranteed.
Thttps://www.isocket.com/automated-guaranteed.
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For0<s<t¢<T,since 0 <e’®% <1 we then have
E2[e 7" o(X(¢)] > E[@(e " X(1))]
> O(E2[e " X(t)]) (by the Jensen’s Inequality)
= O ("E2[e "' X®)]),

where E2[] is the conditional expectation with respect to time s under the risk-neutral
probability measure Q. Since e 7! X(#) is a martingale under Q [Bjork 2009], then

D (e"E2[e " X(?)]) = D (e " X(s)) = d(X(s)).

Hence, E2[e "9 ®(X(¢))] > ®(X(s)), showing that e " ®(X(¢)) is a submartingale under
Q. This indicates that the proposed ad option can be priced the same as its European
structure, focusing on the payoff on the contract expiration date. For further detailed
discussions about martingale and submartingale, see Bjork [2009].

B. DERIVATION OF THE AD OPTION PRICING FORMULA

Since the proposed ad option complements the existing keyword auctions, there may
exist a situation that some advertisers want to make guaranteed profits only from the
difference of costs between option and auction markets without taking any risk. This
situation is called arbitrage [Varian 1987; Bjork 2009]. Hence, we must fairly evaluate
the option so that arbitrage is eliminated.

In the context of sponsored search, we consider that an advertiser buys an n-keyword
m-click ad option at time 0. Then, at time ¢, ¢ € [0, T'], the difference between the option
value and the market value of candidate keywords can be expressed as

N = Ve, Co; F, T,m = y:i)Ci(t), (19)

=1

where ;(¢) represents the number of clicks needed for the keyword K; such that
> i ¥i(t) = m. Here, we call I1(¢) the value difference process. Recall that, in Equation (3),
we consider the value of an n-keyword m-click option as the sum of m independent n-
keyword 1-click options; for mathematical convenience, Equation (19) can be rewritten
as follows:

M) =m <V(t, CW;F.T. 1)~y AiCi(t)> : (20)

i=1

where A; represents the probability that a single click goes for the keyword K; and
Y1 A; = 1. The changes of I over a sufficient small period of time dt is then

v 1¢
dnie) = m| —dt+ 5 ;‘;a,ajpuc Cfac iC; dt+z dC ZA dC; | . (21
The uncertain components in dI1(¢) can be removed if A; = 3V /9C;. This is called delta
hedging in option pricing theory [Wilmott 2006]. Hence, I1(¢) now becomes a riskless
process over time:

ane =m| 2+ ZZ co, 2V \ar (22)
I T M FTo TN

=1 j=1
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We assume that the advertiser has no initial fund and borrows the money from others
at the riskless bank interest rate r; thus the interest of this borrowing is

dI(¢) = rii(t)dt = rm (v Z Ve ) dt. (23)

Equations (22) and (23) need to be equal; otherwise, arbitrage exists. If the riskless
growth rate of the value difference process is larger than the riskless bank interest
rate, the advertiser can obtain arbitrage by: (i) borrowing the money from the bank
at interest rate r to buy an ad option first or (ii) selling the ad option later to repay
the bank interest. In the case in which the riskless growth rate of the value difference
process is smaller than the riskless bank interest rate, the advertiser can obtain the
riskless surplus by: (i) selling short an ad option first and saving the revenue in a bank
account or (ii) using the deposit money to buy the clicks of underlying keywords later.
In either case, the advertiser can finally receive a riskless surplus; therefore, arbitrage
exists.

Solving Equations (22) and (23) can give a parabolic partial differential equation
(PDE) for the no-arbitrage equilibrium:

v "V 9%V
_t+r;80i 2223030 010;pijCiC; =1V =0.

=1 j=1

This PDE satisfies the boundary condition in Equation (3). By employing the multidi-
mensional Feynman-Kac stochastic representation [Bjork 2009], we obtain the solution

V(t,Ct);F,T,1) =e " TE2[0(C(T)),

where ]E;Q[-] is the conditional expectation with respect to time ¢ under the risk-
neutral probability Q. The process C;(¢) can be rewritten as

dC;(t) =rC;(t)dt + oiCi(t)dWiQ(t),

where WiQ(t) is the standard Brownian motion under Q. Therefore, the option price g
can be calculated by the following formula:

=V(0,CO);F,T,m)=mV(0,CO);F,T,1) = m_rTEg[Q(C(T))].
C. OPTION PRICING FORMULAS FOR SPECIAL CASES
If n = 1, Equation (6) is equivalent to the Black-Scholes-Merton (BSM) pricing formula
for a European call option [Black and Scholes 1973; Merton 1973]. Then we have
o = mC(0).A [e1] — mFe™™" 4 [5], (24)
where ¢1 = = (In{C(0)/F} + (r + C)T)and & = & — o/T.

If n = 2, Equation (6) contains a bivariate normal distribution. Hence, we can
calculate the option price the same way as the dual-strike European call option
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[Zhang 1998]:

§1+0'1«/T / _
770 = mC1(0) f(uw[q”(” torVT) —ponT + pu}du
—0o0 vV 1- ,02
to+ooVT _
+ mCy(0) f(v)/[qZ(u+02ﬁ) polx/T—i—pv]dv
o] vV 1- ,O2

me~"T <F1 ; f(u)ﬂ[‘h(?%t}d u+ Fy 7;2 f(v)w[‘h(‘l’)%}dv), (25)
where
Q) = —= <1n { B-h+ Clé(;)(eo(;_ il f} - (r _ 103) T>,
o= ig (BB )
0= 7 <ln{Cl(0)/F1} + <r - %af) T),
Lo = - f<ln{Cz(0)/F2} + <r - %ag) T).
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