Multi-keyword multi-click advertisement option contracts for sponsored search¹

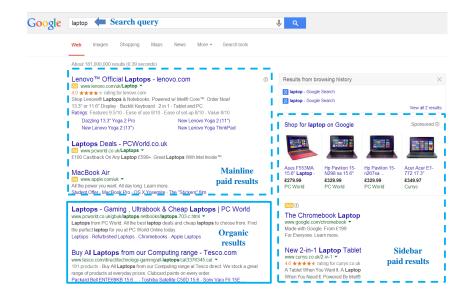
Bowei Chen^{†,2}, Jun Wang[†], Ingemar J. Cox^{†,‡}, Mohan S. Kanhanhalli[#]

[†]University College London [‡]University of Copenhagen [‡]National University of Singapore

2015

¹In ACM Transactions on Intelligent Systems and Technology (TIST) Volume 7 Issue 1, October 2015, No. 5. ²Corresponding author: bowei.chen@cs.ucl.ac.uk

Sponsored search



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Uncertainty in payment prices for advertisers;
- Volatility in the search engine's revenue;
- Weak loyalty between advertiser and search engine.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A multi-keyword multi-click ad option contract allows its buyer to:

- Target a set of candidate keywords for a certain number of total clicks;
- Multiply exercise the option to purchase guaranteed clicks at any time on or prior to the contract expiration date;
- Switch among candidate keywords when exercise the option without paying any cost.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

It has the properties of multi-asset option and multi-exercise option.

Buy and sell an ad option

pay £50 upfront option price to obtain the option.

submit a request of guaranteed ad delivery for the keywords 'MSc Web Science', 'MSc Big Data Analytics' and 'Data Mining' for the future 3 month term [0, T], where T = 0.25.

online advertiser

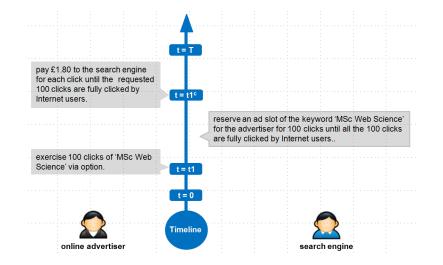
Timeline

sell a list of ad keywords via a multi-keyword multiclick option

multi-keyword multi-click option (3 month term)				
upfront fee (m = 1000)	keywords list	fixed CPCs		
	'MSc Web Science'	£1.80		
£50	'MSc Big Data Analytics'	£6.25		
	'Data Mining'	£8.67		

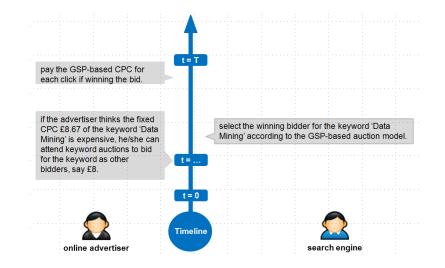
(D) (A) (A)

Exercise an ad option



▲ロト ▲園ト ▲画ト ▲画ト 三回 - のんで

Not exercise an ad option



▲ロト ▲園ト ▲画ト ▲画ト 三回 - のんで

Advertiser	Search engine		
Secure ad service delivery	Obtain upfront income in advance		
Reduce uncertainty from auctions	Have a stable & increased revenue		
Cap advertising costs	Increase advertisers' loyalty online		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ ○ ○ ○ ○ ○

- Underlying stochastic model
- Option payoff formulation
- Option pricing framework and solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The keyword K_i 's spot market CPC can be described as follows

$$dC_i(t) = \mu_i C_i(t) dt + \sigma_i C_i(t) dW_i(t), \quad i = 1, \dots, n,$$

where μ_i and σ_i are the drift and volatility, respectively, and $W_i(t)$ is a standard Brownian motion satisfying the conditions:

 $\mathbb{E}(dW_i(t)) = 0,$ $\operatorname{var}(dW_i(t)) = \mathbb{E}(dW_i(t)dW_i(t)) = dt,$ $\operatorname{cov}(dW_i(t), dW_i(t)) = \mathbb{E}(dW_i(t)dW_i(t)) = \rho_{ii}dt,$

where ρ_{ij} is the correlation coefficient between the *i*th and *j*th keywords, such that $\rho_{ii} = 1$ and $\rho_{ij} = \rho_{ji}$. The correlation matrix is denoted by Σ , so that the covariance matrix is $M\Sigma M$, where M is the matrix with σ_i along the diagonal and zeros everywhere else.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The value of an m-click ad option at time t is equal to m number of 1-click ad option:

$$V(t, \boldsymbol{C}(t); T, \boldsymbol{F}, m) = mV(t, \boldsymbol{C}(t); T, \boldsymbol{F}, 1).$$

If exercised, we have

$$V(t, C(t); T, F, 1) = \Phi(C(t)) := \max\{C_1(t) - F_1, \dots, C_n(t) - F_n, 0\},\$$

where **F** is a vector of exercise prices for candidate keywords, T is the expiration date, and $\Phi(\mathbf{C}(t))$ is the option payoff at time t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Since $e^{-rt}\Phi(\mathbf{X}(t))$ is a sub-martingale under the risk-neutral probability measure Q (see Appendix A), the proposed ad option can be priced as same as its European structure, focusing on the payoff on the contract expiration date.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

The option price π_0 (i.e., the option value at time 0) can be obtained as follows (see Appendix B for the derivation):

$$\begin{aligned} \pi_0 &= \mathbb{E}[\Phi(\mathbf{C}(T)) \mid \mathbb{F}_0] \\ &= m e^{-rT} (2\pi T)^{-\frac{n}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \left(\prod_{i=1}^n \sigma_i\right)^{-1} \\ &\times \int_0^\infty \cdots \int_0^\infty \frac{\Phi(\widetilde{C})}{\prod_{i=1}^n \widetilde{C}_i} \exp\left\{-\frac{1}{2} \boldsymbol{\zeta}^T \mathbf{\Sigma}^{-1} \boldsymbol{\zeta}\right\} d\widetilde{C}, \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

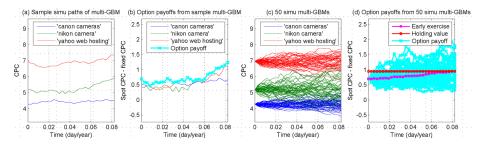
where \mathbb{F}_0 is the information history up to time 0, $\zeta = (\zeta_1, \ldots, \zeta_n)'$, and $\zeta_i = \frac{1}{\sigma_i \sqrt{T}} \left(\ln\{\widetilde{C}_i/C_i(0)\} - (r - \frac{\sigma_i^2}{2})T \right)$, $i = 1, \cdots, n$.

# of keywords	Pricing method	Reference
1	Black-Scholes formula for European call option	See Appendix C
2	Peter Zhang dual strike European call option	See Appendix C
≥ 3	Monte Carlo simulation	See Algorithm 1

Algorithm 1:

function OptionPricingMC($K, C(0), \Sigma, M, m, r, T$)

for $k \leftarrow 1$ to # of simulations do $[z_{1,k}, \dots, z_{n,k}] \leftarrow \text{GenerateMultivariateNoise}(MVN[0, M\SigmaM])$ for $i \leftarrow 1$ to n do $C_{i,k} \leftarrow C_i(0) \exp\left\{(r - \frac{1}{2}\sigma_i^2)T + \sigma_i z_{i,k}\sqrt{T}\right\}$. end for $G_k \leftarrow \Phi([C_{1,k}, \dots, C_{n,k}])$. end for return $\pi_0 \leftarrow me^{-rT}\mathbb{E}_0[\Phi(C(T))] \approx me^{-rT}\left(\frac{1}{n}\sum_{k=1}^{\tilde{n}}G_k\right)$. end function



$$K = \begin{cases} \text{'canon cameras'} \\ \text{'nikon camera'} \\ \text{'yahoo web hosting'} \end{cases}, \ \sigma = \begin{pmatrix} 0.2263 \\ 0.4521 \\ 0.2136 \end{pmatrix}, \ \Sigma = \begin{pmatrix} 1.0000 & 0.2341 & 0.0242 \\ 0.2341 & 1.0000 & -0.0540 \\ 0.0242 & -0.0540 & 1.0000 \end{pmatrix}$$

▲口▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Revenue analysis for 1-keyword 1-click ad options

Let D(F) be the difference between the expected revenue from an ad option and the expected revenue from only keyword auctions, we then have

$$D(F) = \left(C(0)\mathscr{N}[\zeta_1] - e^{-rT}F\mathscr{N}[\zeta_2] + e^{-rT}F\right)\mathbb{P}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] \ge F)$$

= Discounted value of expected revenue from option if $\mathbb{E}_0^{\mathbb{Q}}[C(T)] \ge F$

$$+ \left(C(0)\mathcal{N}[\zeta_1] - e^{-rT}F\mathcal{N}[\zeta_2] + e^{-rT}\mathbb{E}_0^{\mathbb{Q}}[C(T)] \right) \mathbb{P}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] < F)$$

= Discounted value of expected revenue from option if $\mathbb{E}_0^{\mathbb{Q}}[C(T)] < F$

$$\underbrace{e^{-rT}\mathbb{E}_0^{\mathbb{Q}}[C(T)]}$$

= Discounted value of expected revenue from auction

$$= C(0)\mathscr{N}[\zeta_1] - e^{-rT}F\mathscr{N}[\zeta_2] - e^{-rT}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] - F) \times \mathbb{P}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] \ge F),$$

where $\mathcal{N}[\cdot]$ is the cumulative probability of a standard normal distribution.

- If F = 0, v_0 achieves its maximum value; therefore, $D(F) \rightarrow 0$.
- If $\pi_0 = 0$, F is as large as possible, $\mathbb{P}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] \ge F) \to 0$ and $D(F) \to 0$.
- Since $\ln\{C(T)/C(0)\} \sim N((r \sigma^2/2)T, \sigma^2 T)$,

$$\mathbb{P}(\mathbb{E}_0^{\mathbb{Q}}[C(T)] \ge F) \approx \mathscr{N}\left[\frac{1}{\sigma\sqrt{T}}\left(\ln\{C(0)/F\} + (r - \frac{1}{2}\sigma^2)T\right)\right] = \mathscr{N}[\zeta_2].$$

Therefore, $D(F) = C(0)\mathscr{N}[\zeta_1](1-e^{-\frac{1}{2}\sigma^2 T}) > 0$, then

$$\frac{\partial D(F)}{\partial F}\Big|_{F=\mathbb{E}_0^{\mathbb{Q}}[C(T)]} = 0, \quad \frac{\partial^2 D(F)}{\partial F^2}\Big|_{F=\mathbb{E}_0^{\mathbb{Q}}[C(T)]} = -\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\zeta_2^2}\frac{1}{F\sigma\sqrt{T}} < 0,$$

suggests that by setting $F = \mathbb{E}_0^{\mathbb{Q}}[C(T)]$, the search engine can increase its profit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Market	Group	Training set (31 days)	Deve&test set (31 days)		
US	1	25/01/2012-24/02/2012	24/02/2012-25/03/2012		
	2	30/03/2012-29/04/2012	29/04/2012-31/05/2012		
	3	10/06/2012-12/07/2012	12/07/2012-17/08/2012		
	4	10/11/2012-11/12/2012	11/12/2012-10/01/2013		
UK	1	25/01/2012-24/02/2012	24/02/2012-25/03/2012		
	2	30/03/2012-29/04/2012	29/04/2012-31/05/2012		
	3	12/06/2012-13/07/2012	13/07/2012-19/08/2012		
	4	18/10/2012-22/11/2012	22/11/2012-24/12/2012		

³The data was collected from Google AdWords by using its Traffic Estimation Service.

Normality of change rates of log CPCs Histogram (0, 0, plot and the Shapire Wilk to

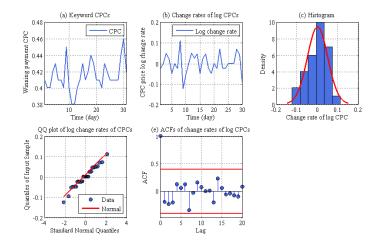
Histogram/Q-Q plot and the Shapiro-Wilk test

Independence from previous data

Autocorrelation function (ACF) and the Ljung-Box statistic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Empirical example of the GBM assumption test



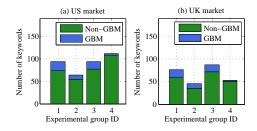
・ロト ・日子・ ・ ヨト・

э

Keyword 'canon 5d'

The Shapiro-Wilk test is with *p*-value 0.3712

The Ljung-Box test is with p-value 0.4555.

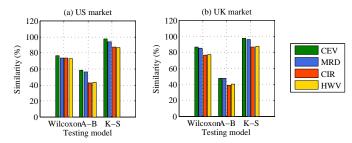


There are 14.25% and 17.20% of keywords in US and UK markets that satisfy the GBM assumption, respectively.

(ロ) (日) (日) (日) (日)

E

Model	Stochastic differential equation (SDE)		
Constant elasticity of variance (CEV)	$dC_i(t) = \mu_i C_i(t) dt + \sigma_i (C_i(t))^{1/2} dW_i(t)$		
Mean-reverting drift (MRD)	$dC_{i}(t) = k_{i}(\mu_{i} - C_{i}(t))dt + \sigma_{i}(C_{i}(t))^{1/2}dW_{i}(t)$		
Cox-Ingersoll-Ross (CIR)	$dC_{i}(t) = k_{i}(\mu_{i} - C_{i}(t))dt + (\sigma_{i})^{1/2}C_{i}(t)dW_{i}(t)$		
Hull-White/Vasicek (HWV)	$dC_i(t) = k_i(\mu_i - C_i(t))dt + \sigma_i dW_i(t)$		



Wilcoxon test, Ansari-Bradley (A-B) test and Two-sample Kolmogorov-Smirnov (K-S) test

(ロ) (日) (日) (日) (日)

Check arbitrage via delta hedging

- Calculate delta
 - 1-keyword 1-click ad options

$$\frac{\partial V}{\partial C} = \mathscr{N}\left[\frac{1}{\sigma\sqrt{T}}\left(\ln\left\{\frac{C(0)}{F}\right\} + \left(r + \frac{\sigma^2}{2}\right)T\right)\right].$$

n-keyword 1-click options (calculated by Monte Carlo method)

$$\partial V / \partial C_i = \mathbb{E}^{\mathbb{Q}}[\partial V(T, C(T)) / \partial C_i(T)]$$

The arbitrage detection criteria is

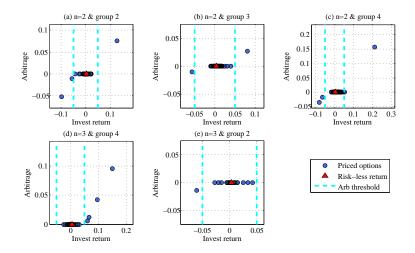
 $|\widetilde{\gamma} - \widetilde{r}| \leq \varepsilon$? arbitrage does not exist : arbitrage exists,

where $\tilde{\gamma}$ is the rate of returns from constructed hedging strategy, \tilde{r} is the equivalent (discrete) risk-less bank interest rate in the period, and ε is the model variation threshold (and we set $\varepsilon = 5\%$ in experiments). The identified arbitrage α is defined as the excess return, that is

$$\alpha = \begin{cases} \widetilde{\gamma} - (\widetilde{r} - \varepsilon), & \text{if } \widetilde{\gamma} < \widetilde{r} - \varepsilon, \\ \widetilde{\gamma} - (\widetilde{r} + \varepsilon), & \text{if } \widetilde{\gamma} > \widetilde{r} + \varepsilon. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Check arbitrage via delta hedging con't

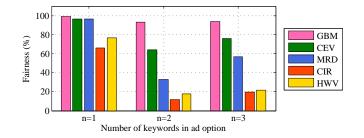


(日) (四) (三) (三) (三)

Empirical example of arbitrage analysis based on GBM for the US market.

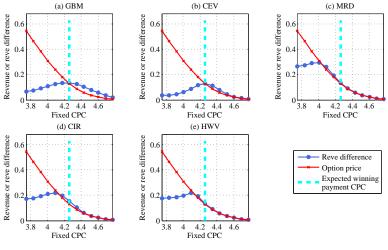
Testing arbitrage of options under the GBM: n is the number of keywords, N is the number of options priced in a group, $\mathbb{P}(\alpha)$ is % of options in a group identified arbitrage, and the $\mathbb{E}[\alpha]$ is the average arbitrage value of the options identified arbitrage.

п	Group	US market		UK market			
		N	$\mathbb{P}(\alpha)$	$\mathbb{E}[\alpha]$	Ν	$\mathbb{P}(\alpha)$	$\mathbb{E}[\alpha]$
1	1	94	0.00%	0.00%	76	0.00%	0.00%
	2	64	0.00%	0.00%	45	0.00%	0.00%
	3	94	1.06%	0.75%	87	0.00%	0.00%
	4	112	0.89%	-0.37%	53	0.00%	0.00%
2	1	47	4.26%	1.63%	38	0.00%	0.00%
	2	32	9.38%	0.42%	22	4.55%	13.41%
	3	47	4.26%	0.84%	43	4.65%	0.82%
	4	56	5.36%	3.44%	26	23.08%	-6.22%
3	1	31	0.00%	0.00%	25	4.00%	0.00%
	2	21	4.76%	-1.38%	15	0.00%	0.00%
	3	31	0.00%	0.00%	29	3.45%	-1.12%
	4	37	10.81%	3.87%	17	35.29%	-2.54%



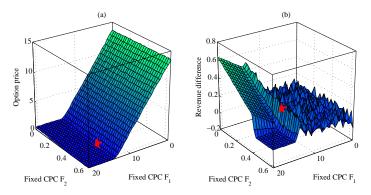
(□) (□) (□) (□) (□)

- 22



Keyword 'canon cameras'

Empirical example of revenue analysis for a 2-keyword 1-click ad option



Keywords 'non profit debt consolidation' and 'canon 5d', where ho=0.2247

▲口▶ ▲母▶ ▲臣▶ ▲臣▶ 三臣 - の9(0)

• Other sophisticated stochastic processes are worth studying, such as jump-diffusion models and stochastic volatility models.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Game-theoretical pricing models for ad options.
- Optimal pricing and allocation of ad options.