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Exterior facelift has become an effective method for automakers to boost the consumers’ interest in an exist-
ing car model before it is redesigned. To support the automotive facelift design process, this study develops
a novel computational framework – Generator, Evaluator, Optimiser (GEO), which comprises three com-
ponents: a StyleGAN2-based design generator that creates different facelift designs; a convolutional neu-

ral network (CNN)-based evaluator that assesses designs from the aesthetics perspective; and a recurrent

neural network (RNN)-based decision optimiser that selects designs to maximise the predicted profit of
the targeted car model over time. We validate the GEO framework in experiments with real-world datasets
and describe some resulting managerial implications for automotive facelift. Our study makes both method-
ological and application contributions. First, the generator’s mapping network and projection methods are
carefully tailored to facelift where only minor changes are performed without affecting the family signature
of the automobile brands. Second, two evaluation metrics are proposed to assess the generated designs. Third,
profit maximisation is taken into account in the design selection. From a high-level perspective, our study
contributes to the recent use of machine learning and data mining in marketing and design studies. To the
best of our knowledge, this is the first study that uses deep generative models for automotive regional design
upgrading and that provides an end-to-end decision-support solution for automakers and designers.
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1 INTRODUCTION

“... which brings us on to the new Golf GTI. Well, VW says it is new – in reality it is
a facelift of the current MK 7 – in the hope that existing owners will feel compelled
to sell their old model and sign on the dotted line of whatever nonsensical finance
arrangement the beancounters have come up with this time.”

- Jeremy Clarkson
The Clarkson Review: 2017 VW Golf GTI

The automotive sector is a major industrial and economic force worldwide. Automotive markets
are very well developed in many countries, and cars are becoming more homogeneous in prices
and functions. Therefore, exterior styling has played an important role in any market success [1, 2].
According to J.D. Power [3], which surveyed consumers who had just bought a car, exterior styling
has been considered a strong motivation for their purchase. In fact, it has become one of the most
critical determinants for automotive sales, and a hot spot for market competition.

Most automakers launch a new generation of a given car model every six to eight years. This
is a very long lifespan for a consumer good. Before the arrival of the next generation, automakers
typically introduce some minor changes to an existing car model, which are known as facelift (or
mid-generational refresh) [4]. When consumers search for a new car, they may prefer to consider
“the facelifted VW Golf” or “the facelifted BMW 3 Series”. Facelifts include upgrades to exterior
styling, interior equipment, accessories, engine and safety options. For example, if a car model
has a facelift, it may have a newly-designed front or rear bumper, LED lights or wheels, and the
infotainment system may be upgraded with a bigger screen. Most of the time, a facelifted car
will have a noticeably different look from the previous year’s model. Figure 1 illustrates two real
facelift samples from the market in the past. Facelifts have become an effective method of boosting
a consumer’s interest in an existing car model before it is redesigned.

Building on the work from [5, 6], which apply deep learning algorithms to assist the automotive
aesthetic design, this paper proposes a computational framework for automotive exterior facelift,
which provides intelligent decision support to automakers and designers. Our study aims to ad-
dress the following research questions: Can a generative model be trained to present a design space
for various automotive designs? How can such a model upgrade existing designs regionally with
innovative design patterns? How can an upgraded design be evaluated? How can the profit shift
caused by a given design change be estimated?

The proposed framework contains three key components – a design generator, a design evalua-

tor, and a decision optimiser – hence we simply call it GEO. The design generator proposes various
upgrading schemes for automotive exterior facelift; the evaluator assesses the designs from the
aesthetic perspective; and the decision optimiser selects the best design that maximises the overall
profit for the automaker. Specifically, the design generator is based on the state-of-the-art Style-
GAN2 model [7, 8] where we reform the mapping network and the projection method to generate
new facelift designs. Therefore, the design generator can generate many innovative designs on the
targeted car front areas but keeps the “family” face of a given car model. For instance, a facelifted
BMW 3 Series can have a more aggressive front bumper and LED headlights while still possessing
the well-known BMW “kidney” grille. The design evaluator is responsible for rating the designs
from the aesthetic perspective. As modern car designs have similar shapes and layouts, it is difficult
for the regular deep models, with limited samples, to learn discriminating features for aesthetic
ratings. Inspired by previous studies [5, 9] that solve the problem through the metric learning ap-
proach, a double-task training frame is proposed in this paper, incorporating an angular loss-based
classification [10–12] to facilitate the learning of discriminating features. The decision optimiser is
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Fig. 1. Examples of car front facelifts (designs before and after the facelifts) for Audi A3 and Lexus NX.

specified for selecting the best facelift plans, maximising profit over time. By deploying the recur-

rent neural network (RNN) [13] to estimate the market share shifts caused by the facelift, the
optimiser compares the possible gains of different plans and then selects the ones with the highest
returns.

From a broader perspective, our study adds to the recent applications of machine learning and
data mining in marketing and design studies. Different from previous studies, which have em-
ployed deep generative models for automotive exterior design [5, 6, 14], our study is the first to
investigate automotive facelift that focuses on regional design upgrades and considers the design
selection from a revenue maximisation perspective. In terms of technology, the proposed compu-
tational framework provides an end-to-end decision-support solution for automakers and automo-
tive designers. First, the design generator adopts a style-based generative adversarial network

(GAN) [15] architecture. By carefully selecting the latent space and training examples, innovative
facelift designs for a car front can be generated while maintaining the car model’s family character-
istics. Second, new aesthetic evaluation metrics are proposed to assess the car’s design analogous
to the subjective human preferences. Last but not least, the decision optimiser tries to recognise
the designs that can maximise mid-term revenues before the redesign of the target model.

The rest of this article is organised as follows. Section 2 reviews the related literature. Section 3
introduces our proposed computational framework for automotive exterior facelift. In Section 4,
we introduce the datasets we have used, the experimental settings, and our analysis of results.
Finally, Section 5 concludes the paper.

2 RELATED WORK

Until recently, product aesthetic design had for a long time been assumed to be a field of human
endeavour, despite computer science researchers having made various attempts over decades to
break into it. The very early attempts were focused on manipulating 2D design shapes, which were
represented by coordinate points and the curves between them [16]. Later studies followed similar
approaches but augmented such a manipulation with more dimensions to obtain more detailed
designs. For instance, restructuring the product design in the 3D space or creating additional rich
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colour choices [17, 18]. However, as pointed out in [19], the inclusion of new dimensions ampli-
fied the manipulation difficulties, thus lessening the design flexibility. Such a trade-off between
generation realism and flexibility has for long been a challenge for subsequent researchers.

This trade-off has now been largely reconciled. Recent deep generative models only need hun-
dreds of latent variables to obtain various highly realistic designs. The generative adversarial net-
work and variational autoencoder (VAE) [20] families are the two most popular deep generative
frameworks nowadays; GAN has the advantage of generating more realistic results [21]. A classi-
cal GAN frame involves two subnetworks, termed generator and discriminator. The former is used
for generating fake images, while the latter is responsible for discriminating between real and fake
images. As the generator and discriminator have adversarial roles, intuitively, in the game theory
sense, the training procedure can be perceived as a zero-sum game between the generator and
discriminator.

A few existing studies have attempted to apply deep generative models to automotive design. In
the very first study, the authors of [19] demonstrated that by training the VAE model with adequate
data, the trained model is capable of generating diverse car designs. The generator can automati-
cally produce cars in various body types, brands, and viewpoints with no need to carefully select
numerous control variables. In their next study [5], Pan et al., proposed a more comprehensive
design framework that included both the deep generative models for design generation and deep
neural networks for design evaluation. Such a framework is functional in both offering various can-
didate designs and evaluating them from an aesthetic perspective. However, these existing studies
deployed generative models to produce novel designs, in which design freedom constraints have
not been considered. As [22] pointed out, in real automotive markets, designers need to achieve a
balance between design freedom and brand recognition. Thus, regional design upgrading, known
as design facelift, is much needed in automotive aesthetic design. From the technical perspective,
this is more challenging due to the feature entanglement problem [23, 24]. That is, the change of
a single latent value can cause global changes in the resulting design. Furthermore, a theoretical
analysis [23] has indicated that the disentangled representations cannot be resolved through the
unsupervised learning approach if no inductive biases are provided.

The newly developed style-based generators, namely StyleGAN [7] and StyleGAN2 [8], have
performed outstandingly on the controllability of generation, while easing the entanglement prob-
lem. Similar to our application needs, Liu et al. [25] proposed an objective function-based method
for spatial modification, which changes regional content by manipulating the “style” values fed to
the synthesis network. On the other hand, to resolve the problem of embedding a given image in
the trained StyleGAN, both [26] and [8] have proposed methods for projections, which have the
inverse purposes of image generation.

From the automaker’s perspective, the ultimate goal of the facelift is to maximise the overall
profit of the car models that have been launched, which could be seen as an optimisation problem.
Despite the extensive study of optimisation problems in economics, game theory, and marketing
studies, only a few existing studies have attempted to investigate product design from the optimi-
sation perspective [27–29]. In these studies, simulation is based on high-level aesthetic attributes.
Due to the lack of proper design generation methods, no realistic designs were provided as vivid
samples. In our present study, we try instead to solve design optimisation directly on the various
designs proposed by the generator.

To estimate the profit/utility caused by the design change, the evaluation of designs from the
aesthetic perspective is required. Psychologically, the perception of aesthetics (known as aesthetic
emotion) involves a series of neural activations for visual processing and emotional arousal. The
complicated nature of this issue made the prediction of aesthetic sensation challenging before
the rise of deep models in the last decade. These days, it is common to apply convolutional
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Fig. 2. Schematic view of the GEO framework.

neural networks (CNNs) [30] for aesthetic evaluation tasks. CNNs are well-known for their
end-to-end prediction power, which has achieved impressive record-breaking results on several
computer vision tasks [31–34]. Several existing studies [35–37] attempted to apply the CNN model
to the categorisation of fashion products, achieving a remarkable accuracy. On the other hand,
several studies relied on CNN-based models to predict the aesthetic level of durable products such
as cars [5, 6, 38]. Researchers found that with sufficient images of cars and subjective labels, the
CNN model could learn to make aesthetic ratings on diverse aspects such as sporty, appealing and
innovative cars. Inspired by these studies, the development of an automotive aesthetic evaluator
becomes relatively straightforward.

Motivated by the aforementioned advances, our present study aims to develop a three-stage
framework that can generate, evaluate and estimate profit changes of facelifted designs for vari-
ous existing designs. Compared with the most relevant works, namely [5] and [6], our proposed
framework differs in two major aspects. First, our study focuses on offering regional design up-
grades rather than new designs, where the primary shape of existing car models is untouched.
Second, profit maximisation is incorporated into the pipeline, which attempts to locate the up-
grades that lead to the highest profit. This makes our current study a product design optimisation
investigation.

3 THE GEO FRAMEWORK

As illustrated in Figure 2, the proposed GEO framework consists of a design generator, a design
evaluator, and a decision optimiser. The generator proposes different facelift designs; the evaluator
assesses the designs from the aesthetic perspective; and the decision optimiser selects the designs
that maximise mid-term profit for the automaker. In the following, the technical details of these
three components will be introduced in turn.

3.1 The Design Generator

Our generator is based on the StyleGAN2 model [8] as it is the state-of-the-art deep generative
model that has performed extremely well in synthesising high-resolution images [39]. Meanwhile,

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 82. Publication date: February 2023.



82:6 J. Huang et al.

Fig. 3. Structure of the generator in StyleGAN2. The StyleGAN/StyleGAN2 models comprise two main parts:

the mapping network and the synthesis network. The former transforms the raw latent code to the interme-

diate latent code, while the latter generates images/designs according to the given intermediate latent codes.

compared with other GAN models, it has a flexible and enriching architecture that allows automo-
tive designers to control design types, which results in more innovative designs.

As Figure 3 shows, a StyleGAN2-based generator has two parts: a mapping network and a
synthesis network. The mapping network, denoted by fMAP (·), is implemented through l fully-
connected layers, responsible for mapping an input latent code z

(0) to an intermediate code z
(l ) .

The superscript indicates the position of the latent code within the mapping network. For instance,
the intermediate latent code z

(l ) is the output from the lth layer. The synthesis network, denoted by
GST (·), comprisesK generation blocks. As blocks or convolutional layers can take different interme-
diate latent codes to produce images, we denote all the fed latent codes by a matrixZ . This is differ-
ent from the original StyleGAN2 study [8], since the fed intermediate latent vectors in our design
framework are not required to be the same across the generation blocks or convolutional layers.

Also illustrated by Figure 3, each generation block (excepting the first one) in StyleGAN2
consists of two convolutional layers and one upsampling layer. To simplify, the computation of
a single block is formulated as Ok = дST (Ok−1,Z [k]), where Ok represents the output feature
maps from the kth generation block, дST (·) denotes the computation of the entire generation
block, and Z [k] represents the latent code fed to the kth generation block. As the right part of the
synthesis network in Figure 3 shows, unlike the original StyleGAN model, StyleGAN2 replaces
the progressive growing strategy with “skip connections”, then the final output image is the sum
of all the generation block results:

GST (Z ) =
K∑

k=1

fUP

(
fRGB (Ok ), K − k

)
, (1)

where fRGB (·) represents the “To RGB” module that converts feature maps to images, each feature
map has the size of 2k+1 × 2k+1, fUP (·) is the upsampling function, and K − k indicates the
times needed to double the size, ensuring output channels from different blocks are all sized in
2K+1 × 2K+1.
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After a proper training, the resulting StyleGAN2 can be perceived as a design space for various
automotive images. By searching for the latent codes that produce the most similar results, a given
car design Ca can be represented by a distinct Za through the inverse of the generation process
G−1 (·), namely the projection method:

G−1
ST (Ca ) = argmin

Z

DPER

(
GST (Z ),Ca

)
, (2)

where DPER (·) is the distance measure between images. It should be noted that for the projection,
the obtained Z can consist of latent codes from arbitrary layers of the mapping network. With
regard to measuring the distance between images, we adopt learned perceptual image patch

similarity (LPIPS) [40], which is a CNN-based score that measures the perceptual difference
between two images.

To indicate the generator model’s ability to produce novel and realistic designs, we propose two
new metrics related to the concept of design space, namely domain size and domain quality. The
former evaluates the generator’s ability to generate innovative designs, and a larger-sized design
space would contain more unseen designs. In the study, we apply the calculation of projection

accuracy to measure the domain size, which is formulated as follows:

EC∼XtestDPER

[
GST

(
G−1

ST (C )
)
−C

]
, (3)

whereC is an unseen design drawn from the test set Xtest, andGST (G−1
ST (C )) is the reconstruction of

C in the given design space. The projection accuracy measures how accurately an unseen design is
represented in the learned generative system. Intuitively, if a generative system has a large design
space for cars, it should be able to precisely represent unseen designs.

The domain quality metric indicates the quality of design generations. The quality problems
have been extensively studied in deep generative models, where the Fréchet inception distance

(FID) [41] metric is widely used. We adopt a modified FID, namely FID of random mixing, to sam-
ple the overall generation quality since our proposed facelift tries to shift an existing latent code
partially to another. It is formulated as follows:

Ezi ,zj∼Pz fFID

(
GST (Z

zi ,zj
),Xtrain

)
, (4)

where fFID (·) denotes the FID measure, Xtrain is the training set, and Z
zi ,zj

consists of vectors that

result from the random mixing of zi and zj .
Inspired by the architecture of StyleGAN2, it is expected that regional design upgrades could be

achieved by revising the correspondingZ . Given a candidate designCa and an intended upgrading
schemeBa (which is a binary matrix that indicates the image area to modify, it can have an arbitrary
size and shape in the given image), our design generation objective can be formulated as follows:

max
Z

[
SAE

(
GST (Z )

)
− DPER

(
Ba � Ca ,Ba � GST (Z )

)]
, (5)

where SAE (·) is the aesthetic evaluation carried out by the evaluator, and � represents the
Hadamard product. Then, we look for a latent matrix Z that can maximise design aesthetics while
mitigating the modifications of the unintended areas. The latter can be the areas related to the
family signature of a given car model such as the BMW kidney grille. For convenience, in the rest
of the paper we will refer to these unintended areas as the fixed region.

It is worth pointing out that, from the automotive facelift perspective, Equation (5) is not a proper
objective function. First, automotive designers would prefer to have more candidate designs rather
than a single “best” suggestion [6]. Second, high-level modifications (e.g., shape) are preferred over
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fine-feature changes (e.g., colour, texture). If we do not specify further constraints, the upgrades
will end up with changes to the fine-features rather than to the overall structure.

To obtain more candidate designs, Equation (5) can be reformulated as a two-stage optimisation
problem. In the first stage, we look for designs inspired by other latent codes while minimising the
changes in the fixed region. Given a candidate designCa and an inspiration latent matrix Z i from
the set {Z 1, . . . ,ZN }, we look for a design that satisfies the following objective:

min
Z

����Z [:k] − Z i[:k]

���� + DPER

(
Ba � Ca ,Ba � GST (Z )

)
, (6)

where k indicates the target latent code places, Z [:k] are the intermediate codes given to the first k

blocks, and |Z [:k]−Z i[:k] | is the L1 distance between the design latent matrix and the ith inspiration

latent matrix. We adopt the L1 norm since in our trials it achieves more stable results than the
Euclidean distance [42]. Previous studies have shown that early generation blocks control general-
features and later ones regulate the fine-features [7, 8]. Therefore, constraining the latent codes
allows us to decide what types of design features to modify. Let Z denote the set of designs from
solving Equation (6), we then rank the designs obtained according to their aesthetic scores and
select the best candidates accordingly:

argmax
i

SAE

(
GST (Z i )

)
, for Z i ∈ Z. (7)

3.2 The Design Evaluator

As modern car designs share similar layouts and forms, the design evaluator needs to learn dis-
criminating features to distinguish between the proposed designs and facelifts. Inspired by the
existing metric learning studies [5, 9, 43] and facial recognition/prediction studies [44–47], where
similar data challenges are faced, the double-task training strategy is adopted. The evaluator is
trained simultaneously for aesthetic estimation and car model recognition to facilitate the learn-
ing of contrasting features between designs:

min Ea∼Xtrain

[
�

(a)
aes + �

(a)
rec

]
, (8)

where � (a)
aes and � (a)

rec are the aesthetics estimation and class recognition loss, and the � (a)
aes is expressed

as (s (a) − s (a) )2, representing the Mean Squared Error (MSE) between the predicted and ground

truth aesthetic score. Unlike the traditional softmax, the � (a)
rec adopts the angular loss [10–12] setting,

further enhancing the learning of discriminating features in classification. Given the design Ca

under car model ya , and xa as its corresponding feature vector extracted from the convolutional

backbone network, the jth classification values before softmax can be expressed ash (a, j )
rec = w

ᵀ
j xa+

bj , where w andb represent the output weight vector and bias values, respectively. These variables
are constrained in the angular loss setting: | |wj | | = 1, bj = 0, and | |xa | | = α , where α is a given

constant. This makes each h (a, j )
rec only depend on the angle size between wj and xa , and converts

the whole softmax computing into the following formula:

�
(a)
rec = − log

⎧⎪⎪⎨⎪⎪⎩
exp
(
α cos (θya,a + β )

)

exp
(
α cos (θya,a + β )

)
+
∑

j�ya
exp
(
α cosθ j,a

)
⎫⎪⎪⎬⎪⎪⎭
. (9)

Here we adopt [12]’s setting, which incorporates a constant margin penalty β in the target class’s

angle, making h
(a,ya )
rec = α cos (θya,a + β ), thereby facilitating further discriminative feature learn-

ing by making the negative log-likelihood more sensitive to the angular distances. These settings
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force the model to use the vectors’ directional differences rather than scale the differences to distin-
guish between classes, thus representing the class centres in the angular space. The use of angular
loss has been empirically validated to maximise intra-class distance and minimise inter-class dis-
tance on tasks with comparable inputs [10, 11].

3.3 The Decision Optimiser

The decision optimiser is proposed to select designs that maximise the expected mid-term revenues
for the automaker before the redesign of the given car model. We use market share changes to
measure and approximate revenue changes. Like other durable products, car models have a typical
life-cycle: a new car’s sales increase in the early years when a new generation is launched and
then deteriorate over the rest of its lifespan until the facelift or redesign occurs [48]. Based on this
knowledge, we treat sales deterioration as a time-series process and thus rely on the RNN model
to estimate how the future market share would evolve according to different facelift plans.

Given an existing designCa and its historical market share records {d (a)
0 , . . . ,d

(a)
T
}, we compute

its market share change vector v
(a)
T

:= {v (a)
1 , . . . ,v

(a)
T
} according to the formula: v (a)

t = d (a)
t /d

(a)
t−1.

The predicted share change ṽ (a)
t at year t can be expressed as fMS (v(a)

t−1, Δs (a)
t ), where fMS (·) repre-

sents the predictive RNN model and Δs (a)
t indicates the aesthetic change due to the design modifi-

cation at year t . The model is simply trained to minimise the perdition error Ea,t∼Xtrain [v (a)
t −ṽ

(a)
t ]2.

After training, to estimate the market share changes driven by a suggested faceliftCâ that launches
at year η, the estimation setting becomes as follows:

ṽ (â)
t =

⎧⎪⎨⎪⎩
fMS

(
ṽ

(a)
t−1, Δs (â)

)
, if t = η

fMS

(
ṽ

(a)
t−1, 0

)
, otherwise

, (10)

where Δs (â) represents the aesthetic scores change of the facelift design, and 0 means no de-

sign/aesthetic changes. It is worth noting that here we use ṽ
(a)
t−1, not v

(a)
t−1, to denote the input vector

since here inputs are also simulated results (except for t = 1 where v
(a)
0 is based on actual records).

Considering that the model will be redesigned at T + 1, we can adopt the baseline ṽ
(a)
T

, which
represents the actual facelift to infer the overall profit change:

m(â)
η = d (a)

0 ·
T∑

r=1

⎡⎢⎢⎢⎢⎣
r∏

t=1

ṽ (â)
t −

r∏
t=1

ṽ (a)
t

⎤⎥⎥⎥⎥⎦ , (11)

where m(â)
η represents the overall share difference when adopting facelift Câ at year η, and d (a)

0 ·∏r
t=1 ṽ

(â)
t represents the predicted market share at year r .

4 EXPERIMENTS

In this section, we introduce the datasets used, present the experimental settings for model training
and testing, and discuss the analysis of the results.

4.1 Datasets

Figure 4 presents our targeted car models for facelift exterior design. We deliberately select car
models of three popular types (i.e., hatchback, SUV, and saloon), which have received criticism
for their exterior styling.1 The aim of the experiments is to improve the market performance of
the targeted models by suggesting good exterior designs in the facelift. For simplicity, the given

1E.g., see www.parkers.co.uk/audi/a4 regarding Audi A4.
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Table 1. Summary of the Used Datasets

Dataset DVM-Car† Edmunds‡
Period 2001-2020 2000-2019
Main content 1,451,784 images, 773 model sales 299,045 reviews
Number of automakers 60 46
Number of car models 899 905
†https://deepvisualmarketing.github.io.
‡https://www.kaggle.com/shreemunpranav/edmunds-car-review.

scheme samples (indicated by the yellow masks in Figure 4) focus on modifying the design of
the headlights since they are the most frequently upgraded features in automotive refreshments.
As shown in Table 1, two publicly available datasets are used in the experiments. The DVM-Car

dataset contains 1.4 million images from eight different viewing angles of 899 car models as well
as the corresponding model specification and sales information over more than ten years in the
UK [49]. For the generator training, 42,130 car front images are sampled from the DVM-Car dataset
to develop the design generator, evaluator, and optimiser in the proposed GEO framework. The
Edmunds dataset contains 299,045 car reviews of various automotive brands from edmunds.com
between 2000 and 2019. Unlike many previous studies, which rely on surveys or lab experiments
to collect subjective ratings, we estimate the car design aesthetic ratings by text mining the avail-
able consumer reviews. The aesthetic ratings obtained in this manner, together with the DVM-Car
dataset, are used to develop the design evaluator. For the aesthetic ratings extraction, the car re-
views on models sold between 2007 and 2017 are extracted. After pairing the extracted aesthetic
ratings with the car images from the DVM-Car dataset, 15,213 images from 118 car models are
used to train the evaluator.

4.2 Experimental Settings

We use the StyleGAN2 model for the facelift design generation [8]. The generator is set with
seven generation blocks for 256 × 256 resolutions as well as 90% mixing regularisation. 2,000 out
of 42,130 images are used for testing and the rest are used for model training. To enhance the
generator’s upgrading ability on the target designs, each image of the targeted models is also
augmented by rotating and flipping it with 20 replications. During the training procedure, we
track the model’s performance using the FID and the Perceptual Path Length (PPL) [7] metrics.
When there are no significant gains on the FID score, the training is stopped. The images in the
test set and the twelve targeted designs are embedded into the latent space through the projection
method, where both the MSE and the LPIPS metrics are included in the reconstruction loss part.
We remove the optimisation of random noises during the projection since they would overplay
their roles in latent spaces with small sizes. The facelift is implemented as a variation of the
projection method, where the starting latent code is the one that represents the original design.

To prevent the overfitting problem, we adopt a five-fold cross-validation in the evaluator train-
ing. Specifically, images are grouped according to their car models. This protects the trained evalu-
ator from the bias of their model recognition. For the decision optimiser, we take each car model’s
annual share in the segmented market (by body type) to indicate the market performance over
time. The car models’ historical market shares and the aesthetic shifts over the years are used as
inputs for RNN training, where the gated recurrent unit (GRU) [13] is used.

4.3 Analysis of Results

As shown in Figure 5, the projection accuracy and the FID scores of random mixing are calculated
across different latent space settings. We compare two different mapping network architectures:
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Fig. 5. Comparison of candidate latent spaces, where the superscript indicates the latent layer position

among the mapping network.

(i) 512 dimensions and eight layers [7]; and (ii) 2048 dimensions and three layers. In the “global
unique z” setting, all the generation blocks use one latent code. In the “block specified z” setting,
each generation block has a specific latent code, hence there are seven different latent codes in
total. In the “module specified z” setting, each modulation has a latent code. Since the first block
has only one modulation and the “To RGB” module shares the same latent code with the second
CNN module in the block, there are 13 different latent codes in total.

Compared with the default latent space [7, 8], different intermediate codes offer various choices
for design subspaces characterised with different domain sizes and qualities. There is a clear
trade-off between the projection accuracy and the FID score of random mixing when adopting
different intermediate codes exists. Latent codes from an earlier layer (e.g., z

(0)) would have better
FID scores but lower projection accuracy than a later layer (e.g., z

(7)). We interpret this trade-off
with the concept of design space. The output space corresponding to z

(8) (the intermediate latent
codes) can be seen as a design space with a large size. The stacking of additional mapping network
layers (such as z

(7) , z
(6)) can reduce the space size, thereby resulting in denser subspaces for

the car designs that increase the quality of the generated designs (i.e., with lower FIDs). On the
other hand, Figure 5 also shows that the use of incongruous z (i.e., the “block specified z” and
“module specified z”) results in an increased projection accuracy and decreased FID scores. In
particular, we suggest that the “disassociation of latent codes” (i.e., using different latent codes
in different generation blocks) allows more novel designs that were not seen in the training set
to appear in the test set, even though such novelty comes at the price of reduced quality. For
example, if there are no white SUVs in the training set, then white SUVs would barely appear
when using the global unique z setting, but the incongruous z would generate SUVs with various
colours.

As Figure 5 shows, a new setting of the mapping network (2048 dim, three layers) can improve
the domain size as measured by the projection accuracy while retaining a similar domain quality
measured by the FID score of random mixing. This new setting is inspired by the universal ap-
proximation theorem where a shallower network with more neurons in the hidden layer can also
have a high approximate power. Hence, the new mapping network has fewer layers but reserves
more space for novel designs. Overall, the results of our experiment confirm that a broader but
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Table 2. Comparison of Our Design Upgrading Algorithm with Existing Methods

Method Mapping setting Projection accuracy FID of random mixing
Style-based [25] 8 × 512 0.120 60.60
Our intermediate-based† 8 × 512 0.190 23.66
Style-based [25] 3 × 2048 0.119 91.57
Our intermediate-based 3 × 2048 0.151 18.76

†Here the module specified z
(0) is used for comparison.

Fig. 6. Comparison of car front designs of replacing different generation block latent codes, where a column

is the replacement starting block and a row is the replacement end block.

shallower mapping network allows the synthesis network to generate further novel designs with
higher qualities.

In Table 2, we further compare our design upgrading algorithm with the method proposed
by [25], as their study also develops a regional modification algorithm using StyleGAN. Unlike
our intermediate latent-based method, their method directly manipulates style variables in Style-
GAN. The reported results show that random modifications in style variables lead to distortions
(indicated by the high FID scores) in the outputs, while our intermediate latent-based method can
retain the design quality. This suggests that our method has better capabilities for generating un-
seen designs when exploring the design space, and hence is more suitable for the needs of the
automotive facelift.

Figure 6 provides an empirical example of an image matrix that compares the latent mixing
results at different generation layers. When the inspiration latent codes are fed to the 1st-4th
blocks (illustrated by the top four rows), the car’s overall design structure would be changed. When
the 5th-7th blocks are fed with the inspiration codes (illustrated by the bottom three rows), the
changes mainly happen to the texture and colours. Since a structural change is more preferred
for automotive facelifts, our implemented facelift method would focus on modifying the first four
generation blocks while leaving the rest unchanged.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 82. Publication date: February 2023.
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Fig. 7. Empirical examples of car front aesthetic scores predicted by the trained evaluator.

As mentioned earlier, car front design aesthetics are evaluated by the design evaluator in terms
of aesthetic scores. Figure 7 provides several empirical examples of car front images with the pre-
dicted aesthetic scores, in which three car models receive low aesthetic scores (i.e., Toyota Aygo,
Hyundai ix20, Fiat Punto) while the other three receive high scores (i.e., Volvo S90, BMW M2, and
Jaguar XF). These results are consistent with the users’ aesthetics reviews collected in the Edmunds
dataset. To illustrate this, we list a few examples of reviews as follows:

“...can’t disguise its dated design, and the Punto looks bland ...making Fiat’s Punto look really
rather old...”2

“...the ix20 rather blends into the crowd compared to its more stylish rivals...”3

“...the BMW M2 is a car that’s huge fun from behind the wheel, stupendously quick and
relatively low-key in its subtle appearance...”4

“The Jaguar XF...that car pulled Jaguar into the 21st century, rejecting the classic design lan-
guage that had characterised the brand’s models since the fifties by replacing round head-
lights with sleek fastback looks and an aggressive new grille...”5

The first plot of Figure 8 shows the average aesthetic score of the cars sold over the years. We
find that the cars on the market are steadily becoming more aesthetic. It should be noted that the
average rise of the aesthetic score is 0.008 per year, which is used in our decision optimiser’s hyper-
parameter setting. We carry a simple linear regression analysis to investigate how the car models’
aesthetic levels are associated to their market performance (see the right-hand plot of Figure 8).
In particular, the second plot of Figure 8 shows that the car models’ market share is significantly
correlated to their aesthetic levels. Interestingly, car models with higher prices do not appear to
be more aesthetic, which is not in line with our expectations.

Table 3 presents several design examples from three target models (i.e., Audi A4, Ford EcoSport,
Vauxhall Astra) as well as the summarised statistics for all the targeted models. In order to perceive
the variation caused by the design difference, for each model, two novel facelift designs (i.e., an
inferior design and a superior design) are presented together with their original looks, and com-
pared with their predicted market shares before the redesign (first row in the table). The original

2URL: www.autoexpress.co.uk/fiat/punto/interior.
3URL: heycar.co.uk/hyundai/ix20.
4URL: www.autoexpress.co.uk/bmw/2-series/105480/used-bmw-m2-review.
5URL: www.carbuyer.co.uk/jaguar/xf.
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Fig. 8. Analysis of the aesthetic scores: (left) Time series plot of the average aesthetic score and the sales of

the targeted car models from 2008 to 2017; (right) Aesthetic score VS market shares. By comparing the

model’s market shares and their aesthetic scores in recent years, we find that the market share is correlated

to their aesthetic levels, where the Pearson test results are as follows: ρ = 0.39 with a p-value = 0.009.

A4, EcoSport, and Astra facelift designs are rated as 1.394, 1.330, and 1.208, respectively. Overall,
the compact segment benefits the most from the proposed facelift designs, with a 0.126 aesthetic
rise, resulting in an average 36.757% increase in market share. However, the variance between the
individual models is huge – most of the increment is contributed by Astra, which has an expected
market gain of 209.555%. Based on the proposed facelift designs, SUVs have a significant aesthetic
rise (0.141) but a moderate market increase (14.139%). Compared to the ground truth, the increase
is not as significant as the aesthetic rise since the real facelift designs are remarkable – for instance,
the Ford EcoSport has upgraded from 1.186 to 1.330. When comparing years for a suggested facelift
for superior and inferior designs, the optimiser tends to delay the facelift for the weak designs. For
instance, the new design 1 of A4 (i.e., scored 1.382) is suggested for a facelift in 2014, but its new
design 2 (i.e., scored 1.439) is suggested to be facelifted in 2010.

Figure 9 investigates the effects of the facelift interval and aesthetic change on the car model
market share in the mid-term. The first plot of Figure 9 shows that for facelifts with identical rising
aesthetic scores, higher market shares can be expected if the facelifts are performed earlier, but
such strategies can backfire, with a steeper market share deterioration in the long term. On the
other hand, as demonstrated in the second plot of Figure 9, according to our simulation of various
facelifts, the stronger facelift will always result in higher mid-term gains, while lower aesthetic
scores will lead to a mid-term loss.

Benchmarked with the expected annual aesthetic rise of 0.008, Table 4 investigates the optimal
facelift frequency without cost constraints. Consistent with the observation that most automakers
in the market release facelifted models annually or biennially, the optimal strategy is to have more
frequent facelifts before the redesign of a given car model.

5 CONCLUSIONS

We have developed a new machine learning-based framework (i.e., GEO), which can assist au-
tomakers when it comes to the cars’ aesthetic design. Unlike the existing works, our study focused
on the scenario of automotive facelifts, which delivers regional upgrades for launched car models
and views the design selection from a profit optimisation perspective. The proposed generator and
facelift algorithm can incorporate novel styling features into existing designs while maintaining
the primary look of the car model. The metric learning-based evaluator can ease the challenge of
evaluating the aesthetics of objects when they look similar, as the angular-loss guides the algo-
rithm to focus on more discriminating features. For decision optimisation, based on the proposed
aesthetic changes, the RNN-based optimiser simulates mid-term profit changes as a result of the

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 82. Publication date: February 2023.



82:16 J. Huang et al.

T
a
b

le
3.

E
xa

m
p

le
s

o
f

O
p

ti
m

is
ed

D
es

ig
n

s

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 82. Publication date: February 2023.



GEO: A Computational Design Framework for Automotive Exterior Facelift 82:17

Fig. 9. Effects of facelift: (left) mid-term market share evolution when adopting different facelift years.

(right) market share simulation according to aesthetic changes.

Table 4. Number of Facelifts Released in Ten Years

Number of facelifts 10 5 3 2
Total profit 94.61% 94.49% 94.35% 94.22%

The profit is calculated by Estimated 10 year sales
10×Starting year sales .

released facelifts, hence providing automakers with intuitionistic support for decision making. In
addition to the proposed GEO framework, we showed that the most desirable properties for design
spaces are the domain size and quality. The former relates to the generator’s ability to generate
novel designs, while the latter determines the quality of the generation. We proposed two cor-
responding metrics to these perspectives, which can be used as benchmarks for future product
aesthetic studies. Finally, we explored how to improve the design space size and quality based on
the StyleGAN2 model. We found that the rearrangement of mapping networks or the selection
of different latent spaces can improve the StyleGAN2 generator’s performance in terms of both
domain size and domain quality. Overall, our proposed framework provides automakers with a
technology allowing them to better manage their facelift design process. However, our study does
naturally have some limitations, which can be addressed in future research work. First, our study
does not discuss how to achieve spatial disentanglement. However, deep generative-based design
upgrading is strongly related to the feature disentanglement problem. In fact, product aesthetic de-
sign upgrading can be perceived as a crucial application scenario for the disentanglement problem.
Second, the nature of aesthetic perception is pretty complex. Future user studies could investigate
how different aesthetic attributes affect the overall aesthetic perception. Third, when computing
market changes, we did not take into account the effects of competition from other car models,
while the modern automotive market is typically a zero-sum game. It would also be an interesting
direction to study aesthetic design competition in different segmented markets.
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