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Abstract—Advertising options have been recently studied as a special type of guaranteed contracts in online advertising, which are an

alternative sales mechanism to real-time auctions. An advertising option is a contract which gives its buyer a right but not obligation to

enter into transactions to purchase page views or link clicks at one or multiple pre-specified prices in a specific future period. Different

from typical guaranteed contracts, the option buyer pays a lower upfront fee but can have greater flexibility and more control of

advertising. Many studies on advertising options so far have been restricted to the situations where the option payoff is determined by

the underlying spot market price at a specific time point and the price evolution over time is assumed to be continuous. The former

leads to a biased calculation of option payoff and the latter is invalid empirically for many online advertising slots. This paper addresses

these two limitations by proposing a new advertising option pricing framework. First, the option payoff is calculated based on an

average price over a specific future period. Therefore, the option becomes path-dependent. The average price is measured by the

power mean, which contains several existing option payoff functions as its special cases. Second, jump-diffusion stochastic models are

used to describe the movement of the underlying spot market price, which incorporate several important statistical properties including

jumps and spikes, non-normality, and absence of autocorrelations. A general option pricing algorithm is obtained based on Monte Carlo

simulation. In addition, an explicit pricing formula is derived for the case when the option payoff is based on the geometric mean. This

pricing formula is also a generalized version of several other option pricing models discussed in related studies [1], [2], [3], [4], [5], [6].

Index Terms—Online advertising, advertising options, stylized facts, jump-diffusion stochastic processes, option pricing

Ç

1 INTRODUCTION

ONLINE advertising refers to advertising using digital
technologies through the Internet, where advertisers can

quickly promote product information to the targeted custom-
ers. Publishers and search engines usually use two ways to
sell advertising inventories like page views (also called impres-
sions) or link clicks to advertisers [7]. Themost popular way is
the sealed-bid auction, such as the Generalized Second Price
(GSP) auction [8], [9] and the Vickrey-Clarke-Groves (VCG)
auction [10]. These auction models have been designed with
many desirable economic properties. For example, the GSP
auction has a locally Envy-free equilibrium, and the VCG auc-
tion is efficient and incentive compatible. However, auction
models also have limitations. First, it is difficult for advertisers
to predict their campaign costs because competition is not vis-
ible and occurs in real time. Competiting advertisers and their
bidding strategiesmay change significantly in sequential auc-
tions. Second, the seller’s revenue can be volatile due to the
uncertainty in auctions. Also, the “pay-as-you-go” nature of
auctions does not encourage advertisers’ engagement because

an advertiser can switch from one advertising platform or
marketplace to another in the next bidding at near-zero cost.
Guaranteed contracts are an alternative way of selling adver-
tising inventories, which can alleviate the limitations of auc-
tions. Usually, an advertiser negotiates a bulk deal with a
seller privately. Guaranteed contracts have been recently
studied from a variety of different perspectives. Contributors
include [11], [12], [13], [14], [15], [16], [17], [18]. However,
guaranteed contracts are less flexible. For example, an adver-
tiser needs tomake the full non-refundable payment upfront.

Advertising options are a special kind guaranteed contact,
allowing its buyer to pay a small upfront fee in exchange for
a priority buying right of targeted advertising inventories in
the future. The per-inventory payment in the future is pre-
specified according to the targeted inventories—it can be a
fixed cost-per-mille (CPM) for impressions in display adver-
tising or cost-per-click (CPC) for clicks in sponsored search.
The upfront fee is called the option price and the future per-
inventory payment is called the exercise price. The future pay-
ments are not obligatory, which will be based on the number
of future deliveries through option exercising by the buyer.
Therefore, the advantages of advertising options are obvi-
ous. Compared to auctions, the buyer can guarantee the tar-
geted deliveries in the future within a budget constraint. The
prepaid option price functions as an “insurance” to cap the
cost of advertising. Compared to guaranteed contracts,
advertising options give the buyer greater flexibility and
more control in advertising as he can decide when and
whether to exercise the option. Also, advertising options can
be seamlessly integrated with the existing auction models
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because the option buyer’s cost is just the pre-paid option
price and he can join advertising auctions if he doesn’t want
to exercise the purchased option in the future. On the sell
side, selling advertising options gives publishers and search
engines some upfront incomes apart from real-time auctions.
More importantly, they are able to establish a contractual
relationship with advertisers, which has great potential to
increase the long-term revenue.

Option pricing refers to the calculation of option price for
the given specifications. It contains several building blocks:
the modeling of underlying price movement; the formulation
of option payoff; and the pricing condition or assumption.
Previous studies on advertising options have been restricted
to two situations. First, the advertising options are path-
independent and their payoffs are calculated based on the
value of the underlying spot market price at a specific time
point. It should be noted that the underlying spot market
price is the winning payment price of target inventories from
real-time auctions. Since advertising options allow buyers to
buy but not sell, the optimal time of option exercising are
the option expiration date [6], [19]. This leads to the biased
calculation of option payoff towards the terminal value. The
second limitation is that previous research assumes that the
underlying spot market price follows a continuous stochastic
process over time. This assumption is not valid for many
online advertising slots [6], [20]. For example, price disconti-
nuity such as spikes and jumps can be seen in Figs. 2 and 3.

This paper presents a robust option pricing framework
which can be used for general situations. The following con-
tributions are made. First, the option payoff function is
designed based on a variable that measures the average
underlying spot market prices over a specific time period
rather than a time point. It is thus less biased and gives a
better overall measurement on price movement, particu-
larly, if there is any price jumps and spikes. Second, we use
the power mean to calculate the average value, whose spe-
cial cases and limiting cases offer several different option
payoff structures. Therefore, the studied average price
advertising option becomes a generalized framework of
those relevant advertising options. Third, jump-diffusion
stochastic processes are used to describe the underlying
spot market price evolution. They can incorporate several
important empirical properties including the price disconti-
nuity. We also summarize the empirical properties of prices
from advertising auctions. To the best of our knowledge,
this is the very first work that provides a such summary.
Finally, we discuss how to effectively price the proposed
average advertising option via Monte Carlo simulation and
also obtain an explicit solution for a special case which gen-
eralizes some option pricing models in the related work.

The rest of this paper is organized as follows. Section 2
provides a literature review on options and discusses their
recent applications in online advertising. Section 3 introdu-
ces the basic concepts and transaction procedures of the
proposed average price advertising options. Section 4 sets
up the notations and the building blocks of the option pric-
ing model. In Section 5, we discuss the option pricing frame-
work and our solutions. Section 6 presents our experimental
results and Section 7 concludes the paper.

2 RELATED WORK

Options have been used in many fields. Financial options are
an important derivative for investors to speculate on profits

as well as to hedge risk [21]. Real options deal with choices
about real investments as opposed to financial investments,
which have become an effective decision-making tool for
business projects planning and corporate risk manage-
ment [22]. Below we first review the important concepts and
models in option pricing theory, and then discuss several
previous research on advertising options.

Option pricing can be traced back to Bachelier [23] who
proposed to use a continuous-time randomwalk as the under-
lying process to price a call option written on a stock. Call
options are a type of option which allows its buyer to buy the
underlying assets. Continuous-time random walk is also
called Brownian motion or Wiener process. It is a continuous-
path stochastic process fWðtÞ; t � 0g which satisfies the fol-
lowing conditions: (i)Wð0Þ ¼ 0; (ii) the incrementWðtþ dtÞ�
WðtÞ is normally distributed Nð0; dtÞ; and (iii) the increment
Wðtþ dtÞ �WðtÞ is independent of F t, the history of what
the process did up to time t (also called the filtration) [21].
Therefore, a Brownian motion is simultaneously a Markov
process and amartingale [21]. These two processes are impor-
tant tools in option pricing. The former describes a random
system that changes states according to a transition rule that
only depends on the current state, e.g., Wðtþ dtÞ� WðtÞ is
independent of F t. The latter is the mathematical representa-
tion of a player’s fortune in a fair game. Simply, the expected
fortune at some later time is equal to the current fortune, e.g.,
E½Wðtþ dtÞjF t� ¼WðtÞ, where E½�jF t� represents the condi-
tional expectation given F t. Since Brownian motion allows
negative values, it was then replaced with a geometric form
by Samuelson in 1965 [24], called geometric Brownian motion
(GBM), where the proportional price changes are exponen-
tially generated by a Brownian motion. It satisfies a stochastic
differential equation and has an explicit solution by checking
Itô’s stochastic calculus (also called Itô Lemma) [21]. Based on a
GBM, Black and Scholes constructed a replicating portfolio for
an option and proposed an option pricing method in 1973 [1].
In the same year, Merton discussed a similar idea to price an
option [2]. Their seminal contributions revolutionized the
financial industry and spurred the research in this area. Gen-
erally, research on options can be classified into four direc-
tions [25], [26]: (i) complex underlying stochastic models; (ii)
valuation of exotic options; (iii) numerical pricing approaches;
and (iv) transaction cost models. Our research in this paper is
based on the developments of the first three directions, and
several related studies are reviewed as follows.

In this paper, we discuss an exotic option tailored to the
unique environment of online advertising. Exotic options
have been traded for many years in financial markets since
the 1980s. In finance, the average price options are one pop-
ular type of exotic options, also called Asian options [4],
whose payoff is determined by the average value of prices
over a pre-specified period of future time. Therefore, aver-
age price options are path-dependent. This is different from
the path-independent options such as European options
and American options [21], where the option payoff is cal-
culated for the price at exercise (i.e., on or prior to the option
expiration date). The average price options can be divided
into two sub-groups: fixed exercise price and floating exer-
cise price. Our proposed average price advertising options
are in the former group, where the exercise price is fixed
and the random variable is the average underlying price.
Several works on of average price options in financial
studies are worth mentioning here. A pricing method for
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financial options whose payoffs are based on a geometric
mean was discussed in [27]; an option pricing model for the
arithmetic mean case was explored in [28]; and the power
mean option payoff was then discussed in [4]. These studies
offer solid analytical fundamentals for our research. How-
ever, they all assume the underlying price movement fol-
lows a GBM so that the price needs to be continuous and
there are no spikes and jumps.

Various stochastic processes have been developed over the
years for option pricing. Here we focus on jump-diffusion
processes which are driven by a Brownianmotion and a jump
component. Merton [3] proposed a simple stochastic differen-
tial equation of jump-diffusion processes, in which jumps
are modeled as Poisson events and jump sizes follow a log-
normal distribution. Merton’s framework was adopted by
many other studies and jump sizes can follow different distri-
butions [5], [29] whichwewill discuss in details in Section 4.2.
Seasonality has been recently discussed in pricing commodity
options like soybeans because price movements in commod-
ity markets often exhibit significant seasonal patterns. They
extended the basic GBM structure by incorporating a seasonal
behavior parameter which: (i) is determined by a specific
function such as sine and cosine functions [30]; or (ii) follows
another stochastic process driven by an independent random-
ness [31]; (iii) or both [32], [33]. However, these studies did not
incorporate a jump component due to the possible complex
model structure. Monte Carlo simulation has been used in
option pricing [34]. Our this paper develops a method for the
exact simulation of continuous-time processes at a discrete set
of time steps. The exact simulation means that the joint distri-
bution of the simulated values coincides with the joint distri-
bution of the continuous-time process.

The concept of advertising option was initially proposed
in [35], where a buyer is allowed to make the choice of pay-
ment after winning a campaign at either CPM or CPC in the
future. This option design is similar to an option paying the
worst and cash [4] and the option price is determined by a
Nash bargaining game between the buyer and the seller. The
first advertising option that allows an advertiser to secure
his targeted inventories was discussed in [19]. It is a simple
European advertising option that considers buying and
non-buying the future impressions, and whose price is cal-
culated based on a single-period binomial lattice from a
risk-averse publisher’s perspective who wants to hedge his
expected revenue. This research was then further developed
into a multi-period case in [20]. Since GBM is not always
valid empirically, a stochastic volatility (SV) underlying
model was also discussed. In [6], an advertising option with

multiple underlying variables following a multivariate GBM
was proposed for sponsored search whereby a buyer can
target a set of candidate keywords for a certain number of
total clicks in the future. Each candidate keyword can also
be specified with a unique fixed CPC and the option buyer
can exercise the option multiple times at any time prior to
or on the its expiration date. This design is a generalization
of the dual-strike call option [4] and the multi-exercise
option [36]. Due to the contingent nature of advertising
options, they are able to provide greater flexibility to adver-
tisers in their guaranteed deliveries. Our study in this paper
is one of the very first studies that discusses contingent pay-
ment in online advertising, and the two limitations of the
previous studies are addressed by employing a different
payoff function (i.e., path-dependent structure) and a dif-
ferent underlying framework (i.e., jump-diffusion stochas-
tic models).

3 AVERAGE PRICE ADVERTISING OPTIONS

Fig. 1 illustrates the basic concepts, transaction procedures
and usage of the proposed average price advertising option
in display advertising. A similar scenario can be easily
drawn for sponsored search. We assume that a university’s
School of Computer Science creates a new degree program
Master of Science in Machine Learning, and is interested in
displaying the program’s banner advertisement online for
six months prior to the start of recruitment. As an adver-
tiser, the School will join real-time bidding (RTB) to get the
attention of the targeted potential student applicants. How-
ever, the banner advertisement can not be guaranteed to be
displayed for the needed number of times because the
advertising budget is given while the cost of campaigns is
uncertain in RTB. To secure the needed future advertising
exposure within budget constraint, the School can purchase
an advertising option today which gives it a right in the
future to obtain the needed impressions at a fixed payment.

The purchase process of an advertising option has three
steps. Step 1 is the School submits a buy request of an adver-
tising option to a publisher at the present time 0. The
request includes: (i) the needed number of impressions
from targeted consumers; (ii) the exercise price (i.e., the
fixed CPM); and (iii) the future period that the option can
be exercised, denoted by ½S; T �, where S is the time that
option can be exercised and T is the option expiration time.
Step 2 is the publisher calculates how much to charge the
guarantee service upfront for the submitted buy request.
This process is called option pricing (or option valuation). Step

Fig. 1. Schematic view of buying and exercising an average price advertising option for online advertising.
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3 is the School decides whether to pay the calculated option
price to buy the option.

We assume the School pays the option price and pur-
chases the option. If the option is exercised by the School at
time S, the publisher will reserve the specified impressions
for the School until the needed number of impressions is
fulfilled or the option expires. The School will pay each
impression at the pre-specified exercise price. If the option
is not exercised, the publisher will not reserve any impres-
sions for the School. Its cost is just the option price so it can
still use the remaining budget to join RTB if auctions are
preferred in the future.

4 NOTATIONS AND MODEL SETUP

Both discrete and continuous time notations are used in our
model presentations. Discrete time points are denoted by
t0; . . . ; tn where t0 is the present time, tn is the advertising
option expiration time, ½t0; tn� is the life time of the option,
tem is the time that the option buyer can make a decision to
exercise the option or not, ½tem; temþm� is the period used to

calculate the average price in the option payoff and it is also
the period that the seller will deliver the requested invento-
ries if the option is exercised at time tem. We denote the con-
tinuous time by t, 0 � t � T . The discrete and continuous
time notations have the following relationships: t0 ¼ 0,
tem ¼ S, and tn ¼ temþm ¼ T .

4.1 Jump-Diffusion Stochastic Process
The spot market price of an inventory from a specific adver-
tising slot or from a targeted group of consumers at time t is
denoted by XðtÞ. As mentioned earlier, the inventory can be
an impression in display advertising or a click in sponsored
search. Therefore, XðtÞ can be expressed as either CPM or
CPC. It is the average payment price of the same inventory
from the corresponding advertising auctions. Mathemati-
cally, the evolution of XðtÞ can be described by a stochastic
process fXðtÞ; t � 0g, which is defined under a filtered prob-
ability space

�
V;F ; fF tgt�0;P

�
, where V is the sample space

defining the set of real values thatXðtÞ can take,F is a collec-
tion of subsets of V, P specifies the probability of each event
in F , and fF tgt�0 is a filtration satisfying F s � F t for any
0 � s < t. Hence,XðtÞ isF t-measurable [21].

Given a filtered probability space
�
V;F ; fF tgt�0;P

�
, XðtÞ

can be modeled by the following stochastic differential
equation

dXðtÞ
Xðt�Þ ¼ mdtþ sdWðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Continuous
component

þ d

�XNðtÞ
i¼1
ðYi � 1Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Discontinuous
component

; (1)

where m is a constant drift, s is a constant volatility, WðtÞ is
a Brownian motion, Xðt�Þ stands for the value of the spot
market price just before a jump at time t if there is one, NðtÞ
represents the arrival of price jumps which is a homoge-
neous Poisson process with intensity � so that

PðPrice jumps once in dtÞ ¼ �dtþOðdtÞ;
PðPrice jumps more than once in dtÞ ¼ OðdtÞ;
PðPrice does not jump in dtÞ ¼ 1� �dtþOðdtÞ;

where OðdtÞ is the asymptotic order symbol, and fYi; i ¼
1; 2; . . .g is a sequence of independent and identically dis-
tributed (i.i.d.) non-negative variables representing the
jump sizes. In the model, all sources of randomness, i.e.,
NðtÞ,WðtÞ, and Yi, are assumed to be independent.

There are twomajor components in Eq. (1). The continuous
component is as same as a GBM, inwhich the drift term repre-
sents the expected instantaneous change rate and the volatil-
ity term represents the small fluctuation or vibration of price.
It has the Markov property. The discontinuous component is
driven by a compound Poisson process, which accounts for
the unusual or “abnormal” extreme changes due to the arrival
of some signals in the market. It can also be used to describe
the cyclical pattern in price movement. Here we simply
explain the term Yi � 1. Let’s consider what happens with the
spotmarket price when a jump occurs at time ti, we have

dXðtiÞ
Xðt�i Þ

¼ XðtiÞ �Xðt�i Þ
Xðt�i Þ

¼ Yi � 1:

Hence, Yi ¼ XðtiÞ=Xðt�i Þ, and Yi � 0 asXðtÞ � 0 for t � 0.
Eq. (1) can be solved using Itô stochastic calculus [21].

We now discuss the key steps to the solution. Let t1 < t2 <
. . . be the jump times of NðtÞ. For 0 ¼ t0 � t < t1, Eq. (1)
becomes a GBM because of no jump occurs. By checking Itô
Lemma, we obtain

d lnfXðtÞg ¼ m� 1

2
s2

� �
dtþ sdWðtÞ;

Taking integral of both sides of the equation then gives

XðtÞ ¼ Xð0Þexp
�

m� 1

2
s2

� �
tþ sWðtÞ

�
:

For t1 � t < t2, the solution is similar and we just need to
multiply the price with the first jump size Y1. Following the
same procedure, the solution to Eq. (1) can be obtained

XðtÞ ¼ Xð0Þexp
��

m� 1

2
s2

�
tþ sWðtÞ

�YNðtÞ
i¼1

Yi; (2)

where
Q0

i¼1 ¼ 1. It is also an exponential L�evy model [37].

4.2 Jump Size Distributions
The jump-diffusion stochastic process discussed in Eq. (1)
can give several different jump-diffusion stochastic models
depending on the jump size distribution. We now discuss
three popular choices.

The first jump size distribution was proposed by
Merton [3], where the logarithm of jump size Vi ¼ lnfYig
follows a normal distributionNða;b2Þ. This implies

E½eVi � ¼ eaþ
1
2b

2
: (3)

The second jump size distribution was proposed by
Kou [5], where Vi follows an asymmetric double exponential
distribution, denoted by ADEðh1; h2; p1; p2Þ. Its probability
density function is

fV ðv; h1; h2; p1; p2Þ ¼ p1h1e
�h1vIfv�0g þ p2h2e

h2vIfv< 0g;

where I is an indicator function, p1 and p2 represent the proba-
bilities of upward and downward jumps (so that p1; p2 2 ½0; 1�
and p1 þ p2 ¼ 1), h1 > 1 and h2 > 0 are model parameters.
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The condition h1 > 1 is to ensure that EðYiÞ < 1 and
EðXðtÞÞ < 1. The model can be rewritten as the combina-
tions of exponentially distributed variables:

Vi ¼ $1; with probability p1;
�$2; with probability p2;

�
where$1 	 EXP ðh1Þ and$2 	 EXP ðh2Þ. Therefore

E½eVi � ¼ p1
h1

h1 � 1
þ p2

h2
h2 þ 1

: (4)

The third jump size distribution is a special case of Kou’s
model, where p1 ¼ p2 ¼ 1

2, h1 ¼ h2 ¼ 1
h
and V has the mean %.

Therefore, Vi follows a Laplacian distribution LAPð%; hÞ, and
its probability density function is

fV ðv; %; hÞ ¼ 1

2h
exp

�
� jv� %j

h

�
:

We then have

E½eVi � ¼ e%

1� h2
: (5)

For finite samples, the Laplacian distribution is very similar
to the Student-t distribution. However, the latter is more
tractable analytically and can generate a higher probability
concentration such as higher peak around its mean [29].

4.3 Power Mean Option Payoff
The gain or loss of the buyer of an advertising option in the
future is measured by the option payoff. In this paper, the
option payoff FðXÞ is defined as follows

FðXÞ ¼ u

 ec
c

�
1

m

Xemþm
i¼emþ1Xg

i

�1
g

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼cðgjXÞ

�K
!þ

; (6)

where ð�Þþ :¼ maxf�; 0g, u is the requested number of impres-
sions or clicks, c is the CTR of the option buyer’s advertise-
ment, ec is the average CTR of relevant or similar
advertisements, K is the exercise price which can be a fixed
CPM or CPC depending on the advertising type, X represents
a vector of the spot market prices in the future period ½S;T �,
and

�
1
m

Pemþm
i¼emþ1 Xg

i

�1=g
is the powermean of these prices.

The following points are worth noting. First, there are m
future spot market prices in the period ½S;T �, indexed fromemþ 1 to emþm. The index is just to make our notation pre-
sentation to be consistent with the previous sections. Second,
the term ec=c adds quality effects on the power mean and con-
verts the spot market prices in the period ½S;T � into the option
buyer’s own cost. We can simply consider it as the average
payment if he participates in real-time auctions in the same
period. Third, if we do not consider CTRs in display advertis-
ing, both c and ec can be set to 1. Thiswill not change the option
pricing results discussed in the later sections. Fourth, the
power mean (also called the general mean or the H€older mean)
can be treated as a continuous function of g, denoted by
cðgjXÞ. As shown in Table 1, it includes the arithmetic mean,
the harmonic mean, the quadratic mean and the geometric
mean as special cases, and the maximum and minimum
observations as limiting cases. Therefore, our option pricing
results are a generalization of many previous option pricing
models. Details will be discussed in Section 5. In addition, the

power mean cðgjXÞ is monotonically increasing. That is, if
g1 � g2, then cðg1jXÞ � cðg2jXÞ. For the detailed proof, see
Theorem 6.1 in [4]. The geometric mean cð0jXÞ is log-
normally distributed whereas other means are not. This is an
important property so an explicit solution of the option price
can be obtained by Theorem 1 in Section 5.

4.4 Arbitrage-Free Condition
The concept of arbitrage is the corner-stone of option pric-
ing theory in finance. Although online advertising and
finance have many differences and there is no common mar-
ketplace for trading advertising options at the moment, we
still believe that ruling out arbitrage opportunities is impor-
tant and necessary. Arbitrage means that an investor can
take advantage of a price difference between two or more
markets to make profits without taking any risk of loss [38].
Simply, his gain happens with probability 1. Arbitrage is
the situation that investors can have a “free-lunch”. As a
consequence, markets will not reach equilibrium. Therefore,
it is reasonable to assume there are no arbitrage opportuni-
ties among markets so pricing an advertising option needs
to be arbitrage-free.

As previously mentioned in Section 2, martingale is the
mathematical representation of a player’s fortune in a fair
game. To rule out arbitrage opportunities, the discounted
spot market price should be a martingale. However, it is not a
martingale in the real world. We therefore change the real-
world probability measure P to another equivalent probability
measure Q which makes the discounted spot market price a
martingale for the purpose of pricing, that is, EQ½e�rtXðtÞj
F 0� ¼ Xð0Þ. We follow the naming convention in finance and
call it the risk-neutral probability. The idea is best explained by
the looking at the following example. We assume there is a
demand-side agent who buys impressions for advertisers in
display advertising. Here we look at an agent but not an
advertiser because we assume that an agent’s decision mak-
ing can be determined by his monetary gains or losses. As
guaranteed contracts are usually negotiated privately and
there is no disclosed price for a standard guaranteed contract,
let’s simply consider that a guaranteed contract which speci-
fies a single future impression is sold at its spot market price.
In theory, this is achievable in online advertising under the
continuous-time setting because the agent can keep buying or
selling impressions from real-time auctions over time. At the
present time 0, the agent can have a strategy of borrowing
Xð0Þmoney from a bank and buying the guaranteed contract.
His gain or loss is Cð0Þ ¼ 0. If we assume the price space
V ¼ fv1;v2; . . . ; g, then at the future time t, the agent can sell
the impression to an advertiser atXðt;vÞ, and his gain or loss

TABLE 1
Special and Limiting Cases of the Power Mean

g cðgjXÞ Description

�1 min
	
Xemþ1; . . . ; Xemþm
 Minimum value

�1 m=
�

1
Xemþ1 þ � � � þ 1

Xemþm � Harmonic mean

0
�Qemþm

i¼emþ1 Xi

� 1
m Geometric mean

1 1
m

Pemþm
i¼emþ1 Xi Arithmetic mean

2
�

1
m

Pemþm
i¼emþ1 X2

i

�1
2 Quadratic mean

1 max
	
Xemþ1; . . . ; Xemþm
 Maximum value

CHEN AND KANKANHALLI: PRICING AVERAGE PRICE ADVERTISING OPTIONS WHEN UNDERLYING SPOT MARKET PRICES ARE DISCONTINUOUS 1769



is Cðt;vÞ ¼ Xðt;vÞ �Xð0Þert, where r is a constant continu-
ously compounded interest rate. The term �Xð0Þert repre-
sents that the option buyer pays the borrowed money
together with the interest back to the bank. Mathematically,
arbitrage can be spotted if the following conditions are
satisfied: (i) Cð0Þ ¼ 0; (ii) Cðt;vÞ � 0 for all v 2 V;
(iii)Cðt;vÞ > 0 for at least one v 2 V. It is not difficult to see
that with the risk-neutral probability measure Q, arbitrage
opportunities do not exist.

Below we discuss a simple way to find the solution of
Eq. (1) under the risk-neutral probability measure Q.

E

�
XðtÞ
Xð0Þ

�
¼ E

�
exp

�
ln
nXðtÞ
Xð0Þ

o��

¼ E

�
exp

��
m� 1

2
s2

�
tþ sWðtÞ þ

XNðtÞ
i

Vi

��

¼ E

�
exp

��
m� 1

2
s2

�
tþ sW ðtÞ

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼emt

E

�
exp

�XNðtÞ
i

Vi

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼L

:

(7)

Let dðtÞ ¼PNðtÞ
i Vi, then it is a compound Poisson process

and L is the moment generating function (MGF) of dðtÞ at
the value 1. We have

L ¼ MdðtÞð1Þ "Mð�Þ is a MGF

¼
X
j

ejPðdðtÞ ¼ jÞ

¼
X
j

ej
�X

k

P

dðtÞ ¼ jjNðtÞ ¼ k

�
PðNðtÞ ¼ kÞ

�
¼
X
k

PðNðtÞ ¼ kÞ
�X

j

ejP

dðtÞ ¼ jjNðtÞ ¼ k

��

¼
X
k

PðNðtÞ ¼ kÞ
�X

j

ejP

�Xk
i¼1

Vi ¼ j

��
¼
X
k

PðNðtÞ ¼ kÞMðPk

i¼1 ViÞ
ð1Þ

¼
X
k

PðNðtÞ ¼ kÞ
Yk
i¼1

E½eVi �

¼
X1
k¼0

e��tð�tÞk
k!

�
E½eVi ��k " i:i:d:Vi

¼ e�t
�
E½eVi ��1

�
:

(8)

Comparing E½XðtÞXð0Þ� and ert gives m ¼ r� �
�
E½eVi � � 1

�
.

Hence, the solution to Eq. (1) under the risk-neutral proba-
bility measure Q is

XðtÞ ¼ Xð0Þexp
��

r� �z � 1

2
s2

�
tþ sWðtÞ

�YNðtÞ
i¼1

Yi; (9)

where z :¼ E½eVi � � 1, and its detailed calculation is given in
Table 2.

5 OPTION PRICING

We now discuss how to price an advertising option. As men-
tioned in Section 4.4, it is possible to construct a replicated
strategy for an agent and use it to price an advertising option.

Belowwe discuss a simple method by employing the concept
of net present value (NPV), in which incoming and outgoing
cash flows can also be described as option benefit and cost,
respectively. The benefit of an advertising option is the
expected payoff which represents its buyer’s relatively cost
reduction, and the option cost is the upfront option price.
Therefore, we have

NPVðOptionÞ ¼ PVðOption benefitÞ � PVðOption costÞ:
We assume that an advertising option adds no monetary
value to both buyer and seller so that NPV ¼ 0. Then, the
option price can be obtained as follows

p0 ¼ e�rTEQ½FðXÞjF 0�; (10)

where EQ½�jF 0� represents the expectation conditioned on
the information up to time 0 under the risk-neutral prob-
ability measure Q. The option price is the discounted
value of the conditional expectation of the option payoff
under the risk-neutral probability measure and the
option payoff is based on the average mean of the future
spot market prices described by the jump diffusion sto-
chastic process.

5.1 General Solution
Algorithm 1 presents a general solution to Eq. (10) using
Monte Carlo simulation [34]. The time interval ½S; T � has
been divided into m equal sub-periods Dt for a sufficiently
large averaging observation. The steps for the period ½0; S�
are then em ¼ d SDte. Hence, the total number of steps in the

period ½0; T � is emþm, and we denote ti ¼ iemþmT ,

i ¼ 1; . . . ; emþm. Let us do Monte Carlo replications for z
times. For each j ¼ 1; . . . ; z, run the sub-procedures foremþm steps. For i ¼ 1; . . . ; ð emþm), the step �i follows a
Bernoulli distribution because in a very small time period,
no more than one jump can occur almost surely. The confi-
dence bounds are then p0 
 e�rT1:96sfFg=

ffiffiffi
z
p

, where
sfFg ¼ std½fFfjggzj¼1�. The bounds can be reduced by either
increasing the number of replications z or by reducing the
variance of option payoffs. For the latter, several variance
reduction techniques [34] can be used but we do not further
discuss them here.

5.2 Special Case
Theorem 1 discusses an explicit solution for the case

when g ¼ 0 and Vi 	 Nða;b2Þ. It has also two special
cases. First, if the price averaging period is very short, we
can simply use the terminal spot market price as the aver-
age price. In this case, the option price can be calculated
by using Merton’s option pricing model [3]. The second
special case is that when the jumps sizes are not signifi-
cant. For example, the estimated value of parameter �

TABLE 2
Calculation of z

Distribution of Yi Distribution of Vi z

Log-normal Nða; b2Þ eaþ
1
2b

2 � 1
Log-ADE ADEðh1; h2; p1; p2Þ p1

h1
h1�1þ p2

h2
h2þ1� 1

Log-laplacian LAPð%; hÞ e%

1�h2 � 1

1770 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019



or a is very small from training data. Hence, the discon-
tinuous jump component can be removed and the under-
lying dynamic then becomes a GBM. This the makes our
pricing framework similar to an European geometric
Asian call option [4].

Algorithm 1. Average Price Advertising Option Pricing

Input:Xð0Þ; r; s; S; T;m;K; c;ec; z; u; g;�
(where � ¼ fa; bgorfh1; h2; p1; p2gorf%; hg)
1: Dt 1

m ðT � SÞ;
2: em d SDte;
3: z  Table 2;
4: for j 1 to z do

5: X
fjg
0  Xð0Þ;

6: for i 1 to emþm do
7: ai  N

�ðr� �z � 1
2 s

2ÞDt; s2Dt
�
;

8: �i  BERð�DtÞ;
9: vi  Nða;b2Þ;
10: vi  or ADEðh1; h2; p1; p2Þ or LAPð%; hÞ;
11: lnfXfjgi g  lnfXfjgi�1g þ ai þ �ivi;
12: end for
13: Ffjg  Eq. (6);
14: end for
15: p0  e�rT

�
1
z

Pz
j¼1 F

fjg�.
Output: p0

Theorem 1. If g ¼ 0 and Vi 	 Nða;b2Þ, the option price p0 can
be obtained by the formula

p0 ¼ ue�ðrþ�ÞT
X1
k¼0

ð�T Þk
k!

 ec
c
Xð0ÞVN ð�1Þ �KN ð�2Þ

!
;

(11)
where N ð�Þ is the cumulative standard normal distribution
function, and

A ¼ 1

2

�
r� �z � 1

2
s2

�
ðT þ SÞ þ ka;

B2 ¼ 1

3
s2T þ 2

3
s2S þ kb2;

V ¼ e
1
2ðB2þ2AÞ; f ¼ lnfcKg � lnfecXð0Þg;

�1 ¼ B� f

B
þA

B
; �2 ¼ A

B
� f

B
:

Proof. The geometric mean cðg ¼ 0jXÞ can be rewritten in a
continuous-time form

cðg ¼ 0jXÞ ¼ exp

(
1

T � S

Z T

S

lnfXðtÞgdt
)
;

then

ZðT ÞjNðT Þ ¼ k 	 N

ðr� �z � 1

2
s2ÞT þ ka; s2T þ kb2

�
:

Below we show cð0jXÞ is log-normally distributed.

cð0jXÞ ¼ X0

 Yemþm
i¼emþ1Xi=X

m
0

!1=m

¼ X0 exp

(
1

m
ln

( 
Xem
X0

!m 
Xemþ1
Xem

!m

� � �
 

Xemþm
Xemþm�1

!))

Since Dt ¼ T�S
m , so em ¼ S

Dt ¼ S
T�Sm, and then

ln
nXem
X0

o����
NðT Þ¼k

	 N

 �
r� �z � 1

2
s2

�
S þ ka; s2S þ kb2

!
;

and for i ¼ 0; . . . ; ðm� 1Þ,

ln
nXemþiþ1

Xemþi
o����

NðT Þ¼k
	 N

 �
r� �z � 1

2
s2

�
Dt; s2Dt

!
:

Let Q ¼ 1
T�S

R T
S ZðtÞdt, then Q

��
NðT Þ¼k 	 N

� eA; eB2
�
, where

eA ¼ �r� �z � 1

2
s2

�� ðmþ 1Þ
m

T � S

2
þ S

�
þ ka;

eB2 ¼ðmþ 1Þð2mþ 1Þ
6m2

s2ðT � SÞ þ s2S þ kb2:

Ifm!1, Q
��
NðT Þ¼k 	 N

�
A;B2

�
, where

A ¼ 1

2

�
r� �z � 1

2
s2

�
ðT þ SÞ þ ka;

B2 ¼ 1

3
s2T þ 2

3
s2S þ kb2:

Hence, the option price can be obtained as

p0 ¼ ue�rTEQ

"
EQ

��ec
c
X0e

Q �K

�þ��� NðT Þ ¼ k

�����F 0

#

¼ ue�rT
X1
k¼0

ð�T Þk
k!

e��TEQ
0

��ec
c
X0e

Q �K

�þ�

¼ ue�rT
X1
k¼0

ð�T Þk
k!

e��T
Z 1
f

ec
c
X0e

Q �K
�
fðQÞdQ;

solving the integral terms then completes the proof. tu

5.3 Properties of the Option Price
We now discuss what happens to the option price when
there is a change to one of the model parameters or factors,
with all the other factors remaining fixed. It is obvious that
an advertising option becomes more valuable if the present
underlying spot market price increases. Since the option
payoff measures how does the average spot market price in
the future period exceeds the exercise price, the option price
will decrease if the exercise price increases. In option pric-
ing, an opportunity cost is involved. This cost depends
upon the risk-less bank interest rate, the length of the aver-
aging period and the time to expiration. Increases in any of
these three factors will increase the option price. The volatil-
ity of underlying spot market prices is a measure of uncer-
tainty in online auctions, which also represents the risk that
a publisher or search engine will take if he sells an advertis-
ing option. The higher the volatility, the greater will the
option price be. The jump related parameters affect the
option price in a less clear-cut way. The option price will
also increase if more advertising inventories are requested.
The market CTR and the option buyer’s CTR will consistent
with their effects in online auctions. The higher the market
CTR, the higher the option price is; the higher the buyer’s
CTR, the less the option price is. As also noted previously,
both CTRs can be set to 1 in display advertising.
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6 EXPERIMENTS

This section describes our datasets and experimental set-
tings, investigates the statistical properties of spot market
prices in real-time advertising auctions, discusses the
parameters’ estimation for the underlying jump-diffusion
stochastic process, and presents the option pricing results
and revenue analysis.

6.1 Data and Experimental Settings
As shown in Table 3, we use three datasets in experiments:
an RTB dataset from a medium-sized supply-side platform
(SSP) in the UK and two sponsored search datasets from
Google AdWords. The SSP dataset contains 31 advertising
slots though we do not know the detailed positions of those
slots. Multiple advertising slots (even on a same webpage)
are sold separately in RTB through the Second Price (SP)
auction model [39]. In sponsored search, Google uses key-
words to target online users’ search queries and use the
GSP auction model to sell a list of advertising slots on its
search engine result page (SERP) for a query relevant to a
specific keyword. Google UK and US datasets report the
keyword auctions which target online users from different
geographical locations. Google UK dataset contains 106 key-
words and Google US contains 141 keywords. As we only
look at the first poisiton in the mainline paid listing of
SERPs, we could consider the keywords are the unique
advertising slots. Our datasets have also been used in sev-
eral other recent online advertising research. The SSP data-
set has been used in [16], [20], [40], [41], and Google’s
datasets have been used in [6], [20], [42]. The previous stud-
ies examined bids in advertising auctions. Spot market pri-
ces were extracted from advertising auctions and were used
to check the assumptions of the GBM model in [6], [20]. In
this section, we provide in-depth statistical insights and
give a comprehensive investigation of common features of
the spot market price.

Our experimental settings are described in Table 4. It is
worth further explaining two settings here. First, different
time scales are used to extract the time series of spot market
prices from sequential advertising auctions. As we use the
risk-less bank interest rate in the option pricing model, we
need to follow the convention of computing time scale in
finance. We consider a one-year time period is 1 because the
compound risk-less bank interest rate is usually expressed
as an annual rate [21]. Therefore, if the time scale Dt is
chosen as a day, Dt ¼ 1=365 � 0:0027. If the time scale Dt is
chosen as an hour, Dt ¼ ð1=365Þ � ð1=24Þ � 1:1416e� 04.

Google’s datasets only contain the daily payment prices but
we can further extract prices on a smaller time scale (e.g., 12
hours, 6 hours, 4 hours and 1 hour) from the SPP dataset.
Second, we randomly select the time period which has con-
secutively reported data so that the evolution of spot market
prices can be analyzed. Also, as described in Section 4, the
period ½S; T � is used to calculate the power mean in the
advertising option payoff. If S ¼ T , there is only one time
point and the option becomes an European call option [21].

6.2 Stylized Facts
A set of common features or statistical properties of the spot
market price has been identified in our experiments which
are known as stylized facts [44]. As XðtÞ � 0, for mathemati-
cal convenience, its logarithm is usually analyzed. Given a
time scale Dt, which can range from a few seconds to a day,
the log change rate ofXðtÞ at time scale Dt is defined as

Rðt;DtÞ ¼ lnfXðtþ DtÞg � lnfXðtÞg:
It is also called the log return or continuously compounded
return in time series analysis [29]. One important reason
that the log change rate is used is because it has more tracta-
ble statistical properties than the simple rate. For example, a
multiple period log change rate can be expressed as a sum
of one-period log change rates.

Jumps and Spikes. As shown in Figs. 2 and 3, the spot mar-
ket prices exhibit sudden jumps and spikes in both display
advertising and sponsored search. From a modeling point
of view, the price process exhibits a non-Markovian behav-
ior in short time intervals and prices increase or decrease
significantly in a continuous way. In our datasets, all adver-
tising slots show price jumps and spikes while they have
different jump frequencies. Several jump detection techni-
ques will be discussed in Section 6.3. This stylized fact has
also been discussed in electricity prices and the typical
explanation is a non-linear supply-demand curve in combi-
nation with the electricity’s non-storability [45]. This expla-
nation can possibly be applied to online advertising. Fig. 4
gives an example from an advertising slot showing the rela-
tionships among supply, demand and payment price. The
advertising supply is triggered by ad-hoc web surf or search
made by online users, and the demand is the number of
media buyers who join advertising auctions. For a specific
advertising slot, the competition level in advertising auc-
tions affects the payment price nonlinearly. It is worth not-
ing that the hourly spot market prices from RTB in Fig. 2
exhibit some cyclical patterns. Fig. 5 explains this by show-
ing the peak hours of the total advertising demand in the

TABLE 3
Summary of Datasets

Dataset SSP Google UK Google US

Advertising type Display Search Search
Auction model SP GSP GSP
Advertising position NA 1st positiony 1st positiony

Bid quote GBP/CPM GBP/CPC GBP/CPC
Market of targeted usersz UK UK US
Time period 08/01/2013 - 14/02/2013 26/11/2011 - 14/01/2013 26/11/2011 - 14/01/2013
Number of total advertising slots 31 106 141
Data reported frequency Auction Day Day
Number of total auctions 6,646,643 NA NA
Number of total bids 33,043,127 NA NA

y In the mainline paid listing of the SERP. zMarket by geographical areas.
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SSP dataset. In fact, cyclical bid adjustments were discussed
for real-time sponsored search auctions [46]. Several time
series and signal processing methods can be used to decom-
pose or extract the cyclical patterns [29]. However, we do
not further discuss this in this study due to the following
reasons. First, such cyclical patterns mainly exist in time
series data with updates that occur in less than a day. As
shown in Fig. 3, the daily spot market prices do not exhibit
cyclical patterns. Second, the proposed jump-diffusion sto-
chastic process is capable of reproducing some cyclical pat-
terns based on the homogeneous Poisson process because
jumps and spikes look arrive at a constant rate. Proposing a
new model which can accurately incorporate the cyclical
patterns as well as being used for pricing advertising
options can be an interesting direction of future research.

Non-Normality and Heavy Tails. The non-normal character
of the unconditional distribution of log change rates has
been observed in many advertising slots. Normality can
be graphically checked by a histogram or Q-Q plot, and
can be statistically verified by hypothesis testing such as
the one-sample Kolmogorov-Smirnov (KS) test [47] and
the Shapiro-Wilk (SW) test [48]. Figs. 2 and 3 exhibit that the
distributions of log change rates have tails heavier than
those of the normal distribution. This is also called lepto-
kurtic. One way to quantify the deviation from the normal

distribution is checking the kurtosis statistic [29]. Since
the kurtosis of a standard normal distribution is 3, then the
empirical distribution will have a higher peak and two
heavy tails if the kurtosis is larger than 3.

Absence of Autocorrelations. Consider whether the future log
change rates can be predicted from the current values, we
can formulate this question by asking whether they remain
stable andwhether they are correlated over time [49]. The pro-
cess is assumed to be weakly stationary so that the first
moment and autocovariance do not vary with respect to time.
The (linear) autocorrelation functions (ACFs) of log change
rates are insignificant in Figs. 2 and 3. Therefore, both pro-
cesses can be constructed by using the Markov property. In
fact, as discussed in Section 2, most of the classical models in
economics and finance assume that asset prices follow a
GBM, which is based on independent asset returns [50]. In
experiments, we also use the Ljung-Box Q-test to check the
autocorrelation for a fixed number of lags. Table 4 shows that
most of hourly and daily log change rates (overall more than
80 percent) do not have autocorrelations. However, most of
the 4-hour, 6-hour, and 12-hour rates in the SSPdataset exhibit
autocorrelations.

Volatility Clustering. A stochastic process can have uncor-
related but not independent increments. The magnitude of
price fluctuations is measured by volatility. Volatility

TABLE 4
Experimental Settings and Statistical Investigation of Stylized Facts from the Training Data

SSP Google UK Google US

Time scale 1 hour 4 hours 6 hours 12 hours 1 day 1 day 1 day
Dt 1.1416e-04 4.5662e-04 6.8493e-04 0.0014 0.0027 0.0027 0.0027
Data size on each advertising slot:

Training set 60 40 30 20 14 60 60
Development and test set 60 20 15 5 1 60 60

Number of selected advertising slots 31 23 22 20 12 106 141
S 0.0034 0.0046 0.0034 0.0041 0 0.0822 0.0822
T 0.0068 0.0091 0.0103 0.0068 0.0027 0.1644 0.1644

Jumps and spikes:
Presencey 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Jump size 9.43 6.46 4.84 2.76 1.48 8.46 9.15

Normality:
Kolmogorov-Smirnov testy 12.90% 82.61% 86.36% 85.00% 33.33% 0.00% 0.00%
Shapiro-Wilk testy 12.90% 78.26% 27.27% 55.00% 91.67% 0.00% 0.00%

Heavy tails:
Presencey 100.00% 65.22% 54.55% 5.00% 41.67% 99.06% 100%
Kurtois 6.78 3.58 3.39 1.75 3.01 23.17 17.37

Autocorrelations:
Ljung-Box-Q test at lags 5y 35.48% 82.61% 0.00% 90.00% 16.67% 16.98% 30.50%
Ljung-Box-Q test at lags 10y 12.90% 91.30% 90.91% 80.00% 0.00% 12.39% 12.00%
Ljung-Box-Q test at lags 15y 16.13% 91.30% 90.91% 80.00% 0.00% 11.50% 12.67%

Volatility clustering:
Ljung-Box-Q test at lags 5 (abs)y 22.58% 17.39% 86.36% 20.00% 0.00% 23.01% 34.00%
Ljung-Box-Q test at lags 10 (abs)y 22.58% 43.48% 90.91% 35.00% 0.00% 14.16% 9.33%
Ljung-Box-Q test at lags 15 (abs)y 19.35% 56.52% 90.91% 35.00% 0.00% 12.39% 8.00%
Ljung-Box-Q test at lags 5 (square)y 22.58% 13.04% 72.73% 10.00% 0.00% 20.35% 42.67%
Ljung-Box-Q test at lags 10 (square)y 12.91% 13.04% 77.27% 25.00% 0.00% 5.31% 4.00%
Ljung-Box-Q test at lags 15 (square)y 6.45% 13.04% 72.73% 25.00% 0.00% 4.42% 5.33%

Selected advertising slotsz 58.06% 8.70% 0.00% 10.00% 100.00% 72.64% 75.18%
(18) (2) (0) (2) (12) (77) (106)

y The number represent the presence (or acceptance) percentage of advertising slots of the corresponding group.
z Advertising slots with absence of both autocorrelations and volatility clustering are selected for pricing advertising options. The number outside the round
brackets represents the percentage of advertising slots which have revenue increase and the number in the round brackets represents the average revenue change
of slots under that group.
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clustering is referred to the property that large price varia-
tions are more likely to be followed by large price varia-
tions [49]. To detect volatility clustering, two commonly
used methods are: (i) the ACF of absolute log change rates;

and (ii) the ACF of squared log change rates. Volatility clus-
tering has been observed in Fig. 2 but not Fig. 3. Table 4
shows that it is not the property for the majority of online
advertisements, particularly, for hourly and daily rates.

In this paper, the discussed jump-diffusion stochastic
process can incorporate the first three properties but not
volatility clustering. This property can be incorporated by
adding another dynamic for volatility such as the SV model
discussed in [20]. In the following experiments, we use
hourly and daily data to develop jump-diffusion stochastic
models and then use them for pricing advertising options.

6.3 Estimation of Model Parameters
One of thewidely accepted interpretations of price jumps con-
siders them as time-dependent outliers. Simply, a price jump
is an observation that lies in an abnormal distance from other
values. In [51], an extensive simulation study was conducted
to compare the relative performance of several detection
methods for price jumps, including the global centiles (GC),
the price-jump index (PJI), the centiles over block-win-
dows (COBW), and various bipower variation methods.
The comparison results showed that: (i) the GC and the
COBW outperformed others in the case of false positive
probability; (ii) the bipower variation method proposed
by Lee and Mykland [52] (abbreviated as BV-LM) per-
formed best in the case of false negative probability. In
our experiments, we implement all these methods, and
the hamper filter [53] because it has been widely used for
outlier detection in signal processing. The identified
jumps for the training sets are presented in Table 4.

Fig. 4. Relationships among supply, demand, and payment price for an
advertising slot in the SSP dataset. The smooth curves are obtained
using the 1st degree polynomial locally weighted scatterplot smoothing
(LOWESS) method [43].

Fig. 5. Distribution of total advertising demand in the SSP dataset.

Fig. 2. Time series plots and statistical tests of the hourly spot market pri-
ces from an advertising slot in the SSP dataset over the period between
08/01/2013 14:00 and 27/01/2013 4:00.

Fig. 3. Time series plots and statistical tests of the daily spot market pri-
ces of the first position of the mainline paid listing for the keyword
“notebook laptops” in Google US dataset over the period between 17/
03/2012 and 21/09/2012.
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Fig. 6 gives an illustration of detecting price jumps on an
advertising slot from the SSP dataset. There are large differen-
ces in terms of performance among methods. If there is no
jump, our discussed stochastic underlying framework in
Eq. (1) then becomes a GBM. Therefore, after removing the
detected jumps, the kurtosis of the training log change rates
should approach 3 and we use this creatiera to select the best
jump dection method. An illustration of our model selection
is described in Fig. 7, where the COBWperformances best for
the SSP dataset based on hourly time scale as it has the highest
number of slotswhich lie in the range ½2; 4�. Fig. 8 further sum-
marizes the overall results of model selection in our training
sets. It should be noted that the BV-LM is not used for Google
datasets because there are no intraday campaign records. In
summary, after removing the identified jumps, the COBW
performs best as it has 40.50 percent of slots that the kurtosis
of log change rates lies in the range ½2; 4�, followed by the ham-
per filter with 39.80 percent. In the following experiments,
jumps are identified by the COBW.

We follow [54] and estimate other model parameters
using the maximum likelihood method. The discretization
of Eq. (2) is

XðtÞ
Xðt� DtÞ ¼ exp

��
m� 1

2
s2

�
Dtþ s

ffiffiffiffiffi
Dt
p

"t

�Ynt
i¼1

Yi; (12)

where "t 	 Nð0; 1Þ, and nt ¼ NðtÞ �Nðt� DtÞ representing
the number of price jumps between time t� Dt and time t.

Let eZðtÞ ¼ lnfXðtÞ=Xðt� DtÞg, mV ¼ E½Vi�, s2
V ¼ Var½Vi�,

m ¼ m� 1
2 s

2 þ �mV , and DJt ¼
Pnt

i¼1 Vi � �mVDt, then we

have E½DJt � ¼ E½nt�mV � �DtmV ¼ 0, E½DJt jnt� ¼ ntmV � �DtmV ,

Var½DJt jnt� ¼ n2
ts

2
V , E½ eZðtÞjnt� ¼ ðm� 1

2 s
2ÞDtþ ntmV , Var

½ eZðtÞjnt� ¼ s2Dtþ n2
t s

2
V . For simplicity, eZðtÞjnt is considered

to be normally distributed, then we can maximize the

logarithmic likelihood function as follows

argmax
m;s�0;mV ;sV �0

ln
n
L ðm; s;mV ; sV Þ

o
¼ ln

(Yen
j¼1

X1
k¼0

Pðnt ¼ kÞfðezjjntÞ
)
;

(13)

where en is the number of observations, the density fðezjÞ is
the sum of the conditional probabilities density fðezjjntÞ
weighted by the probability of the number of jumps PðntÞ.
This is an infinite mixture of normal variables, and there is
usually one price jump if Dt is small. Therefore, the estima-
tion becomes:

argmax
s�0;mV ;sV �0

ln

(Yen
j¼1


ð1� �DtÞf1ðezjÞ þ �Dtf2ðezjÞ�

)
; (14)

where f1ðezjÞ is the density of N
�ðm� 1

2 s
2ÞDt; s2Dt

�
, and

f2ðezjÞ is the density ofN
�ðm� 1

2 s
2ÞDtþ mV ; s

2Dtþ s2
V

�
.

6.4 Option Pricing Results and Revenue Analysis
Fig. 9 presents examples of pricing an average price adver-
tising option written on the keyword “panasonic dmc”
from Google UK dataset. Each time step represents a day
and the current time is indexed by 0. Therefore, the time
indexes of the training set are �59; . . . ; 0, and the time
indexes of the test set are 1; . . . ; 60. Daily spot market prices
of the first advertising position on the search engine result
page exhibit frequent jumps in both training and test sets.
The histogram of log change rates in the training set tends
to have a higher peak than the normal distribution. By
estimating the parameters of different jump-diffusion

Fig. 6. Detecting price jumps for an advertising slot in the SSP dataset.

Fig. 7. Illustration of selecting price jump detection methods on the SSP
dataset (hourly time scale).

Fig. 8. Comparison of price jump detection methods on the SSP and
Google datasets.
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stochastic models based on the training data, we then simu-
late the paths of underlying spot market prices for the
future period. Each path is generated by lines 6-12 in
Algorithm 1. The generated paths are used to calculate the
option payoffs, and the average price is calculated based on
the prices between time steps 30 and 60. We use the geomet-
ric mean (i.e., g ¼ 0) to compute the average price so that we
can compare the option prices calculated from Monte Carlo
simulation and our derived pricing formula in Eq. (11).
Other model parameters are set as follows: c ¼ 0:2, ec ¼ 0:2,
r ¼ 0:1, K ¼ 0:75X0. Fig. 9 shows that the generated price
paths from three jump-diffusion models are different,
which further affect the option price. For the log-normal
jumps, we see the option price calculated in Eq. (11) lies in
the 95 percent confidence interval of the price computed
fromMonte Carlo simulation.

We now examine the effects of the proposed advertising
options on the seller’s revenue. Recall that an option buyer
will exercise the option in the future if he thinks the exercise
price is less than what he pays in real-time auctions, other-
wise, he will join auctions. Therefore, different combina-
tions of market performance and pricing specification
should taken into account. For the former, we simply con-
sider bull and bear markets. A bull market describes the sit-
uation that the average spot market price in the future is
equal to or higher than its present value while a bear market

means the market is going down. Each advertising option
can also be priced under three different specifications [55]:
in the money (ITM), at the money (ATM) and out of the
money (OTM). Here an ITM option means the exercise price
is less than the current spot market price when we price it.
ATM and OTM options then represent the situations that
the exercise price is equal or higher than the current spot
market price, respectively. Pricing specification affects the
computed option price, which can further affect the seller’s
revenue. Table 5 gives our settings of market performance
and pricing specification. In our experiments, 66.67 percent
of slots in the SSP dataset, 12.00 percent of slots in Google
UK dataset, and 75.00 percent of slots in Google US dataset,
are classified into the bull market.

Table 6 shows the overall results of the revenue change
for all advertising slots in our datasets. An inventory from a
slot can be sold either through an advertising option or in
real-time auctions. For the inventory, the revenue change

of a slot is defined as a ratio RevenueOption�RevenueAuction

RevenueAuction
.

RevenueAuction is the average spot market price during the

period ½tem; temþm�. RevenueOption is sum of the option price

and: (i) the exercise price K if the option is exercised at time
step tem; or (ii) the average spot market price during the
period ½tem; temþm� if the option is not exercised because the
inventory can be auctioned off in real time. Whether an
option would be exercised depends on its buyer’s estimation
of his payoff when he is at time step tem. We assume he can
well estimate the future market so we use the test data in the
period ½tem; temþm� to calculate the option payoff. If the payoff
is larger than zero, the option will be exercised otherwise not
exercised. Table 6 shows, if there is a bull market in the
future, selling advertising options is not a good strategy
for the seller because auctions are more profitable. Spot
market prices are high in the bull market so option buyers
will exercise their purchased options to hedge price risk.
If the seller needs to sell advertising options for the bull
market, OTM and ATM options are better choices than
ITM options. This is because the exercise price is higher.
If there is a bear market in the future, selling advertising
options can significantly increase the seller’s revenue.
This is because spot market prices are cheap and option
buyers will not exercise the purchased options. They will
join advertising auctions instead so the seller’s increased
revenue is mainly contributed by the option prices. As
we use the average price for calculating the option payoff,
the effect of the exercise price on the option price is not
very sensitive. Therefore, OTM and ATM options might
still be better choices than ITM options in the bear market
because of the higher exercise price.

Fig. 9. Pricing an average price advertising option for the keyword
“panasonic dmc” in Google UK dataset.

TABLE 5
Market Performance and Pricing Specification

Description Setting

Bull market X0 � 1emþmPemþmi¼1 Xi

Bear market X0 > 1emþmPemþmi¼1 Xi

ITM K ¼ 0:75X0

ATM K ¼ X0

OTM K ¼ 1:25X0
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7 CONCLUDING REMARKS

In this paper, we propose a new advertising option pricing
framework. The option payoff is based on the power mean
of the underlying spot market prices from a specific advertis-
ing slot over a future period. Therefore, the option is path-
dependent and it addresses the biased option payoff calcula-
tion problem. We use a jump-diffusion stochastic process to
model the underlying spot market prices over time, which
allows discontinuities in price evolution. We obtain a general
option pricing solution using Monte Carlo simulation and
derive an explicit pricing formula for a special case. The latter
is also a generalization of several option pricingmodels in the
previous related studies [1], [2], [3], [4], [5], [6]. In addition,
our datasets cover both display advertising and sponsored
search, and a set of stylized facts which are common to a wide
set of online advertisements is summarized. To the best of our
knowledge, it is the very first comprehensive summary of
empirical properties of the spot market prices in online
advertising auctions.

Our study has three limitations. First, the volatility term
in the underlying jump-diffusion stochastic process is a con-
stant. Although our empirical findings show that volatility
clustering is not a property for many advertisements, it
would be good if we could further discuss a case or situa-
tion that the volatility term is uncertain such as the stochas-
tic-volatility jump-diffusion model. This can be a future
direction. Second, although the proposed underlying jump-
diffusion stochastic process can possibly reproduce cyclical
patterns based on the homogeneous Poisson process, we
can further investigate a more accurate model using time
series analysis and signal processing techniques. The chal-
lenge is how to use it for pricing advertising options which
also rules out arbitrage opportunities. Third, capacity issue
is not considered. In this paper, we assume that a media
seller has a good estimation of future inventories and ratio-
nally sells them in advance via advertising options. Discus-
sing capacity will include a game-theoretical analysis of the

combined strategies of both buy-side and sell-side markets.
Given the estimated capacity, penalty also can be added
into the option pricing.

ACKNOWLEDGMENTS

This work is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Interna-
tional Research Centre in Singapore Funding Initiative.

REFERENCES

[1] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” J. Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[2] R. Merton, “The theory of rational option pricing,” Bell J. Econ.
Manag. Sci., vol. 4, no. 1, pp. 141–183, 1973.

[3] R. Merton, “Option pricing when underlying stock returns are
discontinuous,” J. Financial Econ., vol. 3, pp. 125–144, 1976.

[4] P. Zhang, Exotic Options. Singapore: World Scientific, 2nd ed.,
1998.

[5] S. Kou, “A jump-diffusion model for option pricing,” Manag. Sci.,
vol. 48, no. 8, pp. 1086–1101, 2002.

[6] B. Chen, J. Wang, I. Cox, and M. Kankanhalli, “Multi-keyword
multi-click advertisement option contracts for sponsored search,”
ACM Trans. Intell. Syst. Technol., vol. 7, no. 5, 2015, Art. no. 5.

[7] D. Evans, “The online advertising industry: Economics, evolution,
and privacy,” J. Econ. Perspectives, vol. 23, no. 3, pp. 37–60, 2009.

[8] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising
and the generalized second-price auction: Selling billions of dol-
lars worth of keywords,” Amer. Econ. Rev., vol. 97, no. 1, pp. 242–
259, 2007.

[9] H. Varian, “Position auctions,” Int. J. Ind. Org., vol. 25, no. 6,
pp. 1163–1178, 2007.

[10] D. Parkes, Algorithmic Game Theory, Cambridge, U.K.: Cambridge
Univ. Press, 2007.

[11] F. Constantin, J. Feldman, M. Muthukrishnan, and M. P�al, “An
online mechanism for ad slot reservations with cancellations,” in
Proc. 20th Annu. ACM-SIAM Symp. Discrete Algorithms, 2009,
pp. 1265–1274.

[12] V. Bharadwaj, W. Ma, M. Schwarz, J. Shanmugasundaram, E. Vee,
J. Xie, and J. Yang, “Pricing guaranteed contracts in online display
advertising,” in Proc. 19th ACM Int. Conf. Inf. Knowl. Manag., 2010,
pp. 399–408.

TABLE 6
Comparison of Revenues from Selling Advertising Options and from Advertising Auctions

Dataset Bull market Bear market

ITM ATM OTM ITM ATM OTM

Log-normal jumps (explicit solution)
SSP 0.00% (-83.89%) 0.00% (-79.83%) 8.33% (-75.73%) 100.00% (214.46%) 100.00% (261.64%) 100.00% (309.17%)
Google UK 22.22% (-30.63%) 22.22% (-17.54%) 33.33% (-4.41%) 96.97% (272.85%) 100.00% (370.00%) 100.00% (467.29%)
Google US 3.84% (-36.77%) 26.92% (-22.06%) 53.85% (-7.12%) 73.07% (98.23%) 100.00% (146.81%) 100.00% (195.76%)

Log-normal jumps (Monte Carlo simulation)

SSP 0.00% (-77.74%) 8.33% (-74.07%) 8.33% (-70.29%) 100.00% (75.66%) 100.00% (122.06%) 100.00% (168.92%)
Google UK 0.00% (-48.46%) 22.22% (-36.25%) 33.33% (-23.78%) 96.97% (282.04%) 100.00% (374.75%) 100.00% (468.55%)
Google US 21.79% (-26.51%) 39.74% (-14.15%) 57.69% (-0.86%) 76.92% (107.63%) 100.00% (152.23%) 100.00% (198.43%)

Log-ADE jumps (Monte Carlo simulation)

SSP 0.00% (-84.50%) 0.00% (-80.64%) 0.00% (-76.63%) 100.00% (101.71%) 100.00% (143.82%) 100.00% (187.67%)
Google UK 33.33% (-26.01%) 33.33% (-17.46%) 33.33% (-9.65%) 83.33% (255.44%) 84.84% (353.42%) 84.84% (453.39%)
Google US 16.67% (-30.34%) 24.36% (-20.26%) 44.87% (-8.24%) 61.53% (71.50%) 100.00% (114.23%) 100.00% (163.57%)

Log-laplacian jumps (Monte Carlo simulation)

SSP 0.00% (-82.22%) 8.33% (-78.45%) 8.33% (-74.56%) 100.00% (74.80%) 100.00% (121.34%) 100.00% (168.39%)
Google UK 0.00% (-54.12%) 11.11% (-41.62%) 33.33% (-28.93%) 81.82% (240.84%) 81.82% (334.64%) 81.82% (429.33%)
Google US 2.56% (-40.95%) 17.95% (-27.79%) 41.02% (-13.82%) 65.38% (69.07%) 100.00% (115.04%) 100.00% (162.38%)

The number outside the round brackets represents the percentage of advertising slots which have revenue increase and the number in the round brackets represents
the average revenue change of slots under that group.

CHEN AND KANKANHALLI: PRICING AVERAGE PRICE ADVERTISING OPTIONS WHEN UNDERLYING SPOT MARKET PRICES ARE DISCONTINUOUS 1777



[13] K. Salomatin, T. Liu, and Y. Yang, “A unified optimization frame-
work for auction and guaranteed delivery in online advertising,”
in Proc. 21st ACM Int. Conf. Inf. Knowl. Manag., 2012, pp. 2005–2009.

[14] V. Bharadwaj, P. Chen, W. Ma, C. Nagarajan, J. Tomlin,
S. Vassilvitskii, E. Vee, and J. Yang, “Shale: An efficient algorithm
for allocation of guaranteed display advertising,” in Proc. 18th ACM
SIGKDDConf. Knowl. Discovery DataMining, 2012, pp. 2278–2284.

[15] J. Turner, “The planning of guaranteed targeted display adver-
tising,”Operations Res., vol. 60, no. 1, pp. 18–33, 2012.

[16] B. Chen, S. Yuan, and J. Wang, “A dynamic pricing model for uni-
fying programmatic guarantee and real-time bidding in display
advertising,” in Proc. 8th Int. Workshop Data Mining Online Adver-
tising, 2014, pp. 1–9.

[17] A. Hojjat, J. Turner, S. Cetintas, and J. Yang, “Delivering guaran-
teed display ads under reach and frequency requirements,” in
Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 2278–2284.

[18] B. Chen, “Risk-aware dynamic reserve prices of programmatic
guarantee in display advertising,” in Proc. 16th IEEE Int. Conf.
Data Mining Workshops, 2016, pp. 511–518.

[19] J. Wang and B. Chen, “Selling futures online advertising slots via
option contracts,” in Proc. 21st Int. World Wide Web Conf., 2012,
pp. 627–628.

[20] B. Chen and J. Wang, “A lattice framework for pricing display
advertisement options with the stochastic volatility underlying
model,” Electron. Commerce Res. Appl., vol. 14, pp. 465–479, 2015.

[21] S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models.
Berlin, Germany: Springer, 2004.

[22] P. Boer, The Real Options Solution Finding Total Value in a High-Risk
World. Hoboken, NJ, USA: Wiley, 2002.

[23] L. Bachelier, “Th�eorie de la sp�eculation,” Annales Scientifiques de
l’�Ecole Normale Sup�erieure, vol. 3, no. 17, pp. 21–86, 1900.

[24] P. Samuelson, “Proof that properly anticipated prices fluctuate
randomly,” Ind. Manag. Rev., pp. 41–49, 1965.

[25] S. Sundaresan, “Continuous-time methods in finance: A review
and an assessment,” J. Finance, vol. 13, no. 4, pp. 1057–1099, 2000.

[26] D. Hobson, “A survey of mathematical finance,” Roy. Soc. Proc. A,
vol. 460, pp. 3369–3401, 2004.

[27] M. Curran, “Valuing asian and portfolio options by conditioning
on the geometric mean price,” Manag. Sci., vol. 40, no. 12,
pp. 1705–1711, 1994.

[28] C. Rogers and Z. Shi, “The value of an Asian option,” J. Appl. Prob-
ability, vol. 32, pp. 1077–1088, Dec. 1995.

[29] R. Tsay, Analysis of Financial Time Series. Hoboken, NJ, USA:
Wiley, 2nd ed., 2005.

[30] M. Barbu and K. Burrage, “A stochastic seasonal model for com-
modity option pricing,” in Proc. 9th Int. Conf. Comput. Econ.
Finance, 2003, pp. 1–21.

[31] M. Richter and C. Sorensen, “Stochastic volatility and seasonality
in commodity futures and options: The case of soybeans,” EFA
2002 Berlin Meetings Presented Paper, 2002. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.301994

[32] N. Jin, S. Lence, C. Hart, and D. Hayes, “Price mean reversion and
seasonality in agricultural commodity markets,” in Proc. NCCC-
134 Conf. Appl. Commodity Price Anal. Forecasting Market Risk
Manag., 2010, pp. 1–29.

[33] J. Backa, M. Prokopczukbc, and M. Rudolfa, “Seasonality and the
valuation of commodity options,” J. Banking Finance, vol. 37, no. 2,
pp. 273–290, 2013.

[34] P. Glasserman, Monte Carlo Methods in Financial Engineering.
Berlin, Germany: Springer, 2000.

[35] Y. Moon and C. Kwon, “Online advertisement service pricing and
an option contract,” Electron. Commerce Res. Appl., vol. 10, pp. 38–
48, 2010.

[36] J. Marshall, “Valuation of multiple exercise options,” PhD thesis,
Univ. Western Ontario, London, Ontario, 2012, https://ir.lib.uwo.
ca/etd/527/

[37] R. Cont and P. Tankov, “Calibration of jump-diffusion option
pricing models: A robust non-parametric approach,” Rapport
Interne CMAP Working Paper No. 490, Sep. 2002, http://dx.doi.
org/10.2139/ssrn.332400

[38] F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage.
Berlin, Germany: Springer, 2011.

[39] M. Muthukrishnan, “Ad exchanges: research issues,” in Proc. 5th
Int. Workshop Internet Netw. Econ., 2009, pp. 1–12.

[40] S. Yuan, J. Wang, B. Chen, P. Mason, and S. Seljan, “An empirical
study of reserve price optimisation in real-time bidding,” in Proc.
20th ACM SIGKDD Conf. Knowl. Discovery Data Mining, 2014,
pp. 1897–1906.

[41] S. Yuan, J. Wang, and X. Zhao, “Real-time bidding for online
advertising: Measurement and analysis,” in Proc. 7th Workshop
Data Mining Online Advertising, 2013, Art. no. 3.

[42] S. Yuan and J. Wang, “Sequential selection of correlated ads by
POMDPs,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manag., 2012,
pp. 515–524.

[43] W. Cleveland, “Robust locally weighted regression and smooth-
ing scatterplots,” J. Amer. Statistical Assoc., vol. 74, no. 368,
pp. 829–836, 1979.

[44] M. Sewell, “Characterization of financial time series,” Research
Note, London, U.K.: Univ. College London, 2011.

[45] M. Bierbrauer, C. Menn, S. Rachev, and S. Truck, “Spot and deriv-
ative pricing in the EEX power market,” J. Banking Finance, vol. 31,
pp. 3462–3485, 2007.

[46] X. Zhang and J. Feng, “Cyclical bid adjustments in search-engine
advertising,”Manag. Sci., vol. 57, no. 9, pp. 1703–1719, 2011.

[47] F. Massey, “The kolmogorov-smirnov test for goodness of fit,” J.
Amer. Statistical Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[48] S. Shapiro and M. Wilk, “An analysis of variance test for normal-
ity,” Biometrika, vol. 52, no. 3, pp. 591–611, 1965.

[49] R. Cont, “Empirical properties of asset returns:stylized facts and
statistical issues,”Quantitative Finance, vol. 1, pp. 223–236, 2001.

[50] P. Samuelson, “Rational theory of warrant pricing,” Ind. Manag.
Rev., vol. 6, pp. 13–31, 1965.

[51] J. Hanousek, E. Kocenda, and J. Novotny, “The identification of
price jumps,”Monte Carlo Methods Appl., vol. 18, pp. 53–77, 2012.

[52] S. Lee and P. Mykland, “Jumps in financial markets: A new non-
parametric test and jump dynamics,” Rev. Financial Stud., vol. 21,
pp. 2535–2563, 2008.

[53] R. Pearson, Mining Imperfect Data: Dealing with Contamination and
Incomplete Records. Philadelphia, PA, USA: SIAM, 2005.

[54] D. Brigo, A. Dalessandro, M. Neugebauer, and F. Triki, “A sto-
chastic processes toolkit for risk management,” 2007. [Online].
Available: http://ssrn.com/abstract=1109160.

[55] P. Wilmott, Paul Wilmott On Quantitative Finance. Hoboken, NJ,
USA: Wiley, 2nd ed., 2006.

Bowei Chen (M’16) received the PhD degree in
computer science from University College Lon-
don. He is an assistant professor with the Adam
Smith Business School of the University of Glas-
gow, United Kingdom, where he works in the
cross-sections amongmachine learning, data sci-
ence and business studies. His research interest
include the applications of probabilistic modeling,
and deep learning in marketing, finance, and infor-
mation systems. He is a member of the IEEE.

Mohan Kankanhalli (F’14) received the BTech
degree from IIT Kharagpur, Kharagpur, India, and
the MS and PhD degrees from the Rensselaer
Polytechnic Institute, Troy, NY. He is a professor
with the School of Computing, National University
of Singapore (NUS), Singapore. He is the director
with the SeSaMe Centre and also the dean of the
School of Computing at NUS. His research inter-
ests include multimedia systems and multimedia
security. He is active in the multimedia research
community. He was the ACM SIGMM director of

conferences from 2009 to 2013. He is on the editorial boards of several
journals. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

http://dx.doi.org/10.2139/ssrn.301994
https://ir.lib.uwo.ca/etd/527/
https://ir.lib.uwo.ca/etd/527/
http://dx.doi.org/10.2139/ssrn.332400
http://dx.doi.org/10.2139/ssrn.332400
http://ssrn.com/abstract=1109160.


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


