Pricing average price advertising options when underlying spot market prices are discontinuous¹

Bowei Chen^{†2} Mohan Kankanhalli[‡]

†University of Glasgow

[‡]National University of Singapore

¹In IEEE Transactions on Knowledge and Data Engineering, 31(9), pp. 1765-1778, 2019

²bowei.chen@glasgow.ac.uk

Average price advertising option

Jump-diffusion stochastic process

Given $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, the spot market price X(t) follows the SDE

$$\frac{dX(t)}{X(t^{-})} = \underbrace{\mu dt + \sigma dW(t)}_{\text{Continuous}} + \underbrace{d\left(\sum_{i=1}^{N(t)} (Y_i - 1)\right)}_{\text{Discontinuous}}, \tag{1}$$

- μ and σ are the constant drift and volatility terms
- $X(t^-)$ stands for the value of X just before a jump at time t
- N(t) is a homogeneous Poisson process with intensity λ
- ullet $\{Y_i, i=1,\cdots\}$ is a sequence of i.i.d. non-negative variables representing the jump sizes
- N(t), W(t), Y_i are assumed to be independent

Choices of jump size distributions

Let $V_i = \ln\{Y_i\}$, then

- $V_i \sim N(\alpha, \beta^2)$, then $\mathbb{E}[e^{V_i}] = e^{\alpha + \frac{1}{2}\beta^2}$.
- $V_i \sim \mathsf{ADE}(\eta_1, \eta_2, p_1, p_2)$, then $\mathbb{E}[e^{V_i}] = p_1 \frac{\eta_1}{\eta_1 1} + p_2 \frac{\eta_2}{\eta_2 + 1}$.
- $V_i \sim \mathsf{LAP}(\varrho, \eta)$, then $\mathbb{E}[e^{V_i}] = \frac{e^{\varrho}}{1-\eta^2}$.

Solution to Eq.(1)

By checking Itô calculus, we have

$$X(t) = X(0) \exp\left\{\left(\mu - rac{1}{2}\sigma^2\right)t + \sigma W(t)
ight\} \prod_{i=1}^{N(t)} Y_i,$$

where $\prod_{i=1}^{0} = 1$. Hence, it is an exponential Lévy model.

Option payoff based on power mean and CTR

$$\Phi(\mathbf{X}) = \theta \left(\frac{\widetilde{c}}{c} \underbrace{\left(\frac{1}{m} \sum_{i=\widetilde{m}+1}^{\widetilde{m}+m} X_i^{\gamma} \right)^{\frac{1}{\gamma}}}_{:= \psi(\gamma | \mathbf{X})} - K \right)^{+}, \tag{3}$$

- $(\cdot)^+ := \max\{\cdot, 0\}$
- ullet θ is the requested number of impressions or clicks
- c is the CTR of the option buyer's advertisement
- ullet \widetilde{c} is the average CTR of relevant or similar advertisements
- K is the exercise price which can be a fixed CPM or CPC
- X is a vector of the spot market prices in the future period [S, T]
- $\left(\frac{1}{m}\sum_{i=\widetilde{m}+1}^{\widetilde{m}+m}X_i^{\gamma}\right)^{1/\gamma}$ is the power mean of these prices.

Special and limiting cases of power mean

γ	$\mid \psi(\gamma X) \mid$	Description	
$-\infty$	$\min\left\{X_{\widetilde{m}+1},\cdots,X_{\widetilde{m}+m}\right\}$	Minimum value	
-1	$m/\left(\frac{1}{X_{\widetilde{m}+1}}+\cdots+\frac{1}{X_{\widetilde{m}+m}}\right)$	Harmonic mean	
0	$\left(\prod_{i=\widetilde{m}+1}^{\widetilde{m}+m}X_i\right)^{\frac{1}{m}}$	Geometric mean	
1	$\frac{1}{m}\sum_{i=\widetilde{m}+1}^{\widetilde{m}+m}X_i$	Arithmetic mean	
2	$\left(\frac{1}{m}\sum_{i=\widetilde{m}+1}^{\widetilde{m}+m}X_i^2\right)^{\frac{1}{2}}$	Quadratic mean	
∞	$igg \maxig\{X_{\widetilde{m}+1},\cdots,X_{\widetilde{m}+m}ig\}igg $	Maximum value	

Monotonicity property: if $\gamma_1 \leq \gamma_2$, then $\psi(\gamma_1|\mathbf{X}) \leq \psi(\gamma_2|\mathbf{X})$

Solution to Eq.(1) under \mathbb{Q}

The solution to Eq. (1) under the risk-neutral probability measure $\mathbb Q$ is

$$X(t) = X(0) \exp\left\{ \left(r - \lambda \zeta - \frac{1}{2} \sigma^2 \right) t + \sigma W(t) \right\} \prod_{i=1}^{N(t)} Y_i, \tag{4}$$

where $\zeta := \mathbb{E}[e^{V_i}] - 1$, and its detailed calculation is given in the following table.

Distribution of Y_i	Distribution of V_i	$\zeta := \mathbb{E}[e^{V_i}] - 1$
Log-normal	$N(\alpha, \beta^2)$	$e^{lpha+rac{1}{2}eta^2}-1$
Log-ADE	$ADE(\eta_1,\eta_2,p_1,p_2)$	$ ho_1 rac{\eta_1}{\eta_1 - 1} + ho_2 rac{\eta_2}{\eta_2 + 1} - 1$
Log-laplacian	$LAP(\varrho,\eta)$	$\frac{e^{\varrho'}}{1-\eta^2}-1$

Option price

The option price can be obtained as follows:

$$\pi_0 = e^{-rT} \mathbb{E}^{\mathbb{Q}}[\Phi(\mathbf{X})|\mathcal{F}_0], \tag{5}$$

where $\mathbb{E}^{\mathbb{Q}}[\cdot|\mathcal{F}_0]$ represents the expectation conditioned on the information up to time 0 under the risk-neutral probability measure \mathbb{Q} .

General solution³

```
Input: X(0), r, \sigma, S, T, m, K, c, \widetilde{c}, z, \theta, \gamma, \widetilde{c}
(where = \{\alpha, \beta\} or \{\eta_1, \eta_2, p_1, p_2\} or \{\rho, \eta\})
  1: \Delta t \leftarrow \frac{1}{m}(T-S); \widetilde{m} \leftarrow \lceil \frac{S}{2} \rceil; \zeta \leftarrow \text{Table 2};
  2: for i \leftarrow 1 to z do
  3: X_0^{\{j\}} \leftarrow X(0):
  4: for i \leftarrow 1 to \widetilde{m} + m do
  5: a_i \leftarrow \mathbf{N}((r - \lambda \zeta - \frac{1}{2}\sigma^2)\Delta t, \sigma^2 \Delta t);
  6: \xi_i \leftarrow \mathbf{BER}(\lambda \Delta t);
  7: v_i \leftarrow N(\alpha, \beta^2) or ADE(\eta_1, \eta_2, p_1, p_2) or LAP(\rho, \eta);
                   \ln\{X_{i}^{\{j\}}\} \leftarrow \ln\{X_{i+1}^{\{j\}}\} + a_{i} + \mathcal{E}_{i}v_{i}
  8:
  9:
          end for
10:
        \Phi^{\{j\}} \leftarrow \mathsf{Eq.} (3):
11: end for
12: \pi_0 \leftarrow e^{-rT} \left( \frac{1}{2} \sum_{i=1}^{z} \Phi^{\{j\}} \right).
Output: \pi_0
```

³See Algorithm 1.

Special case⁴

If $\gamma = 0$ and $V_i \sim N(\alpha, \beta^2)$, the option price π_0 can be obtained by the formula

$$\pi_0 = \theta e^{-(r+\lambda)T} \sum_{k=0}^{\infty} \frac{(\lambda T)^k}{k!} \left(\frac{\widetilde{c}}{c} X(0) \Omega \mathcal{N}(\xi_1) - K \mathcal{N}(\xi_2) \right), \tag{6}$$

where $\mathscr{N}(\cdot)$ is the cumulative standard normal distribution function, and

$$A = \frac{1}{2}(r - \lambda\zeta - \frac{1}{2}\sigma^{2})(T + S) + k\alpha,$$

$$B^{2} = \frac{1}{3}\sigma^{2}T + \frac{2}{3}\sigma^{2}S + k\beta^{2},$$

$$\Omega = e^{\frac{1}{2}(B^{2} + 2A)}, \qquad \phi = \ln\{cK\} - \ln\{\tilde{c}X(0)\},$$

$$\xi_{1} = B - \frac{\phi}{B} + \frac{A}{B}, \qquad \xi_{2} = \frac{A}{B} - \frac{\phi}{B}.$$

⁴See Theorem 1 and its proof.

Data

Dataset	SSP	Google UK	Google US
Advertising type	Display	Search	Search
Auction model	SP	GSP	GSP
Advertising position	NA	1st position [†]	1st position [†]
Bid quote	GBP/CPM	GBP/CPC	GBP/CPC
Market of targeted users [‡]	UK	UK	US
Time start	08/01/2013	26/11/2011	26/11/2011
Time end	14/02/2013	14/01/2013	14/01/2013
# of total advertising slots	31	106	141
Data reported frequency	Auction	Day	Day
# of total auctions	6,646,643	NA	NA
# of total bids	33,043,127	NA	NA

[†]In the mainline paid listing of the SERP. [‡]Market by geographical areas.

Stylized facts

Price jump detection methods on the SSP dataset (hourly)

Price jump detection methods on the SSP and Google datasets

Note: the BV-LM is not used for Google datasets as there are no intra-day campaign records.

Option pricing for keyword "panasonic dmc"

Thank you!

bowei.chen@glasgow.ac.uk https://boweichen.github.io

Appendix I: proof of Theorem 1

The geometric mean $\psi(\gamma=0|\mathbf{X})$ can be rewritten in a continuous-time form

$$\psi(\gamma = 0|\mathbf{X}) = \exp\left\{\frac{1}{T - S} \int_{S}^{T} \ln\{X(t)\}dt\right\},$$

then

$$Z(T)|N(T) = k \sim N\left((r - \lambda\zeta - \frac{1}{2}\sigma^2)T + k\alpha, \sigma^2T + k\beta^2\right).$$

Below we show $\psi(0|\mathbf{X})$ is log-normally distributed.

$$\psi(0|\mathbf{X})$$

$$= X_0 \left(\prod_{i=\widetilde{m}+1}^{\widetilde{m}+m} X_i / X_0^m \right)^{1/m}$$

$$= X_0 \exp \left\{ \frac{1}{m} \ln \left\{ \left(\frac{X_{\widetilde{m}}}{X_0} \right)^m \left(\frac{X_{\widetilde{m}+1}}{X_{\widetilde{m}}} \right)^m \cdot \cdot \cdot \cdot \left(\frac{X_{\widetilde{m}+m}}{X_{\widetilde{m}+m}} \right) \right\} \right\}$$

Appendix I: proof of Theorem 1

Since $\Delta t = \frac{T-S}{m}$, so $\widetilde{m} = \frac{S}{\Delta t} = \frac{S}{T-S}m$, and then

$$\ln \left\{ \frac{X_{\widetilde{m}}}{X_0} \right\} \bigg|_{N(T)=k} \sim \mathbf{N} \Big((r - \lambda \zeta - \frac{1}{2} \sigma^2) S + k \alpha, \sigma^2 S + k \beta^2 \Big),$$

and for $i=0,\cdots,(m-1)$,

$$\ln\Big\{\frac{X_{\widetilde{m}+i+1}}{X_{\widetilde{m}+i}}\Big\}\bigg|_{N(T)=k} \mathbf{N}\Big((r-\lambda\zeta-\frac{1}{2}\sigma^2)\Delta t,\sigma^2\Delta t\Big).$$

Let $\Theta = \frac{1}{T-S} \int_{S}^{I} Z(t) dt$, then $\Theta|_{N(T)=k} \sim N(\widetilde{A}, \widetilde{B}^{2})$, where

$$\widetilde{A} = (r - \lambda \zeta - \frac{1}{2}\sigma^2)(\frac{(m+1)}{m}\frac{T-S}{2} + S) + k\alpha,$$

$$\widetilde{B}^2 = \frac{(m+1)(2m+1)}{6m^2}\sigma^2(T-S) + \sigma^2S + k\beta^2.$$

Appendix I: proof of Theorem 1

If $m \to \infty$, $\Theta|_{N(T)=k} \sim N(A, B^2)$, where

$$A = \frac{1}{2}(r - \lambda\zeta - \frac{1}{2}\sigma^{2})(T + S) + k\alpha,$$

$$B^{2} = \frac{1}{3}\sigma^{2}T + \frac{2}{3}\sigma^{2}S + k\beta^{2}.$$

Hence, the option price can be obtained as

$$\pi_{0} = \theta e^{-rT} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{E}^{\mathbb{Q}} \left[\left(\frac{\widetilde{c}}{c} X_{0} e^{\Theta} - K \right)^{+} \middle| N(T) = k \right] \middle| \mathcal{F}_{0} \right]$$

$$= \theta e^{-rT} \sum_{k=0}^{\infty} \frac{(\lambda T)^{k}}{k!} e^{-\lambda T} \mathbb{E}^{\mathbb{Q}}_{0} \left[\left(\frac{\widetilde{c}}{c} X_{0} e^{\Theta} - K \right)^{+} \right]$$

$$= \theta e^{-rT} \sum_{k=0}^{\infty} \frac{(\lambda T)^{k}}{k!} e^{-\lambda T} \int_{\phi}^{\infty} \left(\frac{\widetilde{c}}{c} X_{0} e^{\Theta} - K \right) f(\Theta) d\Theta,$$

solving the integral terms then completes the proof.

Appendix II: model parameters estimation

The discretization of Eq. (2) is

$$\frac{X(t)}{X(t-\Delta t)} = \exp\left\{ (\mu - \frac{1}{2}\sigma^2)\Delta t + \sigma\sqrt{\Delta t}\varepsilon_t \right\} \prod_{i=1}^{n_t} Y_i, \tag{7}$$

where $\varepsilon_t \sim N(0,1)$, $n_t = N(t) - N(t-\Delta t)$ is the number of price jumps between $t-\Delta t$ and t.

Appendix II: model parameters estimation

Let $\widetilde{Z}(t) = \ln\{X(t)/X(t-\Delta t)\}$, $\mu_V = \mathbb{E}[V_i]$, $\sigma_V^2 = \operatorname{Var}[V_i]$, $\mu^* = \mu - \frac{1}{2}\sigma^2 + \lambda\mu_V$, and $\Delta J_t^* = \sum_{i=1}^{n_t} V_i - \lambda\mu_V \Delta t$, then we have $\mathbb{E}[\Delta J_t^*] = \mathbb{E}[n_t]\mu_V - \lambda\Delta t\mu_V = 0$, $\mathbb{E}[\Delta J_t^*|n_t] = n_t\mu_V - \lambda\Delta t\mu_V$, $\operatorname{Var}[\Delta J_t^*|n_t] = n_t^2\sigma_V^2$, $\mathbb{E}[\widetilde{Z}(t)|n_t] = (\mu - \frac{1}{2}\sigma^2)\Delta t + n_t\mu_V$, $\operatorname{Var}[\widetilde{Z}(t)|n_t] = \sigma^2\Delta t + n_t^2\sigma_V^2$. For simplicity, $\widetilde{Z}(t)|n_t$ is considered to be normally distributed, then we can maximize the log-likelihood function $\mathscr{L}(\mu^*, \sigma, \mu_V, \sigma_V)$ as follows

$$\underset{\mu^*, \sigma \geq 0, \mu_V, \sigma_V \geq 0}{\operatorname{arg\,max}} \ln \left\{ \mathscr{L}(\mu^*, \sigma, \mu_V, \sigma_V) \right\} = \ln \left\{ \prod_{j=1}^{\widetilde{n}} \sum_{k=0}^{\infty} \mathbb{P}(n_t = k) f(\widetilde{z}_j | n_t) \right\}, \tag{8}$$

where \widetilde{n} is the number of observations, the density $f(\widetilde{z}_j)$ is the sum of the conditional probabilities density $f(\widetilde{z}_j|n_t)$ weighted by the probability of the number of jumps $\mathbb{P}(n_t)$.

Appendix II: model parameters estimation

This is an infinite mixture of normal variables, and there is usually one price jump if Δt is small. Therefore, the estimation becomes:

$$\underset{\sigma \geq 0, \mu_{V}, \sigma_{V} \geq 0}{\arg \max} \ln \left\{ \prod_{j=1}^{\widetilde{n}} \left((1 - \lambda \Delta t) f_{1}(\widetilde{z}_{j}) + \lambda \Delta t f_{2}(\widetilde{z}_{j}) \right) \right\}, \tag{9}$$

where $f_1(\widetilde{z}_j)$ is the density of $\mathbf{N}((\mu - \frac{1}{2}\sigma^2)\Delta t, \sigma^2\Delta t)$, and $f_2(\widetilde{z}_j)$ is the density of $\mathbf{N}((\mu - \frac{1}{2}\sigma^2)\Delta t + \mu_V, \sigma^2\Delta t + \sigma_V^2)$.