Pricing average price advertising options when underlying
1

spot market prices are discontinuous

Bowei Chenf2  Mohan Kankanhalli*

TUniversity of Glasgow

fNational University of Singapore

YIn IEEE Transactions on Knowledge and Data Engineering, 31(9), pp. 1765-1778, 2019
2bowei.chen@glasgow.ac.uk



Average price advertising option
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Jump-diffusion stochastic process

Given (Q,f, {]:t}tzo,P), the spot market price X(t) follows the SDE

N(t)
dX(t
X(t()) :,udt+adW(t)+d(Z(Y,-— )>7 (1)
i=1
Continuous
component Discontinuous
component

® 4, and o are the constant drift and volatility terms

X(t™) stands for the value of X just before a jump at time t

N(t) is a homogeneous Poisson process with intensity A

{Yi,i=1,---} is a sequence of i.i.d. non-negative variables representing the jump sizes
N(t), W(t), Y; are assumed to be independent



Choices of jump size distributions

Let Vi =In{Y;}, then
® Vi~ N(a, 8?), then E[e"] = e*T2%,
R SR E[eV] = p1 21 + P2 B
* Vi~ LAP(g,7), then E[e"] = 15




Solution to Eq.(1)

By checking It6 calculus, we have

N(t)

X(t):X(O)exp{( ; )t + o W(t }HY,, (2)

where H?:l = 1. Hence, it is an exponential Lévy model.



Option payoff based on power mean and CTR

1

o(X) = 0 (N EP> X?)”—K>+, )

i=m+1

= (v]X)

(F = max{-,0}
0 is the requested number of impressions or clicks

c is the CTR of the option buyer's advertisement

® Cis the average CTR of relevant or similar advertisements

K is the exercise price which can be a fixed CPM or CPC

® X is a vector of the spot market prices in the future period [S, T]

= /v . .
(L ymem X7) 7 is the power mean of these prices.

m



Special and limiting cases of power mean

~ P(v]X) Description
—0o0 | min {Xr?w+17 e ,X,7,+m} Minimum value
-1 m/(xﬁl+1 SRGEEE X,;,ler) Harmonic mean
0 AT G i

(Hi:ﬁ7+1 X,-) m eometric mean
1 % Z,";J%"J’rl X; Arithmetic mean

~ 1
1 m+m 2\ 2 ]

2 (E > X )2 Quadratic mean
0 max{X,;,H, e ,X,7,+m} Maximum value

Monotonicity property: if v1 < 72, then ¥(71|X) < ¥(72]X)



Solution to Eq.(1) under Q

The solution to Eq. (1) under the risk-neutral probability measure Q is

X(t):X(O)exp{(r—)\C—éaz)t—i—aW(t)} H V5 (4)
where ¢ :=E[e"/] — 1, and its detailed calculation is given in the following table.

Distribution of Y; | Distribution of V; | ¢ :=E[e"] -1

Log-normal N(a, 5?) O“Llﬁz -1
Log-ADE ADE(n1, 72, p1, p2) L+ 2ty -
Log-laplacian LAP(o,n) -1

1 72



The option price can be obtained as follows:
o = e~ T EX[®(X)| Fol, (5)

where EQ[-| Fo] represents the expectation conditioned on the information up to time 0 under
the risk-neutral probability measure Q.



General solution3

Input: X(0),r,0,S, T,m K,c,¢,z,0,v,"
(where = = {Oé,ﬁ} or {771a7I27P17p2} or {0,1})
1. At (T —S); m«+ [Z]; ¢ + Table 2;
2: for jeltozdo

3 X e Xx(0);
4: fori<—1tor71+mdo
5: ai < N((r — X — 30?)At,0%At);
6: ¢ « BER(\AL);
il Vi N(a,ﬂz) or ADE(m,nz,pl,pz) or LAP(o,7);
8: In{Xi{J}} — In{Xi{i]i}+a,-+§,-v,-;
9: end for
10 oV« Eq. (3);
11: end for
12: mp =T (2307, o).
Output: mg

3See Algorithm 1.



Special case?

If v =0 and V; ~ N(a, 32), the option price my can be obtained by the formula
L (AT)K
—(r+N)T
Z Kl
k=0

where .#7(-) is the cumulative standard normal distribution function, and

(N QA (&) - K=/V(§2)>, (6)

1 1
A= 2(/’—)\C—*O' T +S) + ko,
B? = %a T+ 025+k62
Q= e%<52+2A>, = In{cK} — In{EX(0)},
¢ A A ¢
=B 24+ =—_— =,
& BB “TB B

4See Theorem 1 and its proof.



Dataset SSP Google UK Google US
Advertising type Display Search Search
Auction model SP GSP GSP
Advertising position NA 1st position | 1st position'
Bid quote GBP/CPM | GBP/CPC GBP/CPC
Market of targeted users! UK UK us

Time start 08/01/2013 | 26/11/2011 | 26/11/2011
Time end 14/02/2013 | 14/01/2013 | 14/01/2013
# of total advertising slots | 31 106 141

Data reported frequency Auction Day Day

# of total auctions 6,646,643 NA NA

# of total bids 33,043,127 | NA NA

fIn the mainline paid listing of the SERP. Market by geographical areas.
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Price jump detection methods on the SSP dataset (hourly)
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Price jump detection methods on the SSP and Google datasets
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Note: the BV-LM is not used for Google datasets as there are no intra-day campaign records.



Option pricing for keyw
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Thank youl!

bowei.chen@glasgow.ac.uk
https://boweichen.github.io
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Appendix |: proof of Theorem 1

The geometric mean (v = 0|X) can be rewritten in a continuous-time form

.
Py = 0[X) = exp {Tl—S/S |n{X(t)}dt},

then
Z(T)IN(T) = k ~ N((r— AC — %02)T+ ke, 02T + kﬁ2>.

Below we show (0|X) is log-normally distributed.

¥(01X)

m+m 1/m
=Xo< 11 xf/xom)

i=m+1

oo {2 {(G)"(82)™ (22}




Appendix |: proof of Theorem 1

Since At = TT_S som= % = %m, and then
X 1
In{ =1 ~N((r =X —20°)S + ka,0?S + kj3?),
(), (e )
and for i =0,---,(m—1),
MM} N((r—)\C—fU )At, 02At).
m+i N(T)=k

Let © = T = fs t)dt, then @’N ~ N(Z, §2) where

(m+1)T -5
2

o?(T = S) +0°S + k2.

Z:(r—Ag—%cﬂ)( +5) + ka,

52 _(m+1)(2m+1)
n 6m?




Appendix |: proof of Theorem 1

If m— oo, @‘N(T):k ~ N(A, B2), where

1 1

A=S(r=X - 50—2)(T+S)+ka7
1 2

B? = §U2T + §0—25 + kB2

Hence, the option price can be obtained as

= +
mo = e "TREQ|ER {(EXoe@ — K> ( N(T) = k]

.

k 00,
> (Ale)e—”/ (gXoee - K) f(©)de,
k=0 ¢

solving the integral terms then completes the proof. O




Appendix Il: model parameters estimation

The discretization of Eq. (2) is

X(ﬁt)At) = exp{(,u— 202)At+0m€t}iljl Yi, (")

where ; ~ N(0, 1), n = N(t) — N(t — At) is the number of price jumps between t — At and t.



Appendix Il: model parameters estimation

Let Z(t) = In{X(t)/X(t — At)}, py = E[V}], 0%, = Var[V], u* = p — 262 + Apy, and
AJf =311 Vi — AuyAt, then we have E[AJ*] = E[nt]uv — MAtuy =0,

E[AJ |ne] = nepy — /\Atuv Var[AJf|n] = ”tU\/ E[Z(t)|n] = (1 — So?)At + nepy,
Var[Z(t)|ne] = 02At + n2a%,. For simplicity, Z(t)|n; is considered to be normally distributed,
then we can maximize the log-likelihood function £ (u*, o, vy, o) as follows

arg max In {g(u*,a,uv,av)} =1n HZ]P’(nt = k)f(zj|n:) ¢, (8)
pu*,0>0,uy,0y>0 j=1 k=0

where n is the number of observations, the density f(Z;) is the sum of the conditional
probabilities density f(Zj|n;) weighted by the probability of the number of jumps P(n;).



Appendix Il: model parameters estimation

This is an infinite mixture of normal variables, and there is usually one price jump if At is
small. Therefore, the estimation becomes:

arg max I { I1 ((1 — AADA(Z) + )\Atfg(fj)> } (9)

0>0,py,0v2>0 j=1

where fi(Z;) is the density of N((1 — 302)At,02At), and £(Z;) is the density of
N((n — 30°)At + py, oAt + 07)).
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