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Abstract—Uncertainty is an essential consideration for time
series forecasting tasks. In this work, we focus on quantifying
the uncertainty of traffic forecasting from a unified perspective.
We develop a novel traffic forecasting framework, namely Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ), which
can estimate both aleatoric and epistemic uncertainty. Specifically,
we first leverage a spatio-temporal model to model the complex
spatio-temporal correlations of traffic data. Subsequently, two in-
dependent sub-neural networks maximizing the heterogeneous log-
likelihood are developed to estimate aleatoric uncertainty. To esti-
mate epistemic uncertainty, we combine the merits of variational
inference and deep ensembling by integrating the Monte Carlo
dropout and the Adaptive Weight Averaging re-training methods,
respectively. Furthermore, to relax the Gaussianity assumption,
mitigate overfitting, and improve horizon-wise uncertainty quan-
tification performance, we define a new calibration method called
Multi-horizon Conformal Calibration (MHCC). Finally, we pro-
vide a theoretical analysis of the proposed unified approach based
on the PAC-Bayes theory. Extensive experiments are conducted
on four public datasets, and the empirical results suggest that the
proposed method outperforms state-of-the-art methods in terms of
both point prediction and uncertainty quantification.

Index Terms—Traffic forecasting, uncertainty quantification,
variational inference, deep ensembling, model calibration, PAC-
Bayes.

I. INTRODUCTION

TRAFFIC forecasting is one of the essential elements in
modern Intelligent Transportation Systems (ITS). The pre-

dicted data, including but not limited to traffic flow, speed, and
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volume, can help municipalities manage urban transportation
more efficiently. In terms of traffic forecasting, the road segments
in a road network interact with each other spatially, and the
current state of a road segment depends on previous states, which
results in complicated spatio-temporal correlations. Modelling
the spatial-temporal correlations of traffic data is non-trivial [5],
[17], [30], [39], [52], [54], [57].

Thanks to the recent advances of deep learning techniques,
a number of deep learning-based spatio-temporal models have
been proposed in the field of traffic forecasting [44], [47]. Since
the topology of a typical road network can be described by a
graph in which each node represents a sensor and each edge rep-
resents a road segment, the spatial dependency of traffic data can
be naturally extracted by Graph Neural Networks (GNNs) [20].
Correspondingly, the temporal dependency of traffic data can be
modelled by Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), or their variants [5], [30], [39], [52].

Despite the fact that existing methods regarding traffic fore-
casting have been shown successful [47], most of them only pro-
vide point traffic prediction without quantifying uncertainty — a
critical component in traffic data. Uncertainty quantification can
be used to estimate the possible minimum and maximum values
of the predicted traffic flow, speed, and volume. Such reliability
information can be imperative for municipalities to manage
urban traffic systems in real-world scenarios (e.g., emergency
rescue and disaster evacuation) where unreliable deterministic
point prediction may lead to catastrophic consequences [48].
Traffic forecasting can help improve traffic conditions and con-
sequently reduce traffic incidents [34], [38]. However, unex-
pected events, e.g., accidents, will affect the accuracy of the
traffic forecasting [2], [11]. Therefore, from a safety perspective,
it is necessary to provide predictions with reliability information.
Moreover, traffic forecasting models with uncertainty quantifi-
cation can be used to develop proactive intelligent traffic control
systems to prevent possible future traffic congestion.

In this paper, we aim to attain both future traffic forecast-
ing and its corresponding uncertainty. More specifically, the
research goal includes the estimation of both epistemic and
aleatoric uncertainties, which refer to model uncertainty and
data uncertainty, respectively. Aleatoric uncertainty can be ob-
tained by two independent neural networks by estimating means
and variances, respectively [35]. As for epistemic uncertainty,
both variational inference and ensembling are possible solu-
tions. However, these two types of approaches both have their
own limitations. Variational approaches, e.g., Bayesian Neural
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Networks (BNNs) [21], [33], are prone to modal collapse [14].
Deep ensembling is capable of finding multiple local minimums
by training a set of deterministic models, but the prediction
of each trained deterministic model lacks diversity [14]. To
circumvent this problem, it needs to find a set of local mini-
mums/solutions with certain amount of diversities.

To this end, we carefully design an epistemic uncertainty
quantification method integrating the merits of both variational
inference and deep ensembling. Due to the high flexibility and
efficiency of Monte Carlo dropout (MCDO) [12], we adopt it
as the variational inference method. To implement MCDO in
the proposed approach, we place the dropout operations in the
base model with careful design to ensure the model performance.
Despite the success of Stochastic Weight Averaging (SWA) [19]
on approximating deep ensembling, we find that the original
SWA method cannot guarantee the convergence of the training
process of traffic forecasting tasks. In this light, we propose
a new re-training method, called Adaptive Weight Averaging
(AWA), to better approximate deep ensembling. Compared with
SWA that uses SGD for training, AWA utilizes a new learn-
ing rate scheduler with Adam, which can approximate deep
ensembling more efficiently on traffic forecasting. In addition,
a post-processing calibration method is proposed to mitigate
the overfitting issue in uncertainty quantification. We design
the above building blocks to tackle different aspects of the
uncertainty quantification problem, achieving an effective and
efficient traffic forecasting framework. Finally, a unified un-
certainty quantification approach called Deep Spatio-Temporal
Uncertainty Quantification (DeepSTUQ) is formulated for both
epistemic and aleatoric uncertainty estimation. Compared to
existing approaches, DeepSTUQ has the following advantages:
1) DeepSTUQ can predict future traffic while providing both
epistemic and aleatoric prediction uncertainty; and 2) Deep-
STUQ requires training only one single model, which as a result,
is fast-training, low-memory-footprint, and fast-inferring.

In the conference version of this work [36], Gaussian assump-
tion was used in the calibration method. However, it may not be
valid empirically with the real traffic data in many cases. The
other issue of the original calibration method [36] is that it cannot
guarantee horizon-wise uncertainty quantification performance.
To mitigate overfitting, relax the Gaussianity assumption, and
improve horizon-wise uncertainty quantification performance,
we propose a novel conformal inference based calibration
method, called Multi-horizon Conformal Calibration (MHCC),
where the target significance can be corrected according to the
proposed empirical equation. Moreover, we provide an in-depth
theoretical analysis for uncertainty quantification to show that
the proposed method can strengthen the point prediction perfor-
mance and the horizon-wise prediction coverage performance.

The major value-added extensions over our preliminary
work [36] are three-fold.
� We identify and study in depth a limitation in our previ-

ous approach, thus enabling improved horizon-wise uncer-
tainty quantification performance.

� We propose a horizon-wise post-processing calibration
method that relaxes the Gaussianity assumption and re-
duces overfitting, achieving better performance of uncer-
tainty quantification in traffic flow forecasting.

� Extensive experiments are conducted on four public
datasets, and the results show that the proposed DeepSTUQ
advances the state of the art in terms of point prediction and
uncertainty quantification.

The remainder of this paper is organized as follows. Section II
surveys the related work, and Section III gives preliminary
concepts. We then present the DeepSTUQ model in Section IV,
followed by an empirical study in Section V. Section VI offers
conclusions.

II. RELATED WORK

Our study relates to spatio-temporal traffic forecasting regard-
ing its application and uncertainty quantification regarding the
methodology. In the following, we review the state-of-the-art
methods from these two aspects in this section.

A. Spatio-Temporal Traffic Forecasting

Traffic data can be regarded as multivariate time series. Hence,
for traffic forecasting tasks, both spatial and temporal correlation
are critical data features to learn from. In terms of spatial
correlations, Graph Neural Network, such as Graph Convolu-
tional Networks (GCNs) [25], ChebNet [9], and Graph Attention
Networks (GATs) [43], have become the de facto deep learning
techniques. As for temporal dependency, deep architectures like
Gated Recurrent Networks (GRUs) [7], Gated Convolutional
Neural Networks (GCNNs) [8], and WaveNet [42], have been
widely applied to traffic prediction. Base on these two types of
methods, a number of deep spatio-temporal models have been
proposed in the context, such as Diffusion Convolutional Recur-
rent Neural Network (DCRNN) [30], Temporal Graph Convolu-
tional Network (T-GCN) [56], Spatio-Temporal Graph Convolu-
tional Networks (ST-GCN) [54], and GraphWaveNet [52]. These
methods are capable of learning spatio-temporal correlations but
fail to capture multi-scale or hierarchical dependency.

More recently, Li et al. [29] proposed Spatial-Temporal
Fusion Graph Neural Network (STFGNN), in which a spatial-
temporal fusion graph module and a gated dilated CNN module
were used to capture local and global correlations simulta-
neously. Zheng et al. [55] proposed Spatial-Temporal Graph
Diffusion Network (ST-GDN) that adopted a hierarchical graph
neural network architecture and a multi-scale attention network
to learn spatial dependency from local-global perspectives and
multi-level temporal dynamics, respectively. Qu et al. [37] used
contrastive self-supervision to learn the spatio-temporal cor-
relations within the coarse-grained urban traffic flows. Liang
et al. [31] proposed a physics-informed approach for spatio-
temporal forecasting. Additionally, the attention mechanism
has been applied to address this issue as well. For instance,
Attention-based Spatial-Temporal Graph Convolutional Net-
work (ASTGCN) [17] uses spatial and temporal attention to
model the spatial patterns and dynamic temporal correlations,
respectively.

Nevertheless, in a practical real-world case where the knowl-
edge of a graph is missing, the physical road connectivity may
not necessarily represent the real data correlation in a graph. It is
therefore beneficial to learn the graph structure from the data. To
this end, methods such as Multivariate Time Series Forecasting
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with Graph Neural Network (MTGNN) [51] and Adaptive Graph
Convolutional Recurrent Network (AGCRN) [5] can learn the
unknown adjacency matrix in a data-driven manner and con-
sequently improve the prediction performance. However, all
these aforementioned methods only focus on providing point
estimation without computing prediction intervals.

B. Uncertainty Quantification

Uncertainty quantification has recently become an actively
researched area and widely applied to solve various real-world
problems [1], [14]. In general, uncertainty can be classified into
two categories, namely, aleatoric and epistemic.

Aleatoric uncertainty refers to the data uncertainty caused
by noise or intrinsic randomness of processes, which is irre-
ducible but can be computed via predictive means and vari-
ances [22] using negative log-Gaussian likelihood as the loss
function. When data distribution is unknown, distribution-
free methods such as quantile regression [26] and conformal
inference [4] can be used to estimate aleatoric uncertainty
by computing the upper and the lower bounds of the pre-
diction intervals with respect to the predefined significance
level.

Epistemic uncertainty refers to model uncertainty caused by
data sparsity or lack of knowledge, which is learnable and
reducible. A widely-used method for estimating epistemic un-
certainty is Bayesian Neural Networks (BNNs) [21], in which
a Gaussian distribution is imposed on each weight to generate
model uncertainty. However, a typical BNN doubles the number
of model parameters and requires to compute the Kullback-
Leibler (KL) divergence explicitly [6], which raises the model
complexity and slows down the training process. Alternatively,
a simple approach called Monte Carlo (MC) dropout [12] per-
forms Bayesian approximation by turning on dropout at both
training and test time as opposed to standard dropout [40].

Apart from Bayesian methods, ensembling-based approaches
can be applied to uncertainty quantification as well [27], [49].
However, vanilla ensembling methods is time and memory con-
suming because it is required to train and store multiple models.
To address this issue, Fast Geometric Ensembling (FGE) [13]
and Stochastic Weight Averaging (SWA) [19] are proposed,
which use varying learning rates during training to find different
local minimums. In addition, model calibration methods, e.g.,
Temperature Scaling [16], are also used to estimate prediction
uncertainty.

Although uncertainty quantification has been quite popular
in many deep learning domains, such as Computer Vision [22],
Medical Imaging [1] and Reinforcement Learning [14], it is less
explored in traffic prediction. Wu et al. [50] analyzed different
Bayesian and frequentist uncertainty quantification approaches
for spatio-temporal forecasting. They figured that Bayesian
methods were more robust in point prediction, whilst frequentist
methods provided better coverage over ground truth variations.
Other works also focus on deep learning-based spatio-temporal
uncertainty quantification, e.g., [45], [46], [58], [60], [60].

In this paper, we specifically study the uncertainty quan-
tification problem for spatio-temporal traffic prediction. The

Fig. 1. Spatio-temporal dependency modelling for traffic data, where grey
lines and green dash lines represent spatial and temporal dependency, respec-
tively.

proposed approach is based on the spatio-temporal architec-
ture [5] and combines Monte Carlo dropout, Adaptive Weight
Averaging re-training, and model calibration to provide both
point prediction and uncertainty estimation advancing the state
of the art.

III. PROBLEM STATEMENT

In this section, we will describe the task of traffic forecasting
and its corresponding uncertainty quantification problem.

A. Traffic Forecasting

Traffic flow data can be regarded as multivariate time series.
Let xt ∈ RN be the values of all the sensors in a road network
at time t and X<t = {xt−Th+1, xt−Th+2, . . . , xt} ∈ RN×Th be
the corresponding historic input sequence with Th steps. Sim-
ilarly, X̂>t = {xt+1, xt+2, . . . , xt+τ} ∈ RN×τ represents the
prediction sequence, where τ denotes the prediction horizon.

Fig. 1 describes a spatio-temporal correlation modelling prob-
lem in traffic forecasting.

Instead of treating the forecasting as deterministic, we aim to
compute a conditional distribution to predict the traffic flow as
well as the prediction uncertainty X̂>t ∼ P (X̂>t|X<t), which
can improve the accuracy of the prediction, enhance the general-
ization ability of the model, and provide uncertainty estimation
as well.

We consider the uncertainty assumptions on the traffic data
from two aspects. The first one is the Gaussianity assumption,
and the other is the distribution-free assumption.

B. Uncertainty Quantification for Traffic Forecasting

The assumptions for the predictive likelihoods in traffic fore-
casting can be either Gaussian or distribution-free, and we will
study both in this work.

1) Gaussian Uncertainty Assumption: Although multi-
modality and seasonality do exist in traffic data [17], for simplic-
ity, we do not consider multi-modality or seasonality, and con-
sequently treat the predictive distribution of each node at each
time point as a conditional univariate Gaussian distribution. A
similar assumption can also be found in a previous study [59]. To
this end, P (X̂>t|X<t) can be represented by a set of predictive
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mean-variance pairs, and the problem can be given as follows:

θ = argmax
θ

N∑
i=1

logN (X̂i
>t; μ̂θ(X

i
<t), σ̂θ(X

i
<t)

2), (1)

where θ is the model parameters, N is the number of total
training data points, N denotes the Gaussian likelihood, and
μ̂(X<t) and σ̂(X<t)

2 represents the estimated mean and vari-
ance, respectively.

2) Distribution-Free Uncertainty Assumption: From a
distribution-free perspective, the uncertainty quantification task
aims to obtain prediction interval Cθ(X

i
<t) = [ŷLi

, ŷUi
], such

that a future ground truth datapoint X̂i
>t falls into Cθ(X

i
<t)

with a sufficiently high probability, where ŷLi
and ŷUi

denote
the upper and the lower bounds of the predicted interval,
respectively. Let α be the significance level, and then the first
optimization goal is to ensure

P
(
X̂i

>t ∈ Cθ(X
i
<t)
)
≥ 1− α, (2)

where P (X̂i
>t ∈ Cθ(X

i
<t)) can be any continuous probability

distribution. Hence, the Gaussianity assumption aforementioned
is relaxed.

Apart from satisfying (2), the width of the prediction interval
should be as small as possible as well. Let q be the uncertainty
scalar correspondent to α. The new prediction intervals can
be rendered via using the means and variances of the learned
Gaussian likelihoods. Subsequently, the upper and the lower
bounds of the new constructed prediction interval are ŷUi

=
μ̂i(xi) + qσ̂i(xi), and ŷLi

= μ̂i(xi)− qσ̂(xi), respectively. Ac-
cordingly, the second optimization goal is shown in the following
equation.

θ = argmin
θ

N∑
i=1

2qσ̂θ(X
i
<t), (3)

where σ̂θ is the estimated stand deviation under the model
parameters θ. Note that the distribution-free uncertainty quantifi-
cation paradigm can be compatible with the Gaussianity based
uncertainty quantification paradigm as it can provide adaptive
un-calibrated predictive intervals, i.e., stand deviations.

IV. DEEP SPATIO-TEMPORAL UNCERTAINTY QUANTIFICATION

We first briefly give an overview of the proposed Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ). The
DeepSTUQ model architecture is illustrated in Fig. 2, which
follows the principle of the previous study [5]. Specifically, the
architecture includes an encoder and a decoder sub-neural net-
work. The encoder is composed of a GCN and a GRU module to
capture both the spatial and temporal dependencies, respectively.
To estimate the aleatoric uncertainty, the decoder employs two
independent convolutional layers computing means and vari-
ances, respectively. Moreover, dropout operations are deployed
in both sub-networks to estimate the epistemic uncertainty.

In terms of model training, conventional training procedures
are only capable of providing uni-modal solutions, which lacks

Fig. 2. Architecture of DeepSTUQ.

TABLE I
MAIN VARIABLES AND THEIR DEFINITIONS IN THIS PAPER

diversity for quantifying uncertainty [14]. Moreover, the con-
ventional calibration methods cannot guarantee horizon-wise
prediction coverage.

To address the above issues, a four-stage uncertainty quantifi-
cation approach is proposed, which can be briefed as follows.
� Stage 1: Pre-train the base spatial-temporal model with

dropout on the training dataset to perform variational learn-
ing;

� Stage 2: Re-train the pre-trained model on the training
dataset to proceed ensemble learning;

� Stage 3: Calibrate the re-trained model on the calibration
dataset to further improve the aleatoric variance estimation;

� Stage 4: Update the calibration dataset and inference.
The major nations in this paper are listed in Table I. In the

following sections, we will introduce DeepSTUQ in detail.

A. Spatio-Temporal Dependency

1) Graph Convolution: A typical road network consists of
a number of road segments. The spatial relationships within a
road network with NR road segments can be described through
a graph G(V, E), where the nodes V = {v1, v2, v3, . . . , v|V|}
denote the sensors and the edges E denotes the road segment.
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A ∈ R|V|×|V| is the corresponding adjacency matrix. Subse-
quently, GCN [25] is utilized to model the spatial relationships
of the traffic data. The output of the l-th GCN layer, Z(l+1), can
be computed by

Z(l+1) = f(Z(l), A), (4)

where Z(l) is the input. More specifically, the GCN first uses a
degree matrix D to avoid changing the scale of feature vectors
by multiplying it withA. Afterwards, an identity matrix I is used
to sum up the neighboring nodes of a node as well as the node
itself. As a result, the propagation rule of the GCN is described
as follows:

Z(l+1) = S
(
(I +D−

1
2AD−

1
2 )Z(l)W (l) + b(l)

)
, (5)

where W (l) is the weight matrix, b(l) is the bias, and S is an
activation function, e.g., a sigmoid function.

2) Graph Structure Learning: In many real-world cases, we
do not have the real spatial correlation knowledge of the mul-
tivariate traffic data. In such cases, the graph structure needs
to be learned from data. To this end, the adaptive learning
approach proposed in the study [5] is adopted to directly generate
Â = D−

1
2AD−

1
2 , which is easier than generating the adjacency

matrix during the training process. Particularly, Â is developed
by

Â = softmax
(
ReLU(EET )

)
, (6)

where E ∈ R|V|×d (the embedding dimension d� |V|) is a
learnable matrix representing the embedding of the nodes, and
the softmax function is to normalize the learned matrix. To
facilitate the graph learning process, a Node Adaptive Parameter
Learning (NAPL) module [5] is also utilized to reduce the
computational cost. As a result, (5) becomes

Z(l+1) = S
(
(I + Â)Z(l)EW (l)

g + Eb(l)g

)
. (7)

Moreover, by using NAPL, the model is capable of learning
the time-dependent graph structure of the traffic signals.

3) Temporal Dependency: Apart from the spatial depen-
dency, the temporal dependency of traffic data also needs to be
captured. To this end, the aforementioned graph convolutional
operations and the adaptive graph learning module are integrated
into a Gated Recurrent Unit (GRU) [7]. Subsequently, the ob-
tained spatio-temporal model can be formulated as follows:

zt = S
(
(I + Â)[xt, ht−1]EWz + Ebz

)
, (8a)

rt = S
(
(I + Â)[xt, ht−1]EWr + Ebr

)
, (8b)

ct = tanh
(
(I + Â)[xt, rt � ht−1]EWc + Ebc

)
, (8c)

ht = zt � ht−1 + (1− zt)� ct, (8d)

where z stands for the update gate, r stands for the reset gate, h
denotes the hidden state, [·] denotes the concatenation operation,
c denotes the memory cell, and W and b represent the weights
and bias, respectively.

Finally, the model introduced in (8) serves as the spatio-
temporal architecture in DeepSTUQ. Note that though the above

base model is employed in this work, DeepSTUQ has the
potential to be applied to other spatial-temporal structures as
well. In the following sections, we explain how to leverage this
base model to forecast traffic and quantify the corresponding
forecasting uncertainty.

B. Uncertainty Quantification

Generally, uncertainty can be classified into two types, i.e.,
epistemic and aleatoric. The former represents model uncer-
tainty, while the latter represents data uncertainty. If variance is
used to render uncertainty, the total uncertainty can be decom-
posed and approximated as follows:

σ2
Total ≈ Eθ∼p(θ)[σ2

θ ]︸ ︷︷ ︸
Aleatoric uncertainty

+ Vθ∼p(θ)[μθ]︸ ︷︷ ︸
Epistemic uncertainty

, (9)

where p(θ) stands for a probability distribution over the model
parameters θ, and σ2

θ and μθ refer to the predicted variance and
mean, respectively.

1) Aleatoric Uncertainty: Aleatoric uncertainty is caused
by the intrinsic randomness of data, which is irreducible but
learnable [1]. Based on (9), we assume that the lower and upper
bounds of the forecasting are symmetric due to the regressive
nature of the prediction. Subsequently, the distribution of a
sensor’s value, e.g., traffic flow, at each time point can be mod-
eled by a Gaussian distribution with predicted mean μ(x) and
variance σ(x)2. However, directly maximizing the predictive
Gaussian likelihood is numerically unstable. Instead, we choose
to maximize the following log-likelihood:

log p(y|μ(x), σ(x))

= −1

2
log(σ(x)2)− 1

2
log(2π)− (y − μ(x))2

2σ(x)2
, (10)

where log(σ(x)2) and μ(x) are obtained directly via two inde-
pendent neural networks.

In practice, to accelerate the training process and ensure
convergence, we devise the following weighted loss by adding
an L1 loss as the regularization term based on (10):

LAleatoric =
1

N

N∑
i=1

λ

{
log(σ(xi)

2) +
(yi − μ(xi))

2

σ(xi)2

}

+ (1− λ)|yi − μ(xi)|, (11)

where λ is the relative weight with 0 < λ ≤ 1.
2) Epistemic Uncertainty: Epistemic uncertainty represents

model uncertainty, which arises from that lack of data or model
mis-specification. Fortunately, as opposed to aleatoric uncer-
tainty, epistemic uncertainty can be reduced by estimation. There
are two general classes of approaches to do so: Bayesian varia-
tional inference and deep ensembling. However, they both have
their pros and cons. Fig. 3 illustrates the relationships between
different solutions and corresponding model performance. The
solid and dashed lines represent the model performance during
training and testing processes, respectively. The green line and
blue dots represent the performance that can be obtained by
variational inference and deterministic model, respectively. As
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Fig. 3. Performance demonstration of deterministic model, deep ensembles,
and variational inference in solution space.

it can be seen from the figure, deep ensembling can find a set
of different deterministic model parameters (local minimums),
e.g., W1, W2, and W3, which may have equally good perfor-
mance in the solution space [10]. On the other hand, variational
inference can find a set of sub-optimal solutions near one local
minimum in the loss space. However, it may fail to find other
local minimums, which potentially leads to modal collapse.
Therefore, a better way is to explore as many as local minimums
as well as their corresponding nearby solutions. To this end, we
propose to combine deep ensembling and variational inference
to estimate epistemic uncertainty.

Variational Inference: Let D = {X,Y } be the training
dataset. From a Bayesian perspective, we assume that each
weight parameter of the neural network w obeys a probabilis-
tic distribution to represent model uncertainty, e.g., Gaussian
distribution. However, in practice, the true posterior of the the
neural network weights p(w|D) is intractable. Therefore, a
variational distribution q(w) is used to approximate p(w|D).
Accordingly, the optimization goal is to minimize the following
Kullback-Leibler (KL) divergence:

DKL(q(w)||p(w|D))

=

∫
q(w) log

q(w)

p(w)p(D|w)dw,

= DKL(q(w)||p(w))− Ew∼q(w)[log p(D|w)], (12)

where p(w) is the prior and log p(D|w) is the predictive log-
likelihood.

To solve (12), MC dropout [12] is adopted as it performs
Bayesian approximation in a simple and flexible manner. The
variational distribution q(w) formulated in MC dropout can be
described as follows. Let Wi be a matrix of shape Kj ×Kj−1
for layer i, we have

q(Wi) = Mi · (diag[zi,j ]Ki
j=1), (13a)

zi,j ∼ Bernoulli(pi) (13b)

where Wi denotes the masked weight matrices, pi is the dropout
rate used in both training and testing processes (as opposed to
standard dropout), Mi is the parameters of the neural network in

the i-th layer, and zi,j is a binary variable indicating whether unit
j at layer i− 1 (as the input of layer i) is dropped. As a result,
minimizing (12) is equivalent to minimizing the following loss
function:

LDropout = Ew∼q(w)E[Y, fW (X)] +DKL(q(w)||p(w)),

≈ 1

N

N∑
i=1

E(yi, f(xi, wi)) +
λW

2pi
||wi||2, (14)

where E is the loss function, e.g., Root Mean Squared Error
(RMSE) or Mean Absolute Error (MAE), λW is the weight
decay, and λW

2p ||w||2 can be computed through applying the L2
regularization during the training process.

In terms of implementation, dropout operations are deployed
at two places within the spatial-temporal model: the graph con-
volutional layers in the encoder and the dropout convolutional
layers in the decoder. Therefore, (7) becomes

Z(l+1) = sigmoid
(
M �

(
(I + Â)Z(l)EW (l)

g + Eb(l)g

))
.

(15)
Note that the dropout rate here should be small when the adja-
cency matrix dimension is small, and vice versa.

Combined Uncertainty: Finally, (11) and (14) are combined
to estimate both aleatoric and epistemic uncertainty jointly. The
combined loss function is formulated by

LCombined =
1

N

N∑
i=1

λ

{
log(σ(xi)

2) +
(yi − μ(xi))

2

σ(xi)2

}

+ (1− λ)|yi − μ(xi)|+ λW

2p
||w||2. (16)

Equation (16) is utilized to pre-train the spatio-temporal model
in DeepSTUQ.

Deep Ensembling: In contrast to variational inference, deep
ensembling aims to find a set of different local minimums
and averages the output of each trained model as the final
prediction. Deep ensembling is shown to be quite effective in
practice, yet it is computationally expensive as multiple models
are trained [27]. FGE [13] tackles this issue by using cycling
learning rate to produce a set of different trained models in one
learning process. However, FGE still needs to store multiple
models for inference, which may result in high memory cost.
To address this issue, SWA [19] adjusts the learning rate and
averages the weights during the learning process to generate
only one trained model to approximate FGE. In SWA, the model
parameters are updated by

wSWA =
wSWA · nmodels + w

nmodels + 1
, (17)

where wSWA is the parameters of the SWA model and nmodels is
the number of averaged models during training.

Inspired by SWA, we devise a re-training method called Adap-
tive Weight Averaging (AWA) to approximate deep ensembling.
As depicted in Fig. 4, we vary the learning rate during the
re-training process to find different local minimums and average
those local minimums in the final stage to attain better solutions.
The proposed AWA re-training approach includes two steps. Let
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Fig. 4. Demonstration of relationship between test MAEs and model weights
during AWA re-training.

Fig. 5. Learning rate change during the AWA re-training, each black dot
indicates the start of a new epoch.

the re-training learning rate be lr, the maximum learning rate
be lr1, the minimum learning rate be lr2, and niteration be the
total iteration number within each epoch/total batch number,
then the learning rate at the ni-th iteration changes according
to the following rules. The first step is to enable the trained
model to escape from the current local minimum. To this end,
the learning rate of the optimizer decreases from lr1 to lr2 via
a cosine learning rate scheduler at epoch n. The scheduler is
described by

lr = lr2 +
1

2
(lr1 − lr2)

(
1 + cos

(
niteration

ni
π

))
. (18)

Following that, the model is fine tuned by using the constant
learning rate lr2 at epoch n+ 1, then at the end of the epoch
the model parameters are averaged according to (17) and per-
form batch normalization. Specifically, we find that in practice
using Adam [24] as the optimizer works more effectively than
using Stochastic Gradient Decent (SGD) which is adopted in
the original SWA method. In terms of finding different local
minimums, Adam escapes saddles points where the gradients
are close to 0 more efficiently than SGD, but these minimums
found are sharp ones [53]. Therefore we average those sharp
minimums to obtain the flat minimum to finally achieve better
generalization [23]. The learning rate change during the AWA

Algorithm 1: AWA Re-Training Method.
Require: training dataset {X}; pre-trained model

parameters w; AWA model parameters wAWA; learning
rates lr1 and lr2; total epoch epochAWA; total
iteration/batch number niteration.

1: while epoch < epochAWA:
2: while n < niteration:
3: compute the loss function according to (16)

and update w;
4: if epoch mod 2 = 0:
5: lr decreases from lr1 to lr2 according to

(18);
6: else: lr = lr2;
7: end while
8: if epoch mod 2 = 0 and epoch 	= 0:
9: update wAWA according to (17);

10: perform batch normalization.
11: end while
12: Return wAWA

re-training is illustrated in Fig. 5. The whole re-training process
is summarized in Algorithm 1.

For testing, we quantify the epistemic uncertainty by drawing
multiple Monte Carlo samples from the learnt posterior distri-
bution, then use the means and variances of the samples as the
predictive mean and variances, respectively.

3) Model Calibration: To prevent the uncertainty estimation
of the trained models being overconfident with respect to the
training dataset, it is necessary to calibrate the trained model on
the held-out validation/calibration dataset via post-processing.

To do so, we propose two calibration methods. One is based
on the Gaussian likelihood assumption, and the other is based
on the distribution-free assumption. See Section III.

Temperature Scaling Calibration: If the Gaussian likelihood
assumption is still assumed to be held, a positive learnable
variable T is imposed on the learned variance. Subsequently,
the following log-likelihood similar to (10) is maximized:

log p(y|μ(x), σ(x)/T )

= log

(
T

σ(x)
√
2π

e−
1

2

((
T (y − μ(x))

σ(x)

)2
)

= log

(
T

σ(x)
√
2π

)
+ log

(
e−

1
2 (

T (y−μ(x))
σ(x)

)2
)

= −1

2
log

(
σ(x)2

T 2

)
− 1

2
log(2π)− T 2 (y − μ(x))2

σ(x)2

=
1

2
log(T 2)− 1

2
log
(
σ(x)2

)− T 2(y − μ(x))2

2σ(x)2
− 1

2
log(2π),

(19)

where T is the only learnable parameter. Accordingly, the cali-
bration objective is

T = argmin
T

1

NCali

N∑
i=1

− log(T 2) +
T 2(yi − μ(xi))

2

σ(xi)2
, (20)
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where μ(xi) and σ(xi)
2 can be obtained via one determinis-

tic forward pass or Monte Carlo estimation. Limited-memory
Broyden Fletcher Goldfarb Shanno algorithm (L-BFGS) is used
as the optimizer to find the optimal value of T .

Multi-Horizon Conformal Calibration: Time series forecast-
ing, e.g., traffic forecasting, may not rigorously comply with
conditional Gaussian assumption on the predictive likelihood.
Hence, it is necessary to relax the Gaussianity assumption to
quantify the uncertainty in a distribution-free fashion. Further-
more, it can be found that for multi-horizon forecasting, the
predicted intervals obtained at farther horizons may undercover
the future ground truth datapoints. This makes the uncertainty
quantification performance less reliable. Therefore, to address
the above two issues, we propose the Multi-horizon Conformal
Calibration (MHCC) approach via a split conformal inference
fashion [28] to calibrate the trained model.

As a conformal inference method, MHCC calibrates the
trained model by computing the quantiles without proceeding
any optimization procedure, which makes it fast-computing. To
obtain the quantile, we first need to compute the nonconformity
scores to rank the prediction residuals. We do not use the absolute
prediction error, i.e., |x̂i − xi|, to compute the nonconformity
scores as it is not adaptive. Instead, we leverage the predicted
means and variances obtained by the Gaussian predictive likeli-
hoods to compute nonconformity scores. The advantage of doing
so is that we do not need to train an auxiliary model to calculate
the prediction residuals. MHCC does not adopt the Bonferroni
correction [41] to obtain corrected significance level αc as its
assumption is too conservative (αc ≤ α/τ ), which results in
overlarge predictive intervals.

Instead, a novel significance level correction method is pro-
posed in MHCC, which can be described as follows. We first
assume that the Gaussianity assumption holds for each horizon
h (h ∈ {1, 2, . . . τ}), i.e., if α is set to 0.05, then q = 1.96. As a
result, the empirical horizon-wise prediction interval coverage
rate on the calibration dataset pc on horizon h can be computed
by

phc =
1

NCali

N∑
i=1

khi , (21)

whereNCali is the number of datapoints of the calibration dataset.
Next, khi = 1 if X̂h

i ∈ C(Xh
i ); otherwise, khi = 0.

Then, the empirical significance level for each horizon is
1− phc . Afterwards, to reach the ideal significance level, 1− phc
needs to be corrected to α. To this end, the corrected horizon-
wise significance level αc on horizon h can be attained by the
following empirical equation.

αh
c = (phc + 2α− 1) + γ(p1c − pHc )(h− 1)2, (22)

where γ is a positive scalar. The first term, phc + 2α− 1, is to
compute the corrected significance level according to the empir-
ical PICP. The second term, γ(p1c − pHc )(h− 1)2, represents the
time-decay, where p1c − pHc and (h− 1)2 are the data-dependent
and horizon-dependent decay scalars, respectively.

Afterwards, the new horizon-wise uncertainty scalar qh can
be obtained using conformal inference. Therefore, for the h-th

Algorithm 2: MHCC Method.
Require: calibration dataset Xc; trained model fw;

significance level: α = 0.05; uncertainty scalar q = 1.96;
number of calibration datapoints: NCali; horizon: h = 0;
number of prediction horizons: τ .

1: initialize μ̂c = {}, σ̂c = {}, and nonconformity scores
sc = {}, and calibrated horizon-wise significance
level qh = {};

2: while inference:
3: μ̂i, σ̂i ← fw(x

i
c);

4: μ̂c ← μ̂c ∪ μ̂i, σ̂c ← σ̂c ∪ σ̂i;
5: end while
6: while h < τ :
7: compute phc based on μ̂h, σ̂h, and ground truth xi

>t;
8: compute αh

c using (22);
9: while i < NCali:

10: shc ← shc ∪ |μ̂
h
i −yh

i |
σ̂h
i

;

11: qhc ← [(NCali + 1)(1 + αh
c )]-th smallest

residual in shc compute new horizon-wise
uncertainty scalar.

12: h = h+ 1.
13: end while
14: qc = qc ∪ qhc
15: end while
16: Return qc

Fig. 6. Visualization of data splitting in Online MHCC.

horizon, the new upper and lower bounds become ŷUh
i
= μ̂h

i +

qhσ̂
h
i and ŷLh

i
= μ̂h

i − qhσ̂
h
i , respectively. The MHCC approach

is summarized in Algorithm 2.
Furthermore, conformal inference relies on i.i.d. assumption

which may become weaker as time pass for time series data. To
address this issue, we propose the Online MHCC by updating
the calibration in an online fashion, which is illustrated in Fig. 6.
Finally, the Online MHCC approach is summarized in Algorithm
3.

C. Unified Approach

Finally, combining the spatio-temporal correlation modelling
method, Monte Carlo dropout, AWA re-training, and model
calibration, the pipeline of the proposed unified uncertainty
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Fig. 7. Pipeline of the proposed method.

Algorithm 3: Online MHCC Method.
Require: testing dataset XTest; calibration dataset XCali;

trained model fw; significance level: α = 0.05; initial
uncertainty scalar qc; step: i = 0; calibration dataset
update size: NUpdate.

1: initialize temporary calibration dataset XTemp = {};
2: while testing:
3: inference using fw, Xi, and qc;
4: i = i+ 1;
5: XTemp ← XTemp ∪Xi;
6: if i mod NUpdate = 0;
7: update XCali with XTemp;
8: calculate empirical PICP on XCali;
9: re-correct qc with XCali using (22);

10: reset XTemp = {}.
11: end while

quantification method is shown in Fig. 7, which can be sum-
marized as follows.
� First, the spatio-temporal model introduced in Sec-

tions IV-A and IV-A3 is pre-trained using (16) as the
training loss function on the training dataset to estimate
the aleatoric and epistemic uncertainty.

� Afterwards, the pre-trained model is re-trained via the
AWA method on the training dataset to approximate deep
ensembling.

� Finally, the predicted σ2 obtained via the re-trained model
on the validation dataset is calibrated according to (20).

The graphical probabilistic model representation of Deep-
STUQ is visualized in Fig. 8. The figure shows that ht is
extracted fromxt via a spatio-temporal structure with a learnable
variable Â. The model weights are drawn repeatedly to estimate
the epistemic uncertainty, which is implemented in an efficient
manner by using MC dropout and AWA. The variance σ(xi)

2

and meanμ(xi) are obtained viaNMC Monte Carlo samples. Fi-
nally, σ(xi)

2 is calibrated through learning an auxiliary variable
q.

For testing, according to (9), we draw NMC Monte Carlo
samples to estimate the predictive mean μ̂t+1 and variance σ̂2

t+1

by

μ̂t+1 =
1

NMC

NMC∑
j=1

μj(xt), (23a)

σ̂2
t+1 = q2

NMC∑
j=1

σj(xt)
2

NMC
+

NMC∑
j=1

(
μj(xt)− μ̂t+1

)2
NMC − 1

, (23b)

Fig. 8. Graphical model representation of DeepSTUQ, where shaded circles
represent observable variables, arrows denote dependencies, variables within
rectangles appear repeatedly, NMC is the number of Monte Carlo samples, and
M is the number of models for ensembling.

where μ̂t+1 is used as the point prediction of the proposed
approach, and q2 = 1

T when using the TS calibration method.

D. Theoretical Analysis: A PAC-Bayesian Perspective

We adopt the Probabilistic Approximate Correct (PAC)-Bayes
theory [3], [32] to explain the proposed method. To this end,
we first assume that the datapoints in the training, calibration,
and testing datasets are all i.i.d. Once the model architecture
is specified, we have the hypothesis/parameter space H. Con-
sequently, the learning goal is to obtain a hypothesis h ∼ H.
Let D be some unknown data distribution over X × Y and
L : X × Y ×H → R be the loss function. Then true risk is
defined as follow:

R(h) = E(x,y)∼D [L ((x, y), h)] . (24)

Pre-Training: In practice, R(h) cannot be computed as we
do not know the distribution of D. Instead, we have the training
dataset DTrain ∼ D. Therefore, R(h) is estimated by computing
the following empirical risk:

r(h) =
1

NTrain

∑
(x,y)∼DTrain

[L ((x, y), h)] . (25)

Since our problem is a regression task with a Gaussian likeli-
hood loss function, the parameter spaceH has to be restricted to
only consider variances higher than a given constant [15]. Then
we have the following theorem.

Theorem 1: For all probability measure Q supported on H,
with at least probability of 1− δ, the following PAC-Bayes
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bound holds [15]:

R(h) ≤ r(h) +
1

NTrain
(DKL(Q||P ) + log(1/δ)) + const,

(26)
where NTrain is the number of training datapoints. The above
PAC-Bayes bound is minimized as theDKL(Q||P ) is minimized.
Hence, we do not minimize the PAC-Bayes bound such that the
KL divergence does not need to be computed explicitly. Instead,
we minimize the evidence lower bound (ELBO) as in (12) using
Mote Carlo dropout.

Re-Training. Furthermore, note that unlike Bayesian learn-
ing, PAC-Bayes does not need to know the exact form of the
prior. Thus, we can formulate a delicate posterior by combining
variational inference and deep ensembling to obtain better gen-
eralization through training. To this end, a mixture of Dirac-delta
distributions is constructed:

q(h|DTrain) =
1

NM

NM∑
i=1

δ(h|DTrain), (27)

where q(h|DTrain) is the mixed Dirac delta posterior distribution
over the model parameters. The PAC-Bayes bound (see (26))
holds for all q ∼ Q(H) in a set of Dirac masses {δ ∼ h ∈ H}.
In the proposed method, AWA is used to generate a mixture
of Dirac-delta distributions sequentially in a computationally
efficient manner. By approximating Bayesian model averaging
via AWA, we can attain wider minima, which consequently leads
to better generalization [19], [23].

Offline Calibration: The proposed calibration method is in a
split conformal fashion. Once the training process is finished,
a fixed hypothesis h is rendered. Let DCali ∼ D be a held-out
calibration dataset, and h is independent ofDCali. Then, we have
the theorem as follows.

Theorem 2: With at least probability of 1− δ, the following
PAC bound holds [18]:

R(h) ≤ rDCali(h) +

√
1

2NCali
log(2/δ), (28)

where NCali is the number of calibration samples. The above
bound suggests that the true risk can be approximated by val-
idation using sufficient number of datapoints. We can see that
the proposed calibration method based on conformal inference
is essentially attained via this validation PAC bound.

Online Re-Calibration: For time series data, the i.i.d. assump-
tion may become weaker as time passes, which is detrimental
to conformal methods. Therefore, the i.i.d. assumption can be
re-enforced by updating the calibration dataset such that the
validation PAC bound (cf. (28)) will continue to hold during
inference.

V. EXPERIMENTS

To compare the performance of DeepSTUQ with other state-
of-the-arts, extensive experiments are conducted on real-world
datasets in terms of point prediction, uncertainty quantification,
and ablation study.

In terms of the hardware environment, the CPU and GPU
used for the experiments are AMD EPYC 7302 and NVIDIA
Tesla T4, respectively. And for the software environment, all the
methods are implemented via Python, CUDA 10.6, and Pytorch
1.7.

A. Datasets

Four different public datasets collected from the Caltrans
Performance Measurement System (PEMS), i.e., PEMS03,
PEMS04, PEMS07, and PEMS08 [39] are used for evaluation.
We believe this type of data can be used to access the perfor-
mance our approach on real-world traffic flow forecasting tasks
and for fair comparison with other state-of-the-art methods.

The time interval of the traffic flow data is 5 minutes. For
each prediction, we use the historic data of one-hour time range
(12 time steps) as the input to predict the future traffic data of
one-hour time range (12 time steps). All the datasets are split into
three parts with ratio 6 : 2 : 2 for training, validation/calibration,
and testing, respectively.

B. Settings

Pre-Training: The total number of training epochs is 100. The
optimizer is Adam with learning rate 0.003 and weight decay
10−6. The batch size is 64. The relative weight λ in (11) for
computing the aleatoric uncertainty is 0.1. The dropout rates of
the graph convolutional operations in the encoder are 0.1 for
PEMS03, PEMS04, and PEMS07 (the adjacency matrice are
relatively large), and 0.05 for PEMS08 (the adjacency matrix is
relatively small). The dropout rate at the final dropout layer in
the decoder for all the datasets is 0.2.

AWA Re-Training: The optimizer of the AWA re-training
process is Adam, and the maximum and minimum learning
rates are 0.003 and 0.00003, respectively. The total number
of re-training epochs is 20, which means that ten models are
averaged.

Model Calibration: The number of Monte Carlo samples for
calculating σ2 is 10. In TS, the steps and numbers of iterations
of the L-BFGS optimizer are 0.02 and 500, respectively. In
offline and online MHCC, γ is set to 0 for PEMS03 and 0.03 for
PEMS04, PEMS07, and PEMS08. The number of datapoints for
online updating is 1,000.

Inference: To balance the inference time and model perfor-
mance, we generate ten Monte Carlo samples for Bayesian
model averaging.

C. Baselines

To compare the proposed DeepSTUQ with the state-of-that-
art methods on point prediction and uncertainty quantification,
two groups of recent traffic prediction methods are adopted as
the baselines, respectively.

1) Point Prediction Baselines:
� DCRNN [30] adopts diffusion convolution and sequence-

to-sequence learning.
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� GraphWaveNet (GWN) [52] adopts a self-adaptive adja-
cency matrix and dilated casual convolution.

� ST-GCN [54] utilizes a GNN and a GCNN to forecast
traffic.

� ASTGCN [17] employs Attention mechanism to model
spatio-temporal dependency.

� STSGCN [39] forecasts traffic by synchronously extracting
spatial-temporal correlations.

� STFGNN [29] employs a spatial-temporal fusion module
and a gated dilated CNN.

� AGCRN [5] leverages a Node Adaptive Parameter Learning
module and a Data Adaptive Graph Generation module to
enhance traffic prediction performance.

� DeepSTUQ/S refers to the proposed method with sin-
gle deterministic forward pass (dropout is turned off in
testing).

2) Uncertainty Quantification Baselines: Representative ap-
proaches of different uncertainty estimation paradigms (namely,
frequentist, quantile prediction, Bayesian, and ensembling) are
used as the baselines. Note that all the following methods employ
the same base model structure for fair comparison.
� Point prediction refers to the AGCRN model which is

used here to compare with other uncertainty quantification
methods.

� Quantile regression [26] is a distribution-free method
which directly computes the mean, lower and upper bounds
using the corresponding quantile (0.025, 0.5, 0.975).

� Mean Variance Estimation (MVE) [35] refers to the method
that estimates heterogeneous aleatoric uncertainty through
computing (11).

� Monte Carlo dropout (MCDO) [12] performs dropout at
both training and test time, where the number of Monte
Carlo samples for inference is 10.

� Combined refers to the method that calculates both epis-
temic and aleatoric uncertainty using (16) [22], where the
number of Monte Carlo samples for inference is 10.

� Temperature Scaling (TS) [16] calibrates the aleatoric un-
certainty obtained by MVE.

� Fast Geometric Ensembling (FGE) [13] performs fast en-
sembling via varying the learning rate, where the number
of the stored trained models is 10.

� Locally Weighted Conformal Inference [4], [28] calibrates
the aleatoric uncertainty obtained by MVE via conformal-
ization.

� Conformal Forecasting Recurrent Neual Network
(CFRNN) [41] computes the multi-horizon uncertainty
using conformal prediction.

D. Metrics

Two groups of metrics are employed to evaluate the point
prediction and uncertainty quantification performance, respec-
tively.

1) Point Prediction Metrics: The point traffic forecasting
performance are evaluated by the following metrics.

1) Root Mean Squared Error (RMSE):

RMSE =

√
1

N

∑N

i=1
(ŷi − yi)2, (29)

where yi is the ground truth, and ŷi is the prediction.
2) Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|ŷi − yi| . (30)

3) Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ . (31)

2) Uncertainty Quantification Metrics: The uncertainty
quantification performance are evaluated by the following met-
rics.

1) Mean Negative Log-Likelihood (MNLL):

MNLL =
1

N

N∑
i=1

− logN (yi; μ̂i, σ̂
2
i ), (32)

where μ̂i and σ̂2
i are the predicted mean and predicted

variance, respectively.
2) Prediction Interval Coverage Probability (PICP). The pre-

dicted lower and upper bounds of the prediction interval
are denoted by ŷL and ŷU , respectively. Let the signifi-
cance level α be 5%, which means that the expected prob-
ability of a ground truth data point falling into the range
[ŷL, ŷU ] is 95% (100%− α = 95%). Accordingly, under
Gaussianity assumption, we have ŷUi

= μ̂i + 1.96σ̂i, and
ŷLi

= μ̂i − 1.96σ̂i. Let kji indicate whether the real speed
value of a road segment j at time i is captured by the
estimated prediction interval, and we have

ki =

{
1, if ŷLi

≤ yi ≤ ŷUi

0, else.
(33)

Then PICP can be formulated by

PICP =
1

N

N∑
i=1

ki. (34)

Ideally, PICP should be equal or greater than 95%.
3) Mean Prediction Interval Width (MPIW):

MPIW =
1

N

N∑
i=1

ŷUi
− ŷLi

. (35)

E. Point Prediction Results

The point prediction results of DeepSTUQ are compared with
the aforementioned state-of-the-art methods for performance
evaluation. The obtained point prediction results are demon-
strated in Table II. As it can be seen from the results, with
only ten Monte Carlo samples, DeepSTUQ achieves the smallest
RMSEs, MAEs, and MAPEs, which suggests that DeepSTUQ
has the best performance on point traffic flow prediction. In
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TABLE II
POINT PREDICTION RESULTS ON PEMS03, PEMS04, PEMS07, AND PEMS08

Fig. 9. Point prediction results with respect to various forecast horizons, where solid and dashed lines denote DeepSTUQ and AGCRN, respectively.

addition, the proposed method — even with only one single
deterministic forward pass, namely DeepSTUQ/S — also out-
performs other state-of-the-art methods, which indicates that the
proposed method is competitive on point prediction at nearly
the same inference time cost as other deterministic approaches.
This is because that variational inference can obtain a set of
solutions around on one local minimum, and deep ensembling
can find multiple local minimums in the solution space. By com-
bining these two approaches, DeepSTUQ is capable of finding
better sub-optimal solutions and has better generalization ability
compared to deterministic methods, and consequently has better
performance regarding point prediction. Fig. 9 shows the point
prediction performance with respect to different horizons, which
suggests that DeepSTUP has better performance than AGCRN
at each time step for all the datasets.

F. Uncertainty Quantification Results

To evaluate the uncertainty quantification performance, Deep-
STUQ is compared with the uncertainty quantification baselines,
whose results are demonstrated in Table III and Figs. 10, 11,
and 12. According to the results in the table, the proposed
approach has the best overall performance regarding both the
point prediction and uncertainty quantification results com-
pared with others. As it is observed from Fig. 10, DeepSTUQ
can forecast traffic flow accurately and provide valid coverage

for future ground truth. Fig. 11 illustrates that in traffic flow
forecasting, the aleatoric uncertainty is much larger than the
epistemic uncertainty. Hence, considering total uncertainty can
provide better uncertainty estimation than considering either
one alone. Fig. 12 shows that, for all the datasets, generally,
both aleatoric and epistemic uncertainty increase as the predic-
tion horizons extend, which implies that short-term traffic flow
forecasting is more reliable than long-term one. The conclu-
sion accords with the intuition and results in the literature [5],
[29], [30]

In terms of uncertainty quantification, the aleatoric
uncertainty-aware approaches, i.e., MVE and TS, outperform
the epistemic uncertainty-aware approaches, which suggests
that the traffic uncertainty is mainly data-related. The results
indicate that only considering epistemic uncertainty improves
the estimation of the predicted mean (which results in better
point estimation) but underestimates the variance significantly.
This conclusion is supported by the study [50] as well. Although
we have made a strong Gaussianity assumption on the likelihood
of the aleatoric uncertainty, the obtained experimental results
indicate that the methods using this assumption (i.e., MVE,
Combined, TS, and DeepSTUQ) outperform the distribution-
free method, Quantile. Additionally, the PICPs obtained by
DeepSTUQ on the four datasets are very close to or larger than
95%, which implies that the Gaussian distribution assumption
is credible.
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TABLE III
UNCERTAINTY QUANTIFICATION RESULTS ON PEMS03, PEMS04, PEMS07, AND PEMS08, THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 10. Uncertainty quantification results on randomly selected road segments from different datasets.
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Fig. 11. Quantification results of different uncertainties on partial data from
a randomly selected segment of PEMS08.

Fig. 12. Uncertainty quantification results with respect to different horizons.

According to the experimental results, we can also see that
when only the epistemic uncertainty is considered using varia-
tional inference (MCDO) or deep ensembling (FGE), the traffic
flow point prediction performance is improved compared to
deterministic methods but the uncertainty quantification perfor-
mance is poor. If merely the aleatoric uncertainty is taken into
account (MVE, TS, Conformal, and CFRNN), the uncertainty
quantification performance is satisfying while the point predic-
tion slightly decreases compared to deterministic methods. On
the other hand, if both the epistemic and aleatoric uncertain-
ties are estimated, e.g., Combined and DeepSTUQ, the point
prediction and uncertainty quantification performance are both
improved.

G. Model Calibration Results

We compare the proposed calibration approaches, MHCC
and online MHCC, to Split Conformal Prediction (SCP) [28],
Local Weighted Conformal Inference (LWCI) [28] and TS. The
results demonstrated in Table IV imply that online MHCC has
the best overall (marginal) uncertainty quantification calibration
performance.

In addition, we propose a new metric for evaluating the
horizon-wise (conditional) uncertainty quantification perfor-
mance, which is called Mean Horizon-wise Prediction Interval

Fig. 13. PICPs with respect to various forecast horizons, where solid and
dashed lines denote MHCC and the uncalibrated model, respectively.

Coverage Error (MHPICE). Let eh be the horizon-wise predic-
tion interval coverage error at horizon h, then MHPICE can be
expressed as follows:

eh =

{
0, if ph ≥ 1− α

1− α− ph, else.
(36)

Accordingly, MHPICE is defined as follows:

MHPICE =
1

τ

τ∑
h=1

eh. (37)

Naturally, lower MHPICE means better performance.
From the results demonstrated in Fig. 13 and Table V, it can be

seen that before MHCC, the test PICPs decrease as the horizon
increase, which makes the uncertainty quantification results less
reliable. After MHCC, the test PICPs at each horizon are closer
to the target significance level, 95%, than before. This implies
that MHCC can improve the credibility of the horizon-wise
uncertainty quantification results.

H. Robustness Test

We report the MAE, RMSE, MAPE, MNLL, PICP, and MPIW
results of the methods under Gaussian and non-Gaussian noises
on PEMS04 to evaluate their robustness. From the results illus-
trated in Table VI, it can be seen that the proposed method are
more resilient to noise in terms of point prediction performance.
Besides, the online MHCC method has the best uncertainty
quantification performance compared to other calibration meth-
ods.
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TABLE IV
MODEL CALIBRATION RESULTS ON PEMS03, PEMS04, PEMS07, AND PEMS08

TABLE V
MHPICE ON PEMS03, PEMS04, PEMS07, AND PEMS08

I. Ablation Study

Three groups of experiments are conducted to verify the
effects of the proposed AWA training, the proposed calibration
method, and different numbers of Monte Carlo samples, respec-
tively.

1) Effect of AWA Re-Training: The prediction performance
of the same pre-trained model prior to and following AWA
post-processing re-training are compared. Table VII demon-
strates that after AWA re-training, the point prediction perfor-
mance has improved, indicating that the proposed AWA re-
training method can approximate the deep ensembling method
using only one single model with mere 20 additional epochs.
The results suggest that the proposed AWA retraining method
can also improve the performances of other methods, i.e.,
Point, MVE, and MCDO. Therefore, compared to conven-
tional deep ensembling, DeepSTUQ requires less time and
memory.

2) Effect of Monte Carlo Sample Number: To investigate
how the number of Monte Carlo samples affects the model
performance, the sample number is set to 1, 3, 5, 10 and 15.
As shown in Fig. 14, the performance of the proposed method
enhances as the number of Monte Carlo samples rises, and only
a small number of Monte Carlo samples are required to pro-
vide high prediction performance. The performance gradually
saturates when the sample size approaches 15. Accordingly, for
the trade-off between the model performance and the inference
time cost, the testing sample number can be fixed to 10 at test
time.

Fig. 14. Prediction results with respect to different numbers of Monte Carlo
samples.

J. Memory Cost and Computation Time

The quantitative results of the memory cost and computation
time on PEMS08 are reported in Table VIII. From the results,
we can be see that DeepSTUQ has almost same model sizes and
training time with the Point prediction model, which is signifi-
cantly efficient than the standard Deep Ensembles. The inference
time and memory cost of DeepSTUQ are lightly larger than
standard Deep Ensembles, but the inference time per step is less
than 7.80 ms. Therefore, DeepSTUQ is scalable for large traffic
forecasting datasets and applicable for the potential practical
applications.
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TABLE VI
ROBUSTNESS TEST RESULTS WITH DIFFERENT PERTURBATIONS ON PEMS4

TABLE VII
ABLATION STUDY RESULTS ON AWA RE-TRAINING

TABLE VIII
MEMORY COST AND COMPUTATION TIME ON PEMS08 (CPU: AMD EPYC

7302, GPU: NVIDIA TESLA T4)

VI. CONCLUSION

In this paper, we introduce a novel and unified uncertainty
quantification method for traffic forecasting called DeepSTUQ.
The proposed method consists of three components. In the first
component, to model the aleatoric uncertainty, a hybrid loss
function is used to train a base spatio-temporal model. The
second component aims to model the epistemic uncertainty,
where the merits of variational inference and deep ensembling
are combined through the dropout pre-training and AWA re-
training. Finally, the model is calibrated on the validation dataset
using a post-processing calibration method based on Temper-
ature Scaling to further improve the uncertainty estimation
performance. Four distinct public datasets are then subjected to

thorough experiments. The results indicate that DeepSTUQ out-
performs contemporary state-of-the-art spatio-temporal models
and uncertainty quantification methods. Moreover, the proposed
DeepSTUQ can achieve high robustness against noise.

In terms of future work, we plan to explore other techniques to
design novel model architectures. Another possible direction is
to study data interpolation and imputation in traffic forecasting.

ACKNOWLEDGMENTS

The authors would like to thank James J.Q. Yu for his insight-
ful suggestions.

REFERENCES

[1] M. Abdar et al., “A review of uncertainty quantification in deep learn-
ing: Techniques, applications and challenges,” Inf. Fusion, vol. 76,
pp. 243–297, 2021.

[2] W. Alajali, W. Zhou, and S. Wen, “Traffic flow prediction for road intersec-
tion safety,” in Proc. IEEE SmartWorld Ubiquitous Intell. Comput. Adv.
Trusted Comput. Scalable Comput. Commun. Cloud Big Data Comput.
Internet People Smart City Innov., 2018, pp. 812–820.

[3] P. Alquier, “User-friendly introduction to PAC-Bayes bounds,”
2021, arXiv:2110.11216.

[4] A. N. Angelopoulos and S. Bates, “A gentle introduction to con-
formal prediction and distribution-free uncertainty quantification,”
2021, arXiv:2107.07511.

Authorized licensed use limited to: University of Glasgow. Downloaded on April 03,2024 at 20:48:31 UTC from IEEE Xplore.  Restrictions apply. 



QIAN et al.: TOWARDS A UNIFIED UNDERSTANDING OF UNCERTAINTY QUANTIFICATION IN TRAFFIC FLOW FORECASTING 2255

[5] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolu-
tional recurrent network for traffic forecasting,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2020, pp. 17804–17815.

[6] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

[7] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[8] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 933–941.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[10] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss
landscape perspective,” 2019, arXiv: 1912.02757.

[11] T. Fu et al., “Traffic safety oriented multi-intersection flow prediction based
on transformer and CNN,” Secur. Commun. Netw., vol. 2023, pp. 1–13,
2023.

[12] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1050–1059.

[13] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson,
“Loss surfaces, mode connectivity, and fast ensembling of DNNs,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2018, pp. 8803–8812.

[14] J. Gawlikowski et al., “A survey of uncertainty in deep neural networks,”
2021, arXiv:2107.03342.

[15] P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien, “PAC-Bayesian
theory meets Bayesian inference,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 1876–1884.

[16] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1321–1330.

[17] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., 2019, pp. 922–929.

[18] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Berlin, Germany:
Springer, 1994, pp. 409–426.

[19] P. Izmailov, A. Wilson, D. Podoprikhin, D. Vetrov, and T. Garipov,
“Averaging weights leads to wider optima and better generalization,” in
Proc. 34th Conf. Uncertainty Artif. Intell., 2018, pp. 876–885.

[20] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” 2021, arXiv:2101.11174.

[21] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun,
“Hands-on Bayesian neural networks–A tutorial for deep learning users,”
2020, arXiv: 2007.06823.

[22] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?,” 2017, arXiv: 1703.04977.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang,
“On large-batch training for deep learning: Generalization gap and sharp
minima,” 2016, arXiv:1609.04836.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[26] R. Koenker and K. F. Hallock, “Quantile regression,” J. Econ. Perspectives,
vol. 15, no. 4, pp. 143–156, 2001.

[27] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 6405–6416.

[28] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” J. Amer. Statist.
Assoc., vol. 113, no. 523, pp. 1094–1111, 2018.

[29] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks
for traffic flow forecasting,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 4189–4196.

[30] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learn.
Representations, 2018, pp. 1–16.

[31] Y. Liang et al., “Mixed-order relation-aware recurrent neural networks
for spatio-temporal forecasting,” IEEE Trans. Knowl. Data Eng., vol. 35,
no. 9, pp. 9254–9268, Sep. 2023.

[32] D. A. McAllester, “PAC-Bayesian model averaging,” in Proc. 12th Annu.
Conf. Comput. Learn. Theory, 1999, pp. 164–170.

[33] H. Miao, J. Shen, J. Cao, J. Xia, and S. Wang, “MBA-STNet:
Bayes-enhanced discriminative multi-task learning for flow predic-
tion,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 7164–7177,
Jul. 2023.

[34] S. M. Mousavi, O. A. Osman, D. Lord, K. K. Dixon, and B. Dadashova,
“Investigating the safety and operational benefits of mixed traffic envi-
ronments with different automated vehicle market penetration rates in the
proximity of a driveway on an urban arterial,” Accident Anal. Prevention,
vol. 152, 2021, Art. no. 105982.

[35] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” in Proc. IEEE Int. Conf. Neural Netw.,
1994, pp. 55–60.

[36] W. Qian, D. Zhang, Y. Zhao, K. Zheng, and J. James, “Uncertainty
quantification for traffic forecasting: A unified approach,” in Proc. IEEE
39th Int. Conf. Data Eng., 2023, pp. 992–1004.

[37] H. Qu, Y. Gong, M. Chen, J. Zhang, Y. Zheng, and Y. Yin, “Forecasting
fine-grained urban flows via spatio-temporal contrastive self-supervision,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 8, pp. 8008–8023, Aug. 2023.

[38] A. Sohail, M. A. Cheema, M. E. Ali, A. N. Toosi, and H. A. Rakha, “Data-
driven approaches for road safety: A comprehensive systematic literature
review,” Saf. Sci., vol. 158, 2023, Art. no. 105949.

[39] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 914–921.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[41] K. Stankeviciute, A. M. Alaa, and M. van der Schaar, “Conformal time-
series forecasting,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021,
pp. 6216–6228.

[42] A. Van Den Oord et al., “WaveNet: A generative model for raw audio,” in
Proc. 9th ISCA Speech Synth. Workshop, 2016, Art. no. 125.
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