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Abstract—In recent years, the analysis of human interaction data
has led to the rapid development of graph embedding methods.
Topological information is typically interpreted into embedded
vectors or convolution kernels for link-based classification
problems. This paper introduces a Bayesian graph embedding
model for such problems, integrating network reconstruction, link
prediction, and behavior prediction into a unified framework.
Unlike the existing graph embedding methods, this model does not
embed the topology of nodes or links into a low-dimensional space
but sorts the probabilities of upcoming links and fuses the
information of node topology and data domain via sorting. The new
model integrates supervised transaction predictors with unsuper-
vised link prediction models, summarizing local and global
topological information. The experimental results on a financial
trading dataset and a retweet network dataset demonstrate that the
proposed feature fusion model outperforms the tested benchmarked
machine learning algorithms in precision, recall, and F1-measure.
The proposed learning structure has a fundamental methodological
contribution and can be extended and applied to various link-based
classification problems in different fields.

Index Terms—Ensemble learning, Bayesian Network, interac-
tion prediction, trader network.

I. INTRODUCTION

THE rapid growth of human interaction networks has led to

a growing amount of interaction-generated data and the

impediment of finding reliable information [1], [2]. Interaction

logs, such as the web of sexual contacts, air-transport records,

blue tooth traces, email traces, mobile sensing logs, and

accessing logs ofWiFi hotspots, play an essential role in helping

individuals find relevant information, for instance, heteroge-

neous social behaviors and upcoming interactions. In human

interaction records, social relationships among individuals are

typically unknown. The latent social relationships can only be

inferred through other information channels, such as their simi-

larities on the observable social topologies, profiles, and behav-

ior trajectories [3]–[5]. To predict upcoming interactions with

interaction logs, researchers typically translate the task to a clas-

sification problem. However, researchers need to address two

challenges beforehand. First, networked structures are non-

Euclidean, to which many classification methods, such as sup-

port vector machines and convolutional neural networks, can

not be applied directly. Second, the size of the networks is nor-

mally large, which can be computationally expensive and lead

to storage costs.

Network representation learning models were proposed to

address the above challenges. They map the nodes in topological

spaces into low-dimension real-valued vectors and preserve their

proximity in the original spaces asmuch as possible. They can be

broadly classified into three categories: matrix factorization-

based models, random walk-based models, and neural network

models. Matrix factorization-based models include Laplacian

Eigenmaps [6], Graph Factorization [7], GraRep [8], and

HOPE [9]. Randomwalk-based models include DeepWalk [10],

Node2vec [11], GraphGAN [12], and GraphSAGE [13]. Neural

network models include Graph Neural Networks [14], Graph

Autoencoders [15], Graph Convolutional Networks (GCN) [16],

Graph Differentiable Pooling [17], and Graph Attention Net-

works (GAT) [18]. Generally, the graph embedding methods

can automatically learn topological features without compli-

cated feature engineering procedures, while their robustness to

network types and memory requirements for large networks are

generally not satisfactory, and their interpretability is highly

limited.

In this paper, we propose a Bayesian graph embedding (in

short BGE) model for the link-based classification problem,

which integrates network reconstruction, link prediction, and

behavior prediction into a unified framework. In a social net-

work, individuals can be denoted by nodes. Friends are con-

nected with an undirected link, representing the interaction

between them. When the interaction network is given, the

interaction prediction can be translated to estimating PðTij ¼
1jEÞ, where E denotes a set of links inferred by the interaction

logs, and Tij ¼ 1 denotes that individual i and j would interact
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at least once. The truth is that the topology of networks is typi-

cally unknown.

The interaction log data used in this paper is provided by a

British bank. The log covers the transaction records of a

department for 12 months. Each transaction record contains

several features, mainly including the ID of the buying trader

and that of the selling trader. The learning task of the proposed

model is to predict upcoming transactions among traders. The

transaction prediction in the financial field is closely related to

risk management, since the transaction risk is diffusing over

the trader network by transactions [19]–[21]. Therefore, the

significance of the transaction prediction is self-evident both

theoretically and technically. In the available dataset, the

trader interaction network can only be inferred from the trans-

action logs. With the logs including IDs, one can infer a sub-

graph of the entire trader network, which is useful in the

following prediction of the upcoming transactions. The rest of

the features can be extracted from their trading patterns, such

as the preference on product groups and trading time patterns.

Notably, the available interaction logs in a dataset are rather

limited. The inferred subgraph of the trader network is like-

wise small and sparse, where a large number of traders are not

connected. These limitations highly increase the difficulty in

embedding them into useful vectors and training a convincing

binary classifier. To tackle this problem, we introduce a differ-

ent solution in this paper. The fusion of the node topology and

data domain is accomplished through a Bayesian network. To

further verify the robustness of the proposed model on differ-

ent link-based classification problems, we also employ an

open dataset about users in a retweet network. Our experimen-

tal results on both datasets show that the performance of the

new model outperforms the state-of-the-art models, demon-

strating the feasibility of the proposed framework.

Our contributions of the study in the paper are three-fold.

First, we find a new way to integrate the topological informa-

tion of multi-components and data domains effectively. Sec-

ond, our model offers a solution to fuse the supervised

machine learning models with the unsupervised models.

Third, our extensive experiments on a variety of algorithms

show that the proposed new model achieves better prediction

performance and interpretability than the state-of-the-art algo-

rithms, which demonstrates that the model provides a promis-

ing paradigm for tackling link-based classification problems.

The rest of the paper is organized as follows. Section II

reviews the preliminaries and related studies. Section III intro-

duces the proposed model. Section IV presents our experimen-

tal results, and Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORKS

For the interaction prediction task, many previous studies

adopt supervised learning methods to embed the data domain

and topological features of a node into an input vector, with

final outputs provided by a binary classifier, including decision

trees, support vector machines, K-nearest neighbors, multi-

layer perceptrons, radial basis function networks, naive Bayes,

and different ensemble learning models like random forest

and boosted decision tree [22], [23]. Among various graph

representation learning models [24], graph convolution deep

neural network (GCN) has shown particularly encouraging

performance in many learning tasks involving graph structure

data [25]. For link-based classification tasks, GCN is used to

embed nodes into a lower-dimensional space [26]. The final

output typically depends on a fully connected neural network

or other classical binary classifiers.

We do not embed node pairs into a lower-dimensional

space in the proposed model but into a ranking vector.

Specifically, a link prediction algorithm based on topology

information is adopted to embed node pairs. The probabil-

ity ranking result is then fused with non-topological infor-

mation to derive the final prediction. Thus, one can

efficiently train a binary classifier based on the non-topo-

logical information to infer the probability of transactions

between the disconnected node pairs. The ranking of the

transaction probability is likewise easy to derive. With the

probability ranking, the two modes of data can be fused by

a simple linear combination.

We then discuss the link prediction algorithms. The topol-

ogy-based link prediction algorithms can be roughly classified

into four categories: likelihood-based methods, probabilistic

methods, graph embedding methods, and similarity-based

methods [27]. Typical examples of the maximum likelihood-

based methods are the stochastic block model (SBM) [28],

fast probability block model (FBM) [29], hierarchical struc-

ture model (HSM) [30], [31]. The community structure in net-

works is usually not easy to detect because numerous cycles

break their hierarchical structures. The maximum likelihood

methods are very time-consuming, and their scalability to the

types of networks is limited. The probabilistic methods

include probabilistic relational model (PRM) [32], probabilis-

tic entity-relationship model (PERM) [33], and stochastic rela-

tional model (SRM) [34]. As they depend on the global

topological information, their time complexities are normally

high, and their accuracy is generally not very satisfactory. The

similarity-based models can be sorted into three categories:

local, quasi-local, and global algorithms. The local algorithms

only consider the local information of node pairs. Typical

local algorithms include the common neighbors (CN) algo-

rithm, preferential attachment (PA) algorithm, resource allo-

cation (RA) algorithm, Adamic-Adar (AA) algorithm, and

Cannistraci-Hebb (CH) algorithm [35], [36]. In this category,

the performance and robustness to network types of the RA

algorithm are relatively better. The scale of the information

used in quasi-local algorithms is between local and global

algorithms. Typical quasi-local algorithms include the local

random walk algorithm (LRW), local path algorithm (LP),

Propflow algorithm [37], and Quantum-inspired Ant Colony

Optimization (QACO) algorithm [38]. The information used

in the quasi-local algorithms is normally less than the global

algorithms, while their performances are often promising. In

this category, the performance and robustness to network

types of the QACO algorithm are more competitive. The

global algorithms, as the name implies, leverage the global

topology information of the network. Typical global
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algorithms include the Katz algorithm, matrix forest index

(MFI), average commute time algorithm (ACT), low-rank

algorithm (LR), structural perturbation method (SPM), and

the like [39]. Among them, the performance and robustness of

the SPM are relatively better.

III. BAYESIAN GRAPH EMBEDDING MODEL

A. Theoretical Framework

For each individual, his attributes are composed of his topo-

logical properties in the interaction network and his interac-

tion patterns, such as behavior preference and time trajectory.

The attributes are used for each pair to calculate their topolog-

ical similarities, behavior preference similarities, time pattern

similarities, and the likes. Based on these similarities or a

direct concatenation of the embedded vectors, one can train a

binary classifier, but its performance usually is not satisfac-

tory. One reason is that labels are imbalanced [40]. As many

real networks are sparse, the feature extraction or graph

embedding procedures inevitably sacrifice some topological

information. To tackle this problem, we propose the Bayesian

graph embedding method. Our model is illustrated in Fig. 1.

From the interaction logs, one can infer links between individ-

uals A and B (B and C likewise). Based on the inferred links,

one can derive a linking probability of A and C. Finally, the

linking probability and the behavior similarities together

determine whether A and C will interact with each other. Our

goal is to compute the probability

PðTij ¼ 1jE; uðmi;mjÞÞ; (1)

where mi and mj are the attributes learned from i and j interac-
tion logs; uðmi;mjÞ is a vector representing the similarities

between individual i and j, where link eði; jÞ 2 E.

As also shown in Fig. 2, one can infer whether there are

links between the individuals in the probe set from the topol-

ogy in the training set. Based on the links and the behavioral

similarities between them, one can eventually predict whether

they will interact. Take traders in investment banks as an

example, mi represents trader i’s preference on product

groups, trading time patterns, and so on. For the traders i and
j, uðmi;mjÞ encapsulates their similarity on the product group

preference, similarities of time patterns, and so on. Accord-

ingly, Tij ¼ 1 means that at least one transaction is accom-

plished between traders i and j. To predict whether a

transaction will be accomplished between two traders who

have no transaction in the available transaction logs, one can

directly abstract a series of features from the network men-

tioned above and establish a binary classification model by

fusing the features and trading patterns of the traders. Never-

theless, the solution will be challenged by the links not

recorded in the transaction logs.

Based on the interaction logs, one can easily infer the set of

links E, since an interaction will surely leave a link, while the

inferred links are merely a part of the set of links in the inter-

action network. The reason is that a dataset of logs can hardly

cover all the interactions in history, since it is a trade secret

itself. On the other hand, some individuals may be acquaintan-

ces, but they have not interacted yet. Clearly, the links among

them can not be easily detected. To resolve the problem, we

assume that a link in the interaction network can highly pro-

mote the probability of interaction between two individuals.

To facilitate the downstream calculation, we uniformly set the

probability PðTij ¼ 1jAij ¼ 1Þ ¼ k in this paper, where k is a

constant. Under this assumption, the task is naturally inter-

preted as first predicting the missing links with E and then

predicting the upcoming interactions on the predicted links.

Based on the Bayesian network shown in Fig. 2, then

PðTij ¼ 1jE; uðmi;mjÞÞ
¼ PðTij ¼ 1jAij ¼ 1; uðmi;mjÞÞPðAij ¼ 1jEÞ

¼ P Tij ¼ 1; Aij ¼ 1; uðmi;mjÞ
� �

PðAij ¼ 1jEÞ
P Aij ¼ 1; uðmi;mjÞ
� � ; (2Þ

where Ai;j denotes an entry in the adjacency matrix of the net-

work, and link vði; jÞ 2 E. As PðAij ¼ 1jTij ¼ 1; uðmi;mjÞÞ ¼
1, the right-hand side of Eq. (2) is reduced to

P Tij ¼ 1juðmi;mjÞ
� �

PðAij ¼ 1jEÞ
P Aij ¼ 1juðmi;mjÞ
� � : (3)

Computing PðAij ¼ 1jEÞ is a typical topology-based link

prediction problem while computing PðTij ¼ 1juðmi;mjÞÞ can
be translated to an attribute-based binary classification prob-

lem. Since PðAijÞ is irrelevant to uðmi;mjÞ for Tij is not given,

PðAij ¼ 1juðmi;mjÞÞ is equal to PðAij ¼ 1Þ, which is only

Fig. 1. Schematic view of interaction prediction.

Fig. 2. The Bayesian network of interaction prediction.
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dependent on the density [41] of the entire interaction network

including the missing links. Therefore, to predict an interaction

between individual i and j, one is required to calculate PðTij ¼
1juðmi;mjÞÞ and PðAij ¼ 1jEÞ for all link eði; jÞ 2 E with their

behavior similarities and topological properties, respectively.

Computing PðTij ¼ 1juðmi;mjÞÞ is a binary classification prob-
lem, while estimating PðAij ¼ 1jEÞ is a typical link prediction
problem. Furthermore, the interaction prediction problem is

divided into a supervised machine learning task and an unsu-

pervised machine learning task [27]. The difficulty lies in that

there is no suitable way to integrate supervised and unsuper-

vised learning models into the same framework.

To unify the supervised and unsupervised machine learning

models, we implement the proposed model with three stages:

topology-based link prediction, attribute-based interaction

prediction, and feature fusion. A formal definition of the link

prediction problem is presented as follows. For each link, the

interactions between the individuals on both ends are not

recorded in the interaction logs, i.e., thus for links in E, define

the linking probability ranking L as L ¼ ½Bij; Bkl; . . .�, with
eði; jÞ; eðk; lÞ 2 E and Bij � Bkl, where the node pairs at the

top are more likely to be the missing or upcoming links. For

L, a series of representative topology-based algorithms are

introduced to score the links in E, including the local, quasi-

local, and global algorithms.

For the attribute-based interaction prediction, we mine the

individual behavior patterns such as product preference simi-

larity and time pattern similarity in trader networks based on

the limited transaction information. A series of well-per-

formed supervised machine learning methods are then applied

to score each link in E. Finally, a ranking P of interaction

probability on E derived from the attribute-based model and

L derived from the topology-based model are required to be

fused to output the final ranking of interaction probabilities.

A schematic view of the framework of the proposed model

is presented in Fig. 3, where the supervised and unsupervised

learning algorithms are used as base learners to predict the

transactions and links in parallel. They are then fused into a

stronger classifier for transaction prediction. Specifically, the

supervised learning algorithms use the non-topological prop-

erties of the transaction data as the input, while the topological

features of the trader network are taken into account by unsu-

pervised learning algorithms. In the following, we will show

that our model can appropriately integrate the topological

information of the sparse trading network with the behavior

similarities of pairwise traders in a way called ranking fusion.

B. Interaction Prediction

If the data domain of nodes is non-empty in a dataset, previ-

ous studies commonly adopt the supervised machine learning

algorithms for the convenience of integrating different types

of information. Instead, our model takes the supervised algo-

rithms as a component to learn the linking probability from

the data domain of nodes. In the following, we briefly intro-

duce attribute-based interaction prediction, topology-based

link prediction, and interaction prediction based on network

embedding. They are either the components of our model or

the methods to be compared.

1) Attribute-Based Interaction Prediction: Applying the

supervised learning algorithms to the problem of interaction

prediction [42] is typical for machine learning practitioners as

the occurrence of interaction can be predicted by a binary clas-

sifier. Whereas the implementation of these algorithms is

dragged by the imbalanced data classes resulting from the low

density of real networks and difficulty in abstracting the topo-

logical features into independent features [15]. A robust clas-

sifier should be built either on adequately interpreting the

topological similarity measurements to features or on learning

the representation of the features through optimizing the pre-

diction accuracy [11]. The tested classification models in pre-

vious studies include support vector machines, K-nearest

neighbors, logistic regression, random forest, multilayer per-

ceptron, radial basis function network, naive Bayes, and gradi-

ent boost decision tree. To present a feasible ranking vector,

we select a series of classical binary classifiers to evaluate the

interaction probabilities between node pairs comprehensively.

In short, the support vector machine (SVM) is a discrimina-

tive classifier formally defined by a separating hyperplane.

Specifically, given labeled training data (supervised learning),

the algorithm outputs an optimal hyperplane that categorizes

new examples. In [22], a comparison between a few link pre-

diction models is reported, and SVM with RBF kernel was

very successful in terms of accuracy. Therefore, we choose

SVM as our first binary classifier. Random forests or random

decision forests are a supervised ensemble learning method

for classification, regression, and other tasks that operate

through constructing a multitude of decision trees in training

and outputting the labels for classification or values for regres-

sion from the trees. It is a flexible, easy-to-use machine learn-

ing algorithm that usually produces good results, which is our

second choice. Gradient boosting decision tree (in short,

GBDT) is an iterative decision tree algorithm composed of

Fig. 3. Schematic view of the BGE model.
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multiple decision trees. During each iteration, the algorithm

uses the current ensemble to predict the label of each sample

and then compare the label with the ground truth. The dataset

is remarked with the corresponding “residual” to emphasize

the training sample with poor prediction performance. Gener-

ally, the GBDT algorithm performs well in various data min-

ing and machine learning competitions, which is thus our third

choice. The multilayer perceptron (in short, MLP) is regarded

as the simplest form of a feedforward neural network. Despite

its simple structure, the perceptron can learn and solve quite

complex learning problems. We use this basic deep neural net-

work framework to test the possibility of using other deep

learning models. Table III shows the parameter settings for all

the candidate models.

2) Topology-Based Link Prediction: To acquire the rank-

ing of linking probabilities for node pairs in networks, one can

turn to the similarity-based algorithms in which each pair of

nodes, x� y, is assigned a similarity score sxy. All the missing

or upcoming links are ranked with their scores, directly pro-

portional to their linking possibilities. Typically, these algo-

rithms are interpretable, with computational complexities

lower than the machine learning approaches. To present a fea-

sible ranking vector, we next introduce three representative

algorithms on different scales.

RA Algorithm. Let x and y denote two randomly selected

nodes in a network. Let GðxÞ and GðyÞ denote the sets of x
and y’s neighbors, and kx and ky denote the degrees of x and

y, respectively. The similarity between nodes x and y is

defined as

SRA
xy ¼

X
z2GðxÞ\GðyÞ

1

kz
: (4)

The performance of the RA algorithm has been demonstrated

to be one of the best local algorithms [43]. Therefore, it is

selected as a component of the BGE model.

QACO Algorithm. As a representative quasi-local algo-

rithm, the QACO algorithm integrates ant colony optimization

and quantum computing [38]. Consider an undirected network

G ¼ ðV;EÞ, and let a number of artificial ants randomly dif-

fuse in G, where each node and node pair are respectively

allocated a certain amount of pheromone. The probability that

a link is visited by an ant is proportional to its pheromone.

Assume an ant visits n nodes, which leaves a walking path.

Let the probability that an ant travels from node vi to node vj
be pij. The value of pij relies on the pheromone of the path,

the visibility of the node pair ðvi; vjÞ, and the quantum phero-

mone of vj. After an ant vj reaches its destination, the phero-

mone on the node pairs and nodes in the path will be updated

according to a certain rule. In turn, the updated pheromone on

the links and nodes will affect the paths of the ants in the next

iteration. Generally, the pheromone and visibility of the node

pairs will heuristically lead the ants to approach the globally

optimal paths, since following the quantum pheromone is an

effective way to avoid local optima. Finally, the pheromone

tij and visibility hij on node pair ðvi; vjÞ can effectively reflect
the similarity between vi and vj.

SPM Algorithm. The SPM algorithm is a structural pertur-

bation method in which a new matrix is generated by perturb-

ing the eigenvalues of the original adjacent matrix while

keeping the eigenvectors [44]. Randomly select a fraction pH

of the links in E to constitute a perturbation set DE, and define

ER as the set E � DE. Let AR and DA be the corresponding

adjacency matrices for the networks composed of ER and DE,

respectively. Note that A ¼ AR þ DA, where the real sym-

metric matrix AR can be diagonalized as

AR ¼
XN
k¼1

�kxkx
T
k ; (5)

where �k and xk are the kth eigenvalue and its corresponding

orthogonal and normalized eigenvector of AR, respectively.

Using the perturbed eigenvalues and unchanged eigenvectors,

the perturbed matrix of AR can be rewritten as

~A ¼
XN
k¼1
ð�k þ D�kÞxkx

T
k ; (6)

where D�k denotes the difference on the kth eigenvalue

induced by the perturbation. ~A can be used as the linear

approximation of the given adjacency matrix A.

If the perturbation does not significantly change the struc-

tural features, the differences between the eigenvector of the

observed matrix xk and xk þ Dxk for all k will be negligible.

In this case, AR þ DA can be approximated as ~A. Comparing
~A and AR, one can obtain the scores of the node pairs in ques-

tion, which are then used to predict the missing links in DE. If

there are missing links in a network, the SPM algorithm can

effectively detect them.

3) Interaction Prediction Based on Network Embedding:

Network embedding is a method of network representation

learning. The purpose is to learn the lower-dimensional poten-

tial representation of nodes in the network while maintaining

the original network structure as much as possible [45]. The

features learned through graph embedding can be conve-

niently used in various machine learning tasks. For example,

in link prediction, graph embedding is also a standard method

to obtain the feature representation of nodes. In order to com-

pare it with the method proposed in this paper, we use two

classic graph embedding models for link prediction tasks.

Node2vec is a classical model in network representation

learning and is mainly designed for feature learning of auto-

mated prediction tasks. This method is an extension of another

graph embedding model, Deepwalk, which comprehensively

considers the depth-first sampling neighborhood and breadth-

first sampling neighborhood [46].

Due to the wide application of GCN [25] in the field of

graph embedding, recent link prediction methods are closely

related to it. Among them, the most representatives are Graph

Auto Encoder (GAE) and variational Graph Auto Encoder

(VGAE) [47]. GAE is an application of the sparse autoencoder

model [48] to the field of graph embedding. The idea is to use

GCN to fuse node features with topological information and

decode the embedding by reconstructing the graph.

VGAE [47] introduces Gaussian noise to GAE, which is an
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application of the variational auto-encoder(VAE) to the field

of graph embedding. The decoders of both GAE and VGAE

are built on link prediction tasks. Therefore, one can naturally

use them to accomplish such tasks. We will compare our

model with these two graph-embedding models in Section IV.

C. Feature Fusion

For the interpretability of the model, we adopt a linear model

to fuse the ranking vectors. Suppose that there are Tp ¼ jEj
samples of trader pairs. The existence of their trading transac-

tions (i.e., ground truth or labels) is denoted by a vector yy ¼
½y1; . . . ; yTp�>. Suppose also that there are D candidate models

in total (including both supervised and unsupervised learning

models), and the corresponding model weight in the linear

fusion is denoted by ww ¼ ½w1; . . . ; wD�>. For N samples, the

outputs of the candidate models are denoted by a matrix ZZ ¼
½ZZð1;�Þ; . . . ; ZZðTp;�Þ�> ¼ ½ZZð�;1Þ; . . . ; ZZð�;DÞ�, where ZZði;�Þ is a vec-
tor of the predictions given by the candidate models for node

pair i, i ¼ 1; . . . ; Tp. In the probability-based fusion, the pre-

dictions are the interaction probabilities of node pairs for

supervised models and similarity scores for unsupervised

models, respectively. In the ranking-based fusion, the predic-

tions are the reciprocals of the ranking indices of the interac-

tion probabilities and similarity scores mentioned above.

Their formal definitions will be provided later in this section.

ZZð�;jÞ is a vector of the predictions for all the node pairs given
by the candidate model j, j ¼ 1; . . . ; D. Use a unified weight

vector ww to fuse the rankings of interaction probabilities and

linking probabilities. Let the numbers of supervised and

unsupervised models be Ns and Nu, respectively. The fused

interaction probability for node pair i can be defined as fol-

lows:

pi ¼ ww>1:Nsð ÞZZ i;1:Nsð Þ þ ww>Nsþ1:NsþNuð Þ � ZZ i;Nsþ1:NsþNuð Þ:

(10)

Here, we divide w into two segments, since the physical

meanings of the outputs of the candidate models are different

for supervised and unsupervised learning models. The outputs

of the former are the predicted probabilities of the transaction

links of node pairs, while the outputs of the latter are the simi-

larity scores between two nodes, which are typically out of the

range between 0 and 1. Therefore, the scores are required to

be normalized before fusion. We adopt the ‘Min-Max

Scaling’ [49] to normalize them in the probability-based

fusion. The preprocessing of ZZ is presented in Algorithm 1.

Although the predicted probabilities and similarity scores pos-

sess different scales and physical meanings, their functions

are similar. A more significant probability or similarity score

implies that the transaction between the two traders is more

likely to occur. Therefore, one can fuse them to predict

upcoming transactions.

Considering the differences in scales and physical mean-

ings, we propose a ranking-based fusion. As the physical

meanings of the rankings are the same, the scaling is not

necessary anymore. In the fusion, Z ¼ 1eXXði;jÞ , where eXXði;jÞ
denotes i’s index in the ranking of XXð�;jÞ in descending

order. The preprocessing of ZZ is presented in Algorithm 2.

The predicted label of node pair i depends on whether the

index of pi in the ranking of pp is less than or equal to a

predetermined threshold K, where K is a hyper-parameter

of our model. If the index is less than or equal to K, it

will be labeled 1, and 0 otherwise. The mapping is denoted

by function fð�Þ.
The optimal weights of candidate models in Eq. (10) can be

derived by Algorithm 3, in which a loss function is formulated

based on cross-entropy [49]. To optimize the hyper-parameter

Algorithm 1. Preprocessing of ZZ for probability-based fusion

1: Input:XX "Original outputs of candidate models

2: ZZ  XX
3: for j 2 U do "U is the index set of unsupervised

learning models

4: for i ¼ 1; . . . ; N do

5:

ZZði;jÞ  
XXði;jÞ �minfXXð�;jÞg

maxfXXð�;jÞg �minfXXð�;jÞg

6: end for

7: end for

8: Output: ZZ

Algorithm 2. Preprocessing of ZZ for ranking-based fusion

1: Input:XX "Original outputs of candidate models

2: for j ¼ 1 � � � ; D do

3: eXXð�;jÞ  Index of sortingXXð�;jÞ in decreasing order
4: end for

5: for i ¼ 1; . . . ; Tp do
6: for j ¼ 1; . . . ; D do

7: ZZði;jÞ  1eXXði;jÞ8: end for

9: end for

10: Output: ZZ

Algorithm 3. Optimal weights

1: Input: ZZ, yy
2:

ww�  arg minww �
1

N

(XN
i¼1
½yi ln fðww>ZZði;�ÞÞ

þ ð1� yiÞ lnð1� fðww>ZZði;�ÞÞÞ�
)
; (7Þ

subject to
XD
j¼1

wj ¼ 1; (8Þ

wj � 0; j ¼ 1; 2; . . . ; D; (9Þ

3: Output: ww�
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ww in Algorithm 3, we adopt the grid search in ð0; 1Þ with a step
length 0.1 in our experiments.

IV. EXPERIMENTS

This section introduces our datasets, provides data prepara-

tion and model training settings, and presents the experimental

results and comparative analysis.

A. Data

We use a real-world trading dataset from a British invest-

ment bank. It is composed of 120,648 transaction records of its

U.K. trading department from 2 January 2014 to 31 December

2014. Each transaction record contains 36 entries (known as

features in machine learning [49]) such as unique transaction

ID, trading product grouping levels, instrument description,

selling trader ID, buying trader ID, the quantity of trade, trans-

action time, the date that the trade goes live or goes to mature

in the system, currency rate, market operations feedback, and

the likes.

To further verify the robustness of the proposed model on

different link-based classification problems, we also employ a

publicly available dataset about users in a retweet network1.

This dataset contains a network of over 100,000 users. For

each user, several content-related, network-related, and activ-

ity-related features were provided, such as average sentiment

and subjectivity of his neighbors’ tweets, his number of

tweets, followers, followees, and favorites.

B. Data Preparation and Model Training

Our main dataset is the trading data. To properly use the

transaction records, entries in the original dataset are carefully

selected, and in the meantime, domain knowledge of financial

trading and investment is likewise considered to generate

some new features. In the original dataset, the ‘family’ is a

high-level grouping of products. Transactions can be catego-

rized into four family types. The ‘group’ is a medium-level

grouping of products, including 17 categories. Clearly, the

groups provide a more accurate picture of traders’ trading pat-

terns than the families. The distributions of the products on

groups are shown in Table I. For each transaction, there are

also a number of temporal attributes in the record, such as the

time that a transaction is requested from a trader, the time

that the transaction is processed by the system, and the

time that the transaction is confirmed by two sides. As the

differences among these time records are small, we uni-

formly choose the last one. The value of each transaction

is in pounds sterling based on the exchange rate of the

date of the transaction.

Considering traders may have certain customary time pat-

terns in trading, we reconstruct the time-associated features

into three levels of time granularity: month, weekday, and

time slice. The trading time pattern of traders varies widely,

which seems not relevant to the transaction prediction.

Whereas, one should recall the necessary condition of a trans-

action that there must be at least a small overlap between the

traders’ time patterns. The overlap will more or less contribute

to the similarity of their trading time patterns. In addition, the

details of each transaction are integrated, but different prod-

ucts are indiscriminately aggregated to calculate the attribute

‘trading volume’ as the product details are not the focus of

this paper.

As transaction prediction is based on a trading network,

one needs to further understand the structure of the trading

network and extract the topological features of node pairs

in it from the transaction records. We first integrate the

features associated with two traders, including their identi-

ties, the groups of financial products that they have traded,

the time distributions of transactions in terms of months,

weekdays, and time slices. For example, the ‘group’ has a

total of 17 categories, so the group feature of each node

can be encoded by a 17-dimensional vector representing

the group distribution of transactions. Based on the trans-

formed features, we are able to build the feature vector of

links with the similarities of the two nodes. In the measure

of similarity, we use cosine similarity. After inferring a

trader network, extracting the features of the nodes, and

then using the similarities between the pairwise nodes to

constitute the feature vectors of the links, we finally

acquire the features shown in Table II.

The constructed trader network is composed of 1,149

nodes and 1,810 links in total, which is a relatively small

social network comparing with other online social net-

works, such as Facebook, Twitter, etc. The density of the

network is 0.003 with a small average degree of 3.1. Its

clustering coefficient and average path length are 0.111

and 3.48, indicating that it is a typical small-world net-

work. For trader pairs that have transaction records, we set

their labels to 1, and 0 for the others. Note that the number

of trader pairs without transaction records is much larger

TABLE I
DISTRIBUTIONS OF FINANCIAL PRODUCTS

1 https://www.kaggle.com/manoelribeiro/hateful-users-on-twitter?
select¼users_hate_glove.content
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than the number of links in the network. In other words,

the network is extremely sparse. Therefore, we randomly

pick a number of negative samples, which is equal to the

number of positive samples, to compose the final dataset

for the purpose of solving the sample imbalance problem.

Finally, we collect a total of 3,620 samples, with a positive

to negative sample ratio of 1 : 1.
We do not engineer features for the twitter data, and the con-

structed retweet network is composed of 1,004 nodes and 1,870

links in total. Its clustering coefficient and average path length

are 0.212 and 2.46, indicating that it is a typical small-world

network. For user pairs that have retweet records, we set their

labels to 1 and 0 for the others. The network is likewise sparse.

Therefore, we randomly pick a number of negative samples,

which is equal to the number of positive samples, to compose

the final dataset for the purpose of solving the sample imbal-

ance problem. Finally, we collect a total of 3,740 samples, with

a positive to negative sample ratio of 1:1.
In order to ensure the credibility of the results, we adopt a 10-

fold cross-validation method. In the 10-fold cross-validation,

the balanced sample set is randomly partitioned into 10 equal-

sized subsets. Of the 10 subsets, a single subset is retained as

the validation data for testing the model, and the remaining 9

subsets are used as a training set. Our training set is composed

of 3,258 samples (3,366 samples for the retweet network), and

the testing dataset is composed of 362 samples (374 samples

for the retweet network). For the binary classification task, our

setting guarantees that each fold contains roughly the same

proportions of the two types of class labels. The cross-valida-

tion process is repeated for 10 times, with each of the 10 subsets

used exactly once as the validation data. The prediction results

are then averaged to produce the final result. As introduced in

Section III, we test four different supervised learning algo-

rithms to present a feasible ranking vector, which are SVM,

RF, GBDT, and MLP. The hyper-parameters of each algorithm

are respectively optimized with the grid search. The detailed

setting of hyper-parameters is shown in Table III.

C. Results and Analysis

Precision, recall, and F1-score are the most popular metrics

for evaluating a machine learning algorithm’s performance for

classification problems. When we apply these metrics to the

algorithms with the top-K selection in the link prediction [51],

Precision is redefined as the ratio of the accurate predictions

among the top-K predicted links [52]. For the balanced test

sets, we setK ¼ jlj2 , and precision is computed as

Precision@K ¼ m

K
: (11)

For a given K, larger precision means higher prediction accu-

racy. Recall describes the ratio of the predicted links to the

removed links. Let m be the number of correctly predicted

links in the top-K of L for the test set, and we compute recall

TABLE III
HYPER-PARAMETER SETTINGS OF SUPERVISED LEARNING MODELS

TABLE IV
OVERALL RESULTS OF MODEL PERFORMANCE OF THE TRADER DATA

The best method in each column is highlighted in gray colour.

TABLE II
FEATURES DESCRIPTION OF THE TRADING NETWORK
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as follows

Recall@K ¼ m

n
; (12)

where n is the total number of existing links in the test set.

Another evaluation metric F1-score takes the harmonic mean

of precision and recall.

Table IV shows the average results of the evaluation metrics

with the 10-fold cross-validation for the trader network data.

The best-performing feature combinations are highlighted in

gray. Compared with the feature combinations provided by

pure supervised or unsupervised models, one can see that a

reasonable fusion of them achieves the best performance.

Concerning the fusion mode, the ranking-based fusion gener-

ally performs better. For the ranking-based fusion, the perfor-

mance of the feature fusion provided by Random Forest and

‘QACO’ is ranked second, followed by that of ‘GBDT’ and

‘QACO’. The ranking-based fusion of the pure unsupervised

link prediction methods performs poorly in the dataset, but its

performance is better than most probability-based fusions. To

further illustrate the transaction prediction based on the trader

network, the prediction result of the BGE model in an experi-

ment is visualized in Fig. 4, where the solid blue lines denote

the existing but not predicted transactions, the solid yellow

lines denote the correctly predicted transactions, and the solid

red lines denote the falsely predicted transactions.

We run feature ablation tests in the two fusion modes to test

the importance of features in our model. Table V shows

that ‘topology’ has the most significant impact on model

performance, which is embedded by the unsupervised algo-

rithms. The second is ‘Timestamp,’ and the least is ‘Group’.

Generally speaking, the impacts from ‘Group,’ ‘Month,’

‘Weekday,’ and ‘Timestamp’ are relatively close. We do not

test the importance of features in the retweet networks, since

the number of features in the dataset is over 1,000, and such a

test is computationally expensive and trivial.

Fig. 5(a) shows that the BGE-rank model outperforms the

rest algorithms in all the metrics. The BGE-probability

model is next to the BGE-rank model. The ranking-based

fusion successfully tackles this problem, providing a novel

pathway to fuse the attributes and topological features of

links. At the same time, as three widely used methods in

graph embedding, we observe that GCN, GAT, VGAE do

not perform well in this task. Here, GCN and GAT are

trained by the same decoder in GAE [47]. For the Node2-

vec, we linearly combine the inner product of the embedded

vectors with the supervised models. For the topological

properties, one can see that the fusion performance by GCN

is worse than that by Node2vec. The reason is that GCN

TABLE V
ABLATION OF THE FEATURES

G: Group; M: Month; W: Weekday; T1: Timestamp; T2: Topology.

Fig. 5. Performance evaluation of six graph embedding algorithms for (a) the
transaction prediction on the trader networks and (b) the retweet prediction on
the retweet networks.

Fig. 4. Network visualizations of transaction prediction. The prediction
result on a probe set randomly selected from the transaction logs is visualized
here. The transaction log used in the experiment is a fragment of the entire
transaction historical log from 2 January 2014 to 31 December 2014. In this
inferred network, the traders (gray circles) with just one partner in the entire
trading log are placed on the perimeter of a circle. The remaining traders are
placed inside this circle, allocated among their neighbors. In the test set, a
trader will move toward the center of the circle a certain distance every time
he is at the end of a link to highlight the trader. The links in the training set are
hidden. Solid blue lines denote the existing but not predicted transactions,
solid yellow lines denote the correctly predicted transactions, and solid red
lines denote the falsely predicted transactions.
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cannot effectively integrate the features of high-order neigh-

bors, which play an essential role in the mission. Similar

behaviors can be observed in the retweet networks. Fig. 5(b)

shows that the F1-measures of the BGE-probability model

and BGE-rank model are likewise higher than the rest algo-

rithms in all the metrics, confirming the robustness of our

model to network types. Interestingly, the performance of

the BGE-probability model is slightly higher than the BGE-

rank model, indicating that the reciprocal of the ranking

indices may not be the best way to fuse the link-based fea-

tures in the task. Next to the BGE-rank model, ‘Node2vec’

also performs well, indicating that the node attributes are

crucial in the task.

V. CONCLUSION

This paper proposes a novel feature ranking framework to

predict human interactions with historical interaction logs. Dif-

ferent from the existing methods, we adopt neither a pure

supervised method with complicated feature extraction and

learning procedures nor a pure unsupervised method, which

can hardly integrate the individual properties with their connec-

tions. Instead, we apply a Bayesian graph embedding model for

fusing the individual properties with the topological informa-

tion of the network composed of their interconnections. The

model successfully integrates the supervised interaction predic-

tion and unsupervised link prediction with interaction probabil-

ities. Extensive experimental results on two datasets of

different types show that our model outperforms the tested

benchmarked algorithms in precision, recall, and F1-score. We

believe that our model provides a promising paradigm for fur-

ther studies on network embedding and human interaction pre-

diction. Admittedly, as we aim to promote the performance of

interaction prediction algorithms, other metrics such as compu-

tational complexity, scalability to network size, and robustness

to network type are not specifically optimized. To meet specific

needs, one can rearrange the components of the model; the

fusion among the individual properties and topological proper-

ties can be further improved. For instance, a non-linear combi-

nation may perform better in some tasks; semi-supervised

extensions can likewise be considered if the dataset contains a

large number of unlabeled data. Such possible extensions will

be explored in our further work.

APPENDIX - KEY NOTATIONS

P ¼ Probability of interaction
E ¼ Set of links inferred by the interaction logs
A ¼ Adjacency matrix of the network
L ¼ Linking probability ranking

Ti;j ¼ Transaction between two traders
ui ¼ Attributes learned from interaction logs

uui;uj ¼ Similarities between individual i and j

Z ¼ Outputs of the candidate models
D ¼ Number of candidate models
ww ¼ Model weight
Ns ¼ Number of supervised models
Nu ¼ Number of unsupervised models
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